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Abstract: Video- and sensor-based gait analysis systems are rapidly emerging for use in ‘real world’
scenarios outside of typical instrumented motion analysis laboratories. Unlike laboratory systems,
such systems do not use kinetic data from force plates, rather, gait events such as initial contact (IC)
and terminal contact (TC) are estimated from video and sensor signals. There are, however, detection
errors inherent in kinematic gait event detection methods (GEDM) and comparative study between
classic laboratory and video/sensor-based systems is warranted. For this study, three kinematic
methods: coordinate based treadmill algorithm (CBTA), shank angular velocity (SK), and foot velocity
algorithm (FVA) were compared to ‘gold standard’ force plate methods (GS) for determining IC and
TC in adults (n = 6), typically developing children (n = 5) and children with cerebral palsy (n = 6).
The root mean square error (RMSE) values for CBTA, SK, and FVA were 27.22, 47.33, and 78.41
ms, respectively. On average, GED was detected earlier in CBTA and SK (CBTA: −9.54 ± 0.66 ms,
SK: −33.41 ± 0.86 ms) and delayed in FVA (21.00 ± 1.96 ms). The statistical model demonstrated
insensitivity to variations in group, side, and individuals. Out of three kinematic GEDMs, SK GEDM
can best be used for sensor-based gait event detection.

Keywords: gait event detection; wearable sensors; gait analysis

1. Introduction

Gait analysis is commonly performed to characterize healthy walking and quantify deviations that
may exist due to pathology or injury [1–9]. The gait cycle is defined as the time interval between two
successive occurrences of one of the repetitive events of walking [10], typically beginning from initial
contact (IC) of the foot to the successive IC. The timing of IC and terminal contact (TC), referred to as
heel strike and toe off in healthy populations, is necessary to mark the transition between stance and
swing phases of gait. These two events are essential to analyze temporal gait parameters, such as stride
time, periods of single and double support [11] and to compare joint angles, forces, and moments
across multiple strides [12]. The division of the gait cycle also allows clinicians to evaluate deviations
in pathologic gait, and improvements achieved with rehabilitation, by providing a clear description of
the typical behavior of the lower extremity during each phase of the gait cycle.

A gait or motion capture laboratory, equipped with force plates or instrumented treadmills
and cameras, is the “gold standard” [5,13–15] for providing complete biomechanical analysis of the
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spatiotemporal, kinematic and kinetic parameters of gait, of which, gait event detection (GED) is
a necessary component. Gait laboratories, however, require sophisticated motion capture systems,
a well-trained team, abundant time and resources for analysis [10,16,17]. Although considered the
standard for gait biomechanical analysis, laboratory-based analysis is not fully representative of
walking in daily life situations, particularly for patient populations [18–20]. Recently, there is a boom
in the development of video and wearable sensor-based techniques for gait analysis in ‘real world’
scenarios outside of the typical instrumented motion analysis laboratory [21–25]. Such systems do
not use kinetic data from force plates in their algorithms to determine gait events such as IC and TC.
Rather, they make estimations of gait events from video data or sensor signals, such as those from
gyroscopes [21,24,26,27], accelerometers [28–31], EMG [32,33], and force sensitive resisters [34,35].

Gait event detection from sensor data has also been leveraged in sensor-based rehabilitation
systems. Detection of gait events such as IC and TC are crucial when considering use of orthotic
or therapeutic interventions, especially in functional electrical stimulation (FES) [29,34–36] and
rehabilitation robotic systems [37–39], that use gait events to synchronize stimulation delivery or
actuator activation to particular gait phases. Although detection delays and timing estimation errors
are inherent in kinematic-based gait phase detection methods when compared to the “gold standard”
method (gait events from force plate data), the method used to estimate gait events themselves
may impact the timing differences observed. Quantifying gait event delays [5] and subsequently
providing compensation algorithms for gait event timing errors [40] are crucial for applications
in which gait events serve to trigger assistive applications. This approach allows for appropriate
correction and compensation of gait event detection errors to minimize timing errors for the assistive
applications [40,41].

Kinematic methods use different variables to estimate gait events, therefore, each method
may introduce their own systematic characteristic errors in estimating timing of gait events when
compared to events determined from force plate data. Thus, analysis of various kinematic methods in
detecting gait events is necessary for determining repeatability, accuracy, and reliability to implement
in non-laboratory-based gait analysis systems, such that they can be used as standard tools for
assessment or to provide gait events as inputs to rehabilitation systems. Therefore, we utilize the
gold standard technique (motion capture laboratory and force plates) of gait event detection to
evaluate the differences that three different commonly used kinematic methods have on gait event
detection (GED) timing. The purpose of this manuscript is to (1) quantify timing accuracy of three
kinematic methods; the coordinate-based treadmill algorithm (CBTA) [25], the shank angular velocity
algorithm (SK) [24] and the foot velocity algorithm (FVA) [11]; to determine IC and TC gait events
compared to the established ‘gold standard’ kinetic-based method (GS), and (2) through statistical
modeling, demonstrate that kinematic and therefore sensor-based methods for detecting IC and TC
events are insensitive to covariate influences, i.e., subject group differences, person-specific variability,
side-to-side gait differences, and the kinematic-based GEDM used to derive the gait events. Finally,
we make the case for one particular kinematic-based method that can best be used for sensor-based
gait event detection.

