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Abstract: The lack of sentiment resources in poor resource languages poses challenges for the
sentiment analysis in which machine learning is involved. Cross-lingual and semi-supervised learning
approaches have been deployed to represent the most common ways that can overcome this issue.
However, performance of the existing methods degrades due to the poor quality of translated resources,
data sparseness and more specifically, language divergence. An integrated learning model that uses a
semi-supervised and an ensembled model while utilizing the available sentiment resources to tackle
language divergence related issues is proposed. Additionally, to reduce the impact of translation
errors and handle instance selection problem, we propose a clustering-based bee-colony-sample
selection method for the optimal selection of most distinguishing features representing the target data.
To evaluate the proposed model, various experiments are conducted employing an English-Arabic
cross-lingual data set. Simulations results demonstrate that the proposed model outperforms the
baseline approaches in terms of classification performances. Furthermore, the statistical outcomes
indicate the advantages of the proposed training data sampling and target-based feature selection
to reduce the negative effect of translation errors. These results highlight the fact that the proposed
approach achieves a performance that is close to in-language supervised models.

Keywords: cross-lingual sentiment analysis; multi-graph semi-supervised learning; sample selection

1. Introduction

With the development of Web 3.0 era, artificial intelligence (AI), increasing amount of multi-lingual
user-generated content are available that expresses the users’ views, feedback or comments concerning
various aspects such as products quality, services, and government policies. User-generated
content contains rich opinions about several topics including brands, products political figures,
celebrities, and movies. Due to the business values of the huge bulk of user-generated subsistence,
sentiment analysis has received much attention in recent years.

Due to the multilingual nature of the user-generated contents, the necessity for an effective
and autonomous multilingual and cross-lingual social media analysis technique is becoming vital.
The majority of the existing sentiment research has been focusing predominantly on the English
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language, except for a few researches exploring other languages. Various well-regarded sentiment
resources, i.e., lexicons and labeled corpora, are constructed for the English language. Research progress
in other global languages is limited due to the lack of such sentiment resources [1–8]. The manual
development of dependable annotated sentiment resources for each poor resource language and
its domain is a time-consuming and intensive task. In order to overcome the annotation cost,
various solutions have been proposed in the literature to exploit the unlabeled data in target-language
(this is called semi-supervised learning) [1], or to explore translated models and/or data available in
other languages (this is called transfer learning) [3–5,9]. The lack of these annotated resources in the
majority of languages motivated research toward cross-lingual approaches for sentiment analysis.
Language Adaptation (LA) or Cross-Lingual Learning (CLL) is a particular example of Transfer
Learning (TL), that leverages the labeled data in one or more related source languages to learn as a
classifier for unseen/unlabeled data in a target domain. More specifically, the leveraging of sentiment
resources from rich language to predict sentiment polarities of a poor-resource language text is
referred to as Cross-Lingual Sentiment Classification (CLSC). Language with the availability of rich
and reliable resources is usually referred to as ‘source language’, while a low-resource language is
referred to as the ‘target language’. Despite the fact that sentiment analysis has received notable
attention from the research community, there are limited works that focus on cross-lingual sentiment
analysis. The difficulty of handling cross-lingual sentiment analysis comes from various sources such
as loss of polarity during machine translation, cultural disparity, feature divergence, and data sparsity.
In addition, the noisiness and informal nature of the social media text poses additional challenges to
cross-lingual sentiment analysis.

Supervised Cross-Lingual (SCLL) as well as Semi-Supervised Learning (SSL) are commonly used
approaches to control sentiment analysis in poor resource languages with little to no labeled data
available [9]. SCLL techniques attempt to make use of current annotated sentiment resources from
opulent language domain (i.e., genre or/and different topics). These approaches employ machine
translation (from target to source languages, or from source to target, which are referred to as
bidirectional), bilingual lexicons or cross-lingual representation learning techniques with parallel
corpora to project the labeled data from source to targeted language [1,3,9,10]. It should be noted
that state-of-the-art CLSA techniques suffer from insufficient performance due to the low machine
translation quality as well as cultural and language divergence [3,4,9,11,12] (i.e., various sentiment
expressions and social culture). The success of these approaches is largely dependent on how
similar the projected source data and target language data are. In contrast, SSL techniques such as
co-training, self-training, and active learning for cross-lingual sentiment classification, rely on a small
quantity of labeled data from the same domain, which necessitates additional annotations. However,
SSL techniques suffer from data sparseness as the small amount of labeled data used cannot cover all
target test data topics. Additionally, SSL techniques cannot reasonably use large translated resources
from rich languages. Therefore, discovering methods to exploit translated labeled data sets and
unlabeled target data to enhance classifier performance has recently become a popular research topic.

In this paper, an efficient integrated supervised and semi-supervised learning is proposed in
order to address the cross-lingual classification issues. The critical idea is to develop a cross-lingual
learning model that can overcome the disadvantages of both SCLL and SSL via fusing sentiment
knowledge-translated labeled and target unlabeled from multiple sources. The aim is to incorporate
an extended supervised learning model trained over the selected translated labeled data samples
along-with semi-supervised models learned from the target unlabeled data, to achieve superior
performance. The paper investigates several research questions that are relevant in addressing
cross-lingual sentiment analysis, including: (1) Which direction of SCLL or SSL is better with scarce
resource languages? (2) Could translated sentiment sources be employed together with target data to
solve cross-language analysis tasks successfully?