2. Materials and Methods

2.1. Gait Event Detection Methods (GEDM)

Gait event detection based on force plate data is considered the gold standard (GS) [5,13,14].
Initial Contact (IC) is represented by the initiation of force detection upon contact, and terminal contact
(TC) is the return of force to zero as contact with the plate ceases (Figure 1d). A threshold of 20N was
applied to the force plate signal in the z-direction to determine the timing of IC and TC [12]. The event
times corresponding to the kinetic method (GS) is used to compare the accuracy of IC and TC detection
times of three kinematic methods. The three kinematic gait event detection methods (GEDM) used to
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estimate IC and TC from motion capture data are the coordinate-based treadmill algorithm (CBTA) [25],
the shank angular velocity algorithm (SK) [24], and the foot velocity algorithm (FVA) [11] (Figure 1).
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Figure 1. Representative kinematic and kinetic signals for four gait event detection methods (GEDM) 
during walking for a typically developing child. Kinematic GEDM: (a) the resultant X coordinate 
formed by the subtraction of the X coordinate of the sacral marker from the X coordinate of the heel 
marker (solid) and resultant X coordinate formed by the subtraction of the X coordinate of the sacral 
marker from the X coordinate of the toe marker (dashed) (CBTA); (b) shank angular velocity (SK); (c) 
vertical foot velocity (FVA); (d) ‘gold standard’ force plate method (GS). GS kinetic algorithm-based 
initial contact (IC) detection (red dotted line) and terminal contact (TC) detection (green dotted line). 
Solid red and green hash marks indicate IC and TC detection estimates by the respective kinematic 
methods. 

The CBTA method plots the sinusoidal curves of the resultant X coordinates formed by the 
subtraction of the X coordinate of the sacral marker from the X coordinate of the heel marker and toe 
markers, respectively, as a function of time [25]. IC is defined as the maximum value of the resultant 

Figure 1. Representative kinematic and kinetic signals for four gait event detection methods (GEDM)
during walking for a typically developing child. Kinematic GEDM: (a) the resultant X coordinate formed
by the subtraction of the X coordinate of the sacral marker from the X coordinate of the heel marker
(solid) and resultant X coordinate formed by the subtraction of the X coordinate of the sacral marker
from the X coordinate of the toe marker (dashed) (CBTA); (b) shank angular velocity (SK); (c) vertical
foot velocity (FVA); (d) ‘gold standard’ force plate method (GS). GS kinetic algorithm-based initial
contact (IC) detection (red dotted line) and terminal contact (TC) detection (green dotted line). Solid red
and green hash marks indicate IC and TC detection estimates by the respective kinematic methods.



Sensors 2020, 20, 5272 4 of 15

The CBTA method plots the sinusoidal curves of the resultant X coordinates formed by the
subtraction of the X coordinate of the sacral marker from the X coordinate of the heel marker and toe
markers, respectively, as a function of time [25]. IC is defined as the maximum value of the resultant
X coordinate formed by subtraction of the X coordinate of the sacral marker from the X coordinate
of the heel marker (Figure 1a—solid), while TC is defined as the minimum value of the resultant
X coordinate formed by subtraction of the X coordinate of the sacral maker from the X coordinate of the
toe marker (Figure 1a—dashed). The SK method utilizes the negative zero crossing of shank angular
velocity to detect IC and the second trough value to detect TC (Figure 1b) [24]. The FVA method uses
the vertical velocity of the foot center of gravity to detect initial contact and terminal contact with the
first troughs and the subsequent peak representing IC and TC, respectively (Figure 1c) [11].

2.2. Experimental Protocol

Gait analysis was performed on seventeen participants during walking to evaluate the effect
of GEDM on gait event timing. Temple University Institutional Review Board (IRB) approved
consent was obtained from six adults (AD) (age 24–36 year), and parental consent and child assent
were obtained from five typically-developing (TD) children (age 10–16 year) and six children with
spastic diplegic cerebral palsy (CP) (age 12–18 year, Gross Motor Function Classification System
Level II (n = 3) and III (n = 3)) prior to participation (protocol # 20459). Group characteristics
(mean ± SD) included—height: AD: 1.70 ± 0.08 m, TD: 1.57 ± 0.12 m, CP: 1.62 ± 0.10 m; weight:
AD: 72.35 ± 13.97 kg, TD: 47.35 ± 14.05 kg, 56.07 ± 6.44 kg; and self-selected walking speed:
AD: 0.92 ± 0.18 m/s, TD: 0.99 ± 0.17 m/s, CP 0.72 ± 0.15 m/s.