To summarize, this work has a number of contributions. First, it proposes two-dimensional noisy
data reduction. In the horizontal dimension, a new cluster-based meta-heuristic sample selection
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method is proposed to select the optimal, informative and representative training sample. The aim is
to avoid noisy examples in order to achieve the target classification best performance. In the vertical
dimension, a novel modification of feature selection algorithms is proposed to select features from the
translated source data set not only based on their association with classes but also associated with target
data. This means that features or opinion expressions are excluded even if they are discriminating,
and are only source language-specific features. Only features that are discriminating and related to the
target language are chosen. Secondly, this work proposes a new integrated model where an ensemble
model trained over the translated data is integrated with a semi-supervised model trained over the
target data at the learning phase. The target test data is then passed to the trained integrated model,
which is responsible for classifying test data instances that are similar to the source data and passing
them to the semi-supervised model. So, the integrated model fuses knowledge from translated data,
and simultaneously, uses target language data to handle the divergence of data distribution.

The remainder of this paper is organized as follows. Section 2 shows related studies on cross-lingual
sentiment analysis. The proposed method is presented in Section 3. The experiments’ methodology
and experimental results are presented in Sections 4 and 5, respectively. Conclusion and further works
are illustrated in Section 6.

2. Related Studies

Cross-lingual sentiment analysis is introduced to alleviate the problem of developing training
data and building separate models for different languages and domains. The following subsections
summarize the challenges and existing approaches for cross-lingual sentiment analysis.

2.1. Challenges of CROSS-LINGUAL Sentiment Analysis

Cross-lingual sentiment analysis task shows many challenges. Loss of polarity, cultural disparity,
feature divergence, and data sparsity are all considered as challenges [1,4,9,10,12]. However, loss of
polarity or the issue of labeling mismatching caused by the erroneous machine translation of source
language training data severely deteriorates the analysis performance [3]. Previous work predominantly
relies on machine translation engines or bilingual lexicons to project data from the source language to
the target language [1,2,13]. Machine translation quality is still low and far from satisfactory [1,2,9].
Additionally, machine translation may result in the mistranslation of a word into something with a
totally distinct meaning, which can negatively affect the quality of the projected source language labeled
data. However, this is not a factor in performance degradation. On the other hand, cultural disparity is
a major difficulty in cross-lingual sentiment analysis, despite translation quality [14]. Each language has
its own particular way of expressing sentiments and writing styles. Even in the scenario of expressing
a comparable idea, there can be a huge disparity in the vocabulary and metaphor within the context of
various languages, leading to a far smaller word and phrase intersection between native expressions
and translations [9]. Furthermore, feature distribution, which refers to instances of mismatching
between the knowledge examples that the classifier acquired in training phase, contains many source
and target language-specific features which need to be categorized. From a sentiment analysis
perspective, this relates to the cross-domain sentiment analysis situation where training and test data
are drawn from various domains, therefore making it a hurdle for traditional semi-supervised and
supervised classification algorithms to attain satisfactory sentiment classification [10,14]. Additionally,
using machine translation, auto-translated data contains a vast number of irregular words and
meaning-less terms as a result of translation errors. References [15,16] indicated that incorrect
translations show an increase of noisy features and sparseness. This implies that poor translation
quality results in generating noisy features that ultimately provides poor classification accuracy.
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2.2. Main Techniques for CROSS-LINGUAL Sentiment Analysis (CLSA)

Despite the fact that sentiment analysis has received a significant amount of attention, very few
methods have been put forward for cross-lingual sentiment classification in various methods. First,
translation-based methods are dependent on machine translation or bilingual dictionaries [17,18] to
project the annotations from the source language into the target language, or vice versa. A classification
model is then trained over the target data with projected annotations [2,13]. Earlier works utilize the
bilingual dictionaries to transfer the sentiment features from one language to another. For example,
in [17] a lemmatized form of English terms from ‘Opinion Finder’ was extracted and translated with
two bilingual dictionaries to create a subjective analysis lexicon. Authors in [18] used a bilingual
dictionary to create a bilingual word pair that was extracted from high-occurrence terms contained
within the source and target language. The word pair is then utilized to extend the Structural
Correspondence Learning Approach (SCL) proposed by Blitzer et al. [19] from cross-domain to
cross-lingual adaption. The primary disadvantage of bilingual dictionaries is that they are unable to
capture a word context during translation, as each word may possess a distinct meaning in a variety of
contexts. Thus, it is likely to generate a negative effect on the accuracy of sentiment analysis in the
target language [1,20]. The recent innovations in machine translation have motivated researchers in
sentiment analysis to utilize freely available MT services such as Google translator and Bing translator.
For example, the researchers in [2] showed that machine translation is a reliable tool to generate
sentiment analysis resources for multilingual sentiment analysis. More recently, [13] investigated
whether machine translation could be employed to generate reliable training data for emotion analysis.
For this purpose, they employed Google engine to translate the original text from the source language.
In [21], a direct transfer model, namely, adversarial deep averaging network, is trained to transfer the
knowledge learned from source labeled data, whereby the model attempts to create language invariant
bilingual representations. Despite recent advancements in machine translation tools, researchers are
still unwilling to take advantage of such technologies as they have concerns about the capabilities of
machine translation systems to preserve the sentiment information across languages.

The second method can be referred to as domain adaptation methods that attempt to deal with
the cross-lingual using cross-domain adaptation. For instance, Structural Correspondence Learning
(SCL) [19] was employed for CLSA in several studies, including [18,22]. Such methods provide
correspondence among words taken from two different languages utilizing ‘pivot features’ which
represents the set of frequent features provided in both languages. In this case, a pair of words is
utilized from source and target languages as pivot features to model the correlation among these
features and other words using leaner classifiers and unlabeled data set which can be used as an
independent language predictor. Additionally, Li et al. [22] employed the distributed representation of
words to build one-to-many mappings between the pivot features in the source language (English)
and those in the target language (Chinese). The direction aims to deal with feature divergence or
domain mismatch between translated resources and target data. Unfortunately, accuracy degradation
naturally occurs even in cases of perfect MT, because of the cultural disparity, i.e., language divergence.
Also, there is no regular method for pivot selection and therefore, these methods cannot guarantee
performance in all situations.

The third direction of CLSA is cross-lingual representation learning methods. These methods
prompt language-independent features to bridge the cross-lingual distinction in the original word-level
representation space and build connections across various languages [23]. The majority of these
methods employ parallel corpora to train bilingual word embedding to obtain aligned inputs for
learning feature extraction that works with both languages [24]. Recently, Chen et al. [25] proposed
the idea of joint two-view convolutional neural networks (CNNs) to grasp the connection from
opinionated documents across languages. Their method begins by projecting the extracted parallel
sentiments connection into a bilingual sentiment relation space. Then, it captures the connection
by subtracting them with an error tolerance. In [26], sentence-aligned corpora were used between
a pair of resource-rich and resource-poor languages. The assumption is that the system is reliant
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upon the semantic similarity between different phrases, which implies sentiment similarity in most
sentences. Later, [27] presented a model that could be used to learn distributed representations through
a hierarchy of network architectures.

Recently, [28] demonstrated that word embedding can be enriched for sentiment information
without the necessity of a labeled corpus. This enrichment improves the performance across sentiment
and non-sentiment-related tasks. The primary disadvantage of the cross-lingual representation method
for CLSA is the need for large parallel corpora, which is difficult to obtain, especially when high quality
is required.

Semi-supervised learning direction is followed by researchers when needing to deal with cultural
disparity challenges in which each language has its own sentiment expressions. Researchers used
unlabeled data in the learning process to strengthen classification performance [29,30]. A bilingual
co-training approach is exploited to leverage annotated English resources for sentiment classification
in Chinese. A machine translation service was utilized to translate labeled English documents (training
documents) and unlabeled Chinese documents (testing documents) into each other. The author used
two different views (English and Chinese) and employed the co-training approach for a classification
problem. Later, unlabeled data for the target language are incorporated into the learning process via a
bi-view framework proposed by [20]. The key idea is to enrich training data through the addition of
the most confident automatically labeled examples, as well as a few of the most informative manually
labeled examples from unlabeled data in an iterative process.

Finally, several works have recently been introduced to incorporate sentiment information.
Bilingual Sentiment Embedding (BLSE) [31] is proposed to jointly optimize and represent both
semantic information and sentiment information given comparably little bilingual lexicon and an
annotated sentiment corpus.

Related to this work, some researchers have tried and are trying to solve the issue of different
term distribution between the training (translated data from source language) and test data in
CLSC-incorporating unlabeled data from the target language using a semi-supervised learning
approach. A number of research studies use the supervised or semi-supervised classification trained
on translated data to classify the unlabeled target data. The most solid instances are used as seeds
for a semi-supervised model. Due to the significant vocabulary gaps between source data and target
data, the supervised model incorrectly classifies instances of the seeds that, in turn, were used in the
semi-supervised model. When the initial classifiers are not sufficient, this can increase the examples
that are incorrectly labeled within the training set. Hence, using noisy examples will decrease the
accuracy of the learning model as well as the performance of each classifier. It should also be noted
that confident classified examples may not essentially provide information during the learning process.
Hence, the addition of these examples may not be useful from the classifier point of view.

Both [1,32] used active learning with semi-supervised learning to select the most confident and
most informative training samples to be added. The main disadvantage of this method is that it
requires human intervention from experts in the target language, and this can be regarded as the
semi-automatic annotation of the data set. Considering these problems, several factors are dwelt on
within the proposed research study. First, the model proposed utilizes the available sentiment resources,
labeled translated data set, labeled seed from the target language, and unlabeled data from the target
language. Second, the proposed model integrates a supervised model with semi-supervised at the
learning phase. Third, this work brings forward a new clustering-based bee-colony sample-selection
method to choose the optimal, informative, and noiseless representative training sample to achieve
superior performance of the target classification. This work proposes target-based feature-selection
algorithms to select features from the translated sources data set based on their association with
classes and with the association with target data. This means that feature or opinion expressions that
are discriminating and associated with the source language specific-features, are excluded. Hence,
only features that are discriminating and related to the target language are selected.
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2.3. Main Techniques for Instance Selection and Feature Weighting

The handiness of vast amount of source target training data has necessitated the development of
accurate and fast algorithm capable of discovering underlining information within the big data. Most of
the proposed algorithm focus on randomly selected subset of data. Recent approaches for training
sample selection are classified into instance-based methods and feature-based methods. Instance-based
methods focus on weighting individual instances based on their importance to the target domain [33].
Feature-based methods are based on projecting, mapping, as well as representing features in a way
that the source classifier can achieve well using the target data. A feature-based method presented
in [34] uses a greedy algorithm for the selection of a subset of features from a source data matrix which
approximates the features of a target matrix. Xia [5] identifies the most relevant target domain samples
and uses them as the training dataset. In [35,36], a semi-supervised learning technique called PU
learning is used to identify and weight these instances. The performance is evaluated on cross-domain
sentiment classification. Different samples in the source training are provided with different weights
during the base model training to make the distribution of training dataset resemble the distribution
of target data. In Xia et al. [36], the authors extend this work by taking both sample selection bias
and sample selection variance into consideration for the domain adaptation. To improve PU-learning,
ref [37] proposed an approach called PUF that additionally selects reliable negative instances through
the fuzziness of the instances.

3. The Proposed Method

As discussed earlier, the primary aim of the proposed method is to leverage the available sentiment
resources, translated resources, and target language resources to strengthen the sentiment analysis
performance and tackle the language gaps. The key idea presented in this work by integrating SL
with SSL is that the supervised model is responsible for classifying target data that are similar to
training data, i.e., translated data. Those target instances that are classified with low confidence by
the supervised model are passed with prior information to a semi-supervised model trained over
the target data for classification. The concept of transferring previous information is to combine the
influence of translated resources with the influence of target data and to reduce the time complexity of
graph-based algorithms by accelerating them to convergence.

To benefit from translated resources effectively, two levels of filter are proposed to minimize
the translation noise. The first level (horizontal level or sample selection) aims to select optimal,
informative and representative training samples and avoid noisy examples to achieve the best target
classification performance. The second level (vertical level or feature selection) uses a target-based
feature selection algorithm to select features that are discriminative and simultaneously associated with
the target data. Generally, the proposed method consists of (1) clustering-based bee-colony training
sample selection, (2) target-based feature selection, (3) ensemble supervised learning, (4) integrating
prior supervised information with semi-supervised learning, (5) multi-graph semi-supervised learning.
The details of each component are shown as follows.

3.1. Clustering Based on BEE-COLONY Training Instance Selection

Instance selection (sample selection) is one of the important components of cross-lingual sentiment
classification because a rich-resource language such as English has many datasets from different
domains, each containing large size of labeled reviews. Therefore, it is quite easy to obtain a large
collection of labeled reviews along-with machine-based translation. However, only some of them
may be useful for training a desired target-language sentiment classifier. Therefore, it is important to
identify the samples that are the most relevant to the target domain. Under this circumstance, instance
selection is necessary for training an effective classifier [35,36,38]. Unlike domain adaptation, instance
selection within the cross lingual adaptation has an additional aim to filter out the noisy instances from
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a selected dataset. Such noisy instances (or outliers) within the source translated dataset are usually
generated due to the language gap and translation errors.

Existing multi-source or single source cross-language methods frequently utilize the entire
translated source data and ignore the selection of appropriate data instances from the translated source
data to be used for adaptation. Nonetheless, assuming the availability of a single-source language or
multi-source languages, it is critical to adapt and choose the most efficient training instances that are
suitable for the target language. This is a critical issue that has received little attention. Because of the
vocabulary gaps between translated data and target data, the supervised classifier will not accurately
classify the target data. To overcome this problem, this section describes an instance selection algorithm
to select the high-quality training data from the translated source language data that is used to train the
supervised classification model. The main objective of this component is to select the optimal training
samples to achieve efficient performance of the target classification. In this phase, the top ranked source
domain clusters are selected as a source training set. Given that the translated data instances from
source(s) languages and domains, a new cluster-based bee-colony meta-heuristic instance selection
algorithm is proposed to discover the best training sample from the source language.

3.2. Clustering Target Language Data

The algorithm divides the target language into Q number of clusters, each represented as Cq,
q = {1, 2, . . . , Q}. The aim is to utilize these clusters to select representative source training data.
To overcome the limitations of k-based clustering where the number of clusters must be predefined,
this work introduces radius-based clustering. The step-by-step flow of the proposed algorithm is
summarized below:

(i) Inferring a target data similarity matrix: Given an unlabeled target data set consisting of the
feature vectors of m unlabeled reviews, U = {u1, . . . , um}, The similarity matrix element Sij is
computed between each pair of the unlabeled reviews (ui, uj) from the target language dataset
using cosine similarity measure as in Equation (1):

Sij = cos
(
ui, uj

)
=
|ui| ∗

∣∣∣uj
∣∣∣√

u2
i ∗ u2

j

(1)

The constructed similarity matrix is built through computing pair-wise similarity between the
target set instances: 

S11 . . . S1m
...

. . .
...

Sm1 . . . Smm

 (2)

(ii) Estimating reviews density: A random number r is selected where 0.5 < r ≤ 1. The algorithm
then calculates the density of each unlabeled review ui of the data as:

Density(ui) =
∣∣∣∣{uj : Sij ≥ r ;∀j

}
(3)

where Sij is the cosine similarity cos
(
ui , uj

)
between two feature vectors of review ui and

uj. Density(ui) is the density of review, uI is the set of all reviews whose cosine similarity such
that the review ui is greater than r. After computing the density function for all reviews, a review
which has the highest density (i.e., Density(ui)) > Density

(
uj

)
;∀j) is then chosen as the seed

of the first Sj1, i.e., review which has most similar reviews, and all reviews in Sj1 density set({
dj : dist

(
ui , uj

)
≤ r ;∀j

})
are removed from the data set.
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(iii) The centroid of each cluster: Given the selected review and all reviews in its density set,
the centroid of a formed cluster is computed as average of the feature vectors of all cluster
members (i.e., density set members), as shown in the equation below:

µf =
1
|Cf|

|Cf |∑
∝=1,

u∝ (4)

where µf is the centroid of the formed cluster, |Cf| is the number of reviews in the cluster f and u∝
is the feature vector of review u∝.

(iv) Selection Q optimal target clusters: Repeat step (iii) and step (iv) to continue selecting the
subsequent clusters as long as the algorithm continues to find documents in the data set.

3.3. Improved Artificial BEE-COLONY Training Selection

Algorithm 1. In this step, the goal is to craft an approach for selecting a training sample from
the source language. This means finding an optimal translated source data to be utilized as training
data for the target language. The selected sample is aimed to be representative, with fewer translation
errors, and suitable for the target domain. Also, sample instance topics must have the same topic
distribution as the target language data, i.e., contains data that cover more topics in the target data in
the concept space.

To start with, the artificial bee colony (ABC) produces a randomly distributed which will be the
population of SN solutions (i.e., positions of the source food) using search space, in this case the SN
represents the size of engaged bees. Each solution xk is a D-dimensional vector in which k represents
the number of the solution with k = 1, 2, . . . , SN. Here, D is the number of translated reviews from a
single source. All solutions generated in this phase are collected using (5):

xkz = θk,z (5)

θk,z is a random number between [0, 1] while z is the number of a translated reviews from the
given source z = 1, 2, . . . , D. After the initialization phase, each employed bee’s position is discretized
to reveal the selected and omitted reviews. Specifically, employed bees are represented as a vector of
{0, 1} defining whether a review dz in the translated dataset from a particular domain, is selected or
not, as shown in (6)

xk,z =

1 if dz is selected in solution k

0 otherwise
(6)

This means changing the real position to a discrete one; each xk,z is set to a binary number 0 or 1.
The following equations are applied to map each xij to be zero or one:

xk,z = S
(
θk,z

)
=

1
1 + e−θk,z

(7)

Then, the artificial bee colony calculates the amount of nectar in each food source depending
on the quality of the associated solution. Given g target data clusters and the calculated centroid µf
f =

{
1, . . . , g

}
of those clusters calculated in the previous section. To calculate the fitness Fk of each

solution (employee bee) xk, the algorithm does the following steps:

(1) For each review da from the solution xk( selected sample from the source), the algorithm finds
the maximum similarity of review and each centroid µf of the g target clusters as follows:

msa = max
∀f

cos((da,µf)) (8)

where msa can be defined as the maximum similarity of a review da and the target data.
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(2) Then, the fitness of the solution xk is defined as average of total maximum similarity of all of its
reviews and calculated as follows:

Fk =

∑
da∈ xk

msa

| xk|
(9)

| xk| is the number of selected reviews in the solution xk. An onlooker bee assesses the information
of the nectar for all employed bees and selects the source of the food based on the probability of the
nectar quantity. This probability value is determined based on the following formula:

Pi =
Fi∑SN

i=1 Fi
(10)

To provide diversity for the population, the onlooker is required to find local search with
improved nectar resources around the corresponding resources for each generation. Global artificial
bee colony introduces the global optima into the search formula of artificial bee colony for improving
the exploitation based on the following formula:

xk,z = xk,z + θk,z ∗ (xk,z − xh,z) + β ∗
(
xglob

z − xk,z

)
(11)

where xk,z is a new value of review dz in the generated solution xk, xh,z is the value of review dz in the
solution xh which h is a random number between 1 and D and not equal to k and xglob

z is the value the
value of review dz in the best global solution xglob. Onlooker bees as well as employed bees complete
manipulation for the search area, and consumed food sources are replaced with a new one using the
artificial bee colony algorithm with the scout bees during the discovery process. If the position is not
enhanced as a previously determined cycle number, the food source is acknowledged as abandoned.
In this case, a previously concluded cycle number is considered the “limit” for abandonment. With this
scenario, three control parameters in ABC are utilized: the number of food sources (SN), equals to
the number of employed and onlooker bees, the limit value and the maximum cycle number (MNC).
If an abandoned solution is assumed to be xk and (z = 1, 2 . . . D), the scout goes to search for a new
replacement solution, as in Equation (12).

xk,z = xmin
k,z + rand(0, 1) ∗

(
xmax

k,z − xmin
k,z

)
(12)

where xk,z is the value of review dz in the solution xk, xmin
k,z and xmax

k,z are the lower and upper bounds
of the value of review dz in the generated solution xk, respectively.

The performance of new food source is compared with the previous one. When the new food
source has an equivalent or more amount of nectar than the previous one, new one will substitute the
old food source in memory. Otherwise, the old one holds its memory position. This implies that a
greedy selection mechanism is used to make selections among the old source and that of the candidates.
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Algorithm 1. ABC algorithm Pseudo code

Input: Translated Training Data, Q optimal target clusters, S centroids of target clusters
Output: Optimal Training Data
For each Cluster Ci in Q target clusters

(1) Generate the initial population { x1, . . . , xn}

(2) Assess the fitness of the population using Equation (9)
(3) Let cycle to be 1
(4) Repeat
(5) FOR each solution (employed bee)

Begin
Find new solution from xi with Equation (11)
Determine the fitness value using Equation (9)
Employ greedy process
EndFor

(6) Find probability values Pi for the solutions utilizing Equation (10)
(7) FOR every onlooker bee

Begin
Choose solution based on Pi
Generate new solution from xi utilizing Equation (11)
Determine the fitness value using Equation (9)
Employ greedy selection process
EndFor

(8) If abandoned solution for the scout is determined,
Begin
swap it with a new solution
randomly generated using Equation (12)
EndIF

(9) Remember the best solution up to this point
(10) increase cycle by 1
(11) Until cycle equals to MCN

3.4. Target-Based Feature Selection Methods

Algorithm 2. In the previous step, a sample selection or horizontal noise removal is used,
which selects a sample of best training instances that are appropriate for the target language. This has
been performed at instance level. In the following step, these reviews are passed through machine
translation using Google translation, preprocessing and feature selection components. In traditional
feature selection methods, features are selected based on their class weights. However, not all features
included in these instances are useful for target language sentiment analysis. For instance, a word
that cannot be translated to the target language by the machine translation appears in its original
language in the translated text. These words should be removed even if they are selected by the feature
selection method. To design a target-based feature selection, we introduce target-feature weighting
methods for selecting features that are discriminating and suitable for the target language. This is called
‘vertical noise removal’. Features are chosen according to two factors (a) to their class weights and (b)
target-language weights. Firstly, this work evaluates a pointwise mutual information feature weighting
method for measuring its correlation with source data classes. The pointwise mutual information
feature selection method selects features for each class according to the co-occurrence measure between
a feature fj and a class ci. The pointwise mutual information (nPMI) between the feature and its classes
is calculated using (13).

nPMI
(
class = ci, fj

)
=

PMI
(
ci, fj

)∑
fk

PMI (ci, fk)
(13)
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After that, features are weighted in target data based on their occurrence in the target data
using (14):

Tw
(
fj

)
=

f
(
T, fj

)
f
(
T, fj

)
+ f

(
S, fj

) (14)

where f
(
T, fj

)
and f

(
S, fj

)
are the term frequency-inverse document frequency (TFIDF) of feature fj in

both sources translated data and target data.

Algorithm 2. Algorithm for integrating prior supervised information with semi-supervised training.

Input: UT Test Unlabeled data from the target language,
LS: Selected labeled training sample from Source language.

Output: Unconfident Group UG, Prior Label matrix PL, confident group CG
Begin
(1) Train classifier C1 on LS.
(2) Train classifier C2 on LS.
(3) Train classifier C3 on LS.
// C1, C2 and C3 used to predict class label and calculate
// the prediction confidence of each example in U
(4) For Each (Example ui in UT)

Begin
P1 ← Predict_label(c 1, ui)

P2 ← Predict_label(c 2, ui)

P3 ← Predict_label(c 3, ui)

// calculate average confidence values
ACV← ensemble(P1, P2, P3)

IF ( ACV > γ)

Begin
CG← CG∪ (u, l)

Else
UG← UG∪ u
PL← ACV

ENDIF
ENDFOR

(5) Call Semi− Supervised (UG, PL)
End
RETURN CG, UG, PL

3.5. Ensemble Supervised Learning

The final prediction is performed using an ensemble approach by integrating the outcomes from a
supervised and a semi-supervised model. The supervised model is trained using a selected sample
from the translated source data while the semi-supervised graph-based model learned the patterns
within the target data. The main objective is to strengthen the classification performance and reduced
complexity of the graph-based model.

In the ensemble model, classification is performed using the weighted voting to combine the
predictions from multiple algorithms as in Equation (15):

H(x) =
T∑

i=1

αih(xi) (15)

where h is a classifier, H is . . . ., alpha is the Naïve Bayes, maximum entropy, and logistic regression
are utilized as base classifiers. Each weak classifier offers an output prediction, h(xi), for every target
test sample. Every base learner has a weight, αi so that the error sum is minimized.
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Naïve Bayes uses the Bayes’ theorem with strong or naïve independence assumptions for
classification. Provided with feature vector table, the algorithm calculates the posterior probability
that the document belongs to distinct classes and assigns the document to the class that has the highest
posterior probability. To classify the most probable class c* for a new document d, NB computes
Equation (16):

C∗ = argmax
c

p(c|d) (16)

The NB classifier calculates the posterior probability as in Equation (17):

p
(
cj |d i

)
=

p
(
cj

)
p
(
cj |d i

)
p(di)

(17)

A detailed explanation of the NB classifier can be found elsewhere. Maximum Entropy (ME)
classifier estimates the conditional distribution of the class label ci given a document xj using the form
of an exponential function with one weight for each individual constraint as in Equation (18):

Pω(ci| x) =
1

z(x)
e{ωi f(ci , x)} (18)

f(ci , x) =

1 if c = ci and x contain wk

0 otherwise
(19)

where each fi(ci , x) represents a feature, ωi is the weight to be determined through optimization,
and Z(x) is a normalization factor. Pω(ci

∣∣∣ x) is estimated for each class, and the class with the highest
probability value will be selected as the class of document x. f(ci , x) as an indicator function returns
one only when the class of a particular document is ci, and the document contains the word wk.
Further details about ME can be found in [37]. Logistic regression defines the predicted probability as
in Equation (20):

f(x) = P (ci| x) =
eβ0+β1f1+...+βkfk

1 + eβ0+β1f1+...+βkfk
(20)

where the coefficient βi controls the effect of the feature. The further a βi drops from 0, the more
dramatic the effect of the feature fi.

The diversity of the ensemble classifier is generated by several factors:

(1) Using different types of base classifiers.
(2) Selecting samples that contain instances generated randomly, and
(3) Selecting samples that are distributed in a representative and informative way. The final prediction

output of the ensemble model is obtained by averaging the confidence values for each label.

3.6. Integrating Prior Supervised Information with Semi-Supervised

To leverage the benefits of the source language annotated resources through supervised approaches
and the unlabeled examples from the target language through semi-supervised learning, we use an
integrated model that combines both approaches. The output from the ensemble model (described in
the previous section) is clustered into two categories on the basis of the obtained average confidence
values. The average confidence of an example is calculated by averaging the confidence of the majority
classifiers in predicting the label of that example. The first type of output is a group of all test instances
that have been assigned to their classes based on high average confidence values, i.e., a group of the
most confident, positive examples and the most confident negative examples. Classes associated with
these test instances are considered as their final class predictions.

The second group (i.e., unconfident group) represents the set of test instances that have been
assigned low average confidence values because they contain target language opinion expressions.
In other words, they have different term distribution with the translated training data set. Instances of
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the unconfident group are transferred along with their associated values to the semi-supervised
learning module (next section).

3.7. SEMI-SUPERVISED Learning

As mentioned in the previous section, the semi-supervised model is responsible for classifying
test instances that have been categorized with low average confidence in ensemble model. The idea
is that they contain target language opinion expressions i.e., they have different term distribution
with the translated training data set. Given a data set = Xl + Xu ∈ Rd, where, d is the dimension
of the feature space. Xl = {x1, . . . , xn } is a labeled seed set from the target data. Y(l) is the Rn∗2 label
matrix of these seed sets. For each review i from the seed set, Y(l)(i, 0) is 1 if xi is labeled as negative,
and Y(l)(i, 1) is 1 if xi is labeled as positive. Xu =

{
xn+1, . . . , xn+m

}
is an unlabeled unconfident set with

prior probabilities from the supervised model. Y(up) is the label matrix for the test data set. Y(up) is
Rm∗2. N = n + m is the size of the total data set. For traditional graph-based method, both Y(up)(i, 0),
and Y(p)(i, 1) are initialized to 0 for each review from the test set. In our integration algorithm,
Y(up)(i, 0), and Y(up)(i, 1) are the prior probabilities for positive and negative classes passed from the
supervised model. The multi-graphs algorithm as shown in Figure 1 is described below:

Step (1) Each review is represented as a feature vector.

Step (2) Initialize the label matrix Y = Y(l) ; Y(up)
∈ RN∗2 for the labeled data set. Y(l) and Y(up)

is described above.
Step (3) Randomly select f features from all features
Step (4) Graph construction:

(a) Each xi a labeled or unlabelled review, a node is assigned. Allow V = {v1, . . . ., vn} to
be a set of vertices.

(b) K-NN node calculation: To construct the graphs, the nearest neighbor method is
employed. Two nearest k neighbors set a review of xi and is determined where
Knnu(xi) is a set of K nearest unlabeled neighbors, and Knnl(xi) is a set of K nearest
labeled neighbors of xi. A review xj is assigned to one of the k nearest neighbors set
of review xi if their edge weight wij between their feature vectors is greater than ε.
The weight of an edge wij is defined with the Gaussian kernel:

wij = exp

−xvi − xvj
2

σ2

 (21)

where xvi is the feature vector of review xi, Weight matrix W =

[
WLL WLP

WPL WPP

]
is constructed.

Step (1) Run semi-supervised inference on this graph utilizing label propagation:

Yp ← (1− γ)Wpp Ŷp + γWPL ŶL. (22)

Finally, Normalize Yp Repeat the above steps n times from step 3 to build n trained
semi-supervised models Each trained with different feature set;

Step (2) The n Semi-Supervised classifier vote to determine the final labels for the unlabeled data Yp.
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4. Experimental Design

This work is evaluated using a standard evaluation data set for cross-lingual sentiment
classification from English to Arabic presented in [3]. The Amazon corpus [19] is used as a benchmark
dataset. This data set contains four distinct types of product reviews extracted from Amazon.com,
including Books (B), DVDs (D), Electronics (E), and Kitchen Appliances (K). Each review comes with
full text and the rating score from the reviewer. As in [29], 800 reviews have been selected randomly
from Amazon product reviews dataset, 200 of each domain. Then, we employ Google Translate (GT)
to translate the test data to the target language and manually correct the output. Table 1 summarizes
the dataset characteristics.

Table 1. Characteristics of The Data Set.

Dataset/Features Books DVDS Electronics Kitchen

No. of reviews 2000 2000 2000 2000
Positive 1000 1000 1000 1000

Negative 1000 1000 1000 1000
No of features 188,050 179,879 104,027 89,478

Average length/review 239 234 153 131

To measure the performance of sentiment classification methods, experimental results are presented
using the gold standard statistical metrics used in machine learning that include: True Positive (TP)
of a class is the set of reviews that are correctly assigned to that class, False Positive (FP) of a class is
the set of reviews that are incorrectly assigned to that class, False Negative (FN) of a class is the set of
reviews that is incorrectly rejected for corresponding class, and True Negative (TN) is the set of reviews
that is correctly rejected to that class. Precision, recall, and F1 are used to measure performances.

5. Result and Discussion

The following experiments are conducted using the aforementioned dataset and validation metrics
(1) baseline ensemble models where experiments are conducted to evaluate the baseline ensemble model
(2) baseline semi-supervised learning, and (3) the proposed integrated model. All the experiments
outlined are with consistent model configurations, training and test data.

The first set of experiments is to evaluate Supervised Cross-Lingual Learning sentiment analysis
(SCLL). This means that these experiments use only translated data for the training process. Initially,
LR, NB, and ME and voting ensemble classifiers are trained using translated data from English and
Arabic dataset. The experimental results using LR, NB, ME, classifiers voting ensemble on Books B,
DVDs D, Electronics E, and Kitchen Appliances K are summarized in Table 2 and Figure 2. Table 2
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indicates that the highest performance is obtained with the voting ensemble classifier with f-measure
performance of 76.54%, 75%, 73.42%, and 76.92% on Books B, DVDs D, Electronics E, and Kitchen
Appliances K, respectively. On the other hand, the LR classifiers show poor classification accuracy
with f-measure performance of 69.28%, 70.97%, 68.42%, and 67.98% on Books B, DVDs D, Electronics E,
and Kitchen Appliances K, respectively. The outcomes from ensemble model clearly indicate the
superiority over the performances of individual classifiers. This further indicates the independence
between the predictions from individual classifiers.

Table 2. Performance of baseline supervised learning models.

Model Target Data Set Precision Recall F-Measure

NB

D 70.59 69.68 70.13
K 72.44 71.97 72.2
E 68.18 69.54 68.85
B 74.19 71.88 73.02

ME

D 74.05 73.58 73.81
K 74.84 74.38 74.61
E 73.08 72.15 72.61
B 73.75 74.68 74.21

LR

D 67.95 70.67 69.28
K 70.06 71.9 70.97
E 69.33 67.53 68.42
B 67.76 68.21 67.98

VOTING

D 77.5 75.61 76.54
K 76.43 73.62 75
E 74.36 72.5 73.42
B 77.16 76.69 76.92
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Figure 2. Performance of baseline supervised learning models on Books B, DVDs D, Electronics E,
and Kitchen K domains.

Figure 2 demonstrates that the performance of the baseline classifiers varies from domain to
domain. However, generally, the results obtained by the proposed model are significantly better
than those obtained by supervised in-lingual adaptation. We argue that this is because different term
distribution between original and translated documents can lead to low performance in cross-lingual
sentiment classification.
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The second experiment is to evaluate the Semi-Supervised Learning (SSL) sentiment analysis
that only uses seeds from the target language. The co-training semi-supervised learning method is
evaluated. Results are also provided in Table 3. Table 3 shows that the highest performance is obtained
with the SSL with f-measure performance of 62.07%, 64.41%, 66.67%, and 63.01% on Books B, DVDs D,
Electronics E, and Kitchen Appliances K respectively. From Tables 2 and 3, the results show that SCLL
trained with large translated data from the source language is superior to the SSL with seed from the
target language.

Table 3. Performance of Baseline Semi-Supervised Learning Model.

Target Data Set Precision Recall F-Measure

D 65.07 63.76 64.41
K 63.89 62.16 63.01
E 67.11 66.23 66.67
B 63.38 60.81 62.07

In addition to the evaluation of the baseline models, the paper aims to answer how SCLL models
trained with the selection of training sample from translated sentiment sources to be employed
together with the target data by SSL to successfully solve cross-language analysis tasks. To do
this, we investigate the effect and importance of different sizes of selected samples for cross-lingual
sentiment classification. Furthermore, experiments also investigate the integrated model to show the
importance of the exploitation of monolingual resources for cross-lingual sentiment classification.

Table 4 shows the overall performance of the integrated model proposed in this study.
Results clearly indicate that the integrated learning model that combines SCLL and SSL and utilizes
monolingual resources substantially improves the overall performance over baseline models. Figure 3
show the performance (x-axis) of an integrated supervised and semi-supervised learning model with
different sizes of samples (y-axis).

Table 4. Results (F-Measure) of Integrated Model with different sizes of selected samples.

Size of Sample B D E K

1000 80.95 78.42 79.15 80.95
1500 82.36 80.24 81.66 82.36
2000 82.7 80.24 82.36 82.7
2500 83.39 80.95 80.24 83.39
3000 84.39 82.01 83.04 84.39
3500 85.39 83.04 84.06 85.39
4000 85.72 83.38 83.04 85.72
4500 82.95 78.42 81.79 80.16
5000 81.31 78.79 80.24 80.24
5500 80.24 77.68 79.16 78.05
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Table 4 show that the highest performance is obtained with the integrated model when sample
size is 4000 with f-measure performances of 85.72%, 83.38%, 83.04%, and 85.72% on Books B, DVDs D,
Electronics E, and Kitchen Appliances K respectively. These results are significantly better than
that of the best baseline models (voting ensemble classifier) with f-measure performances of 76.54%,
75%, 73.42%, and 76.92% on Books B, DVDs D, Electronics E, and Kitchen Appliances K respectively.

Based on the statistical results shown in Tables 2–4, it can be validated that the optimal selection
of resources and the appropriate integration of SCLL and SSL significantly improve the performance
of cross-lingual sentiment analysis.

6. Conclusions

A study on cross-lingual sentiment analysis using integrated supervised and semi-supervised
models is presented in this paper. The aim is to show that SCLL models trained with selected training
sample from translated sentiment sources can be integrated together with the target data by SSL
to successfully solve cross-language analysis tasks. We designed and developed a clustering-based
sample selection approach and a target-based feature selection to select the optimal and representative
training samples and features that are suitable for the target data. Several experiments are conducted
to evaluate standalone supervised or semi-supervised Cross-Lingual Learning sentiment analysis as
well as the proposed model. Results show that SCLL trained with large translated data from the source
language is superior to the SSL with seed from the target language. Experimental results also indicated
that the proposed integrated models (supervised and semi-supervised models) are much more accurate
than standalone supervised or semi-supervised machine learning approaches. In addition, our work
showed that the majority voting method has a stable performance in the presence of noise. This paper
concludes that the appropriate selection of resources and the integration of SCLL and SSL can handle
cross-lingual sentiment analysis problems.

Future work will involve the use of other language pairs as well as investigating other
semi-supervised learning models.
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