Kinematic and kinetic data were collected while individuals walked on an instrumented treadmill
at self-selected speeds. Participants wore standardized study-provided footwear and a modified
Cleveland Clinic marker set was used to capture kinematic data. An eight-camera system (Motion
Analysis Corporation, Santa Rosa, CA, USA), with a sampling frequency of 128 Hz, and two force
plates (Bertec Corporation, Columbus, OH, USA), with a sampling frequency of 3200 Hz, were used to
record 30 s walking data after a treadmill-walking accommodation period [25]. Marker and analog
data were processed retrospectively in Visual 3D and filtered using a Butterworth low pass filter with
cutoff frequencies of 6 and 25 Hz, respectively. After a lower extremity model was applied to each
dataset, detection times associated with IC and TC were determined using four GEDM: GS (kinetic),
CBTA, SK and FVA.

2.3. Statistical Analysis

2.3.1. Overall Performance

Gait event time differences between the kinematic methods (CTBA, SK, and FVA) and kinetic
method (GS) were summarized using mean ± SE and root mean square error (RMSE). All steps were
analyzed within a given group. The average step count was AD: 106, TD: 88, and CP: 99 with the
median number of steps being AD: 106, TD: 110, and CP: 106. Thus, the step counts were reasonably
balanced across groups. Gait detection reliability (GDR) represents the accuracy of a detection method
in detecting a gait event (IC/TC) compared to the number of gait cycles evaluated. GDR is the ratio
of number of gait events divided by number of gait cycles. GDR was calculated for each detection
method (GS, CBTA, SK, and FVA) and reported as a percentage.

2.3.2. Covariates

Multilevel random coefficient models were developed to systematically evaluate the influence of
covariates on gait event time differences between the kinematic methods and GS. Variables investigated
were group, gait event, side, and subject. Models were developed independently for each of the
kinematic GEDMs (CBTA, SK, and FVA), which we will refer to as the principal predictors, to fit the GS.
All random coefficients models were developed in JMP®Pro 14.3.0 (SAS Institute, Inc., Cary, NC, USA).
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Initially, each model allowed adjustments for additive covariates indicating group (CP, TD, AD),
gait event (IC, TC), and side (left, right) as well as adjustments to slope and intercept according to each
subject. Additive covariates were suggested by exploratory graphs. The full model, expressed in terms
of GEDM, is as follows:

Standardi j = β1 + β2GEDMi j + β3ADi j + β4CPi j + β5ICi j + β6SLi j + bi1 + bi2GEDMi j + εi j

Indices ij denote subject i and observation j. AD and CP are dummy variables 0/1 indicating a
subject group is AD (1), CP (1); otherwise, AD = CP = 0 and the model reverts to group TD. Similarly,
IC (1) indicates initial contact and SL (1) indicates the left side. Marginal model β′s are estimated
for each predictor. The b’s are random coefficients associated with each subject. They introduce
a conditional (to subject) adjustment of the fit as to intercept and slope coefficients. The error term
represents the model error within each subject. The full model is conditional on subject. The marginal
model suppresses adjustment to subject and provides the model averaged over subjects.

2.3.3. Statistical Modeling

This full random coefficient model, which leveraged all additive covariates and subject-specific
coefficients, was used as the starting point to determine the best model involving each of the principal
predictors [42]. Best is a trade-off between model parsimony and fit. A typical process was followed:
(1) fit the full model, (2) evaluate departures from model assumptions, screening some data as required,
(3) assess model significance and fit, (4) determine contribution and significance of model coefficients,
reducing the model by removing terms as indicated, and (5) iterating on steps (3) and (4) as needed.
Fit diagnostics and model development for this dataset are detailed in the results (Section 3.2).

3. Results

Gait events from 16 out of 17 subjects were included in the analysis and 1502, 1506, and 1480 gait
events were analyzed for CBTA, SK, and FVA, respectively. Half of events included in analysis were IC.
One subject in the CP group was identified as an outlier and excluded from analysis. This individual
had inconsistent scissoring across midline, exhibited dragging of the toes, and had a lower functioning
GMFCS level III. These gait deviations contributed to misdetections in the standard kinetic force
plate detection method as well as for the three kinematic methods. Refer to the Appendix for further
discussion of this subject and how this subject’s data affected statistical analysis (Figure A1).

3.1. Overall Performance

The mean ± SE and RMSE were calculated for the detection time difference of IC and TC between
kinematic GEDMs and GS. The mean assigns a direction to the detection difference; positive values
indicate a delay in event detection and negative values indicate premature event detection of the
kinematic GEDM. The RMSE values allow comparison of kinematic GEDM differences to the GS
independent of direction.

On average, CBTA and SK detected gait events earlier (CBTA:−9.54± 0.66 ms, SK:−33.41± 0.86 ms)
while FVA had delayed GED (FVA: 21.00± 1.96 ms) compared to the GS. Average IC detection difference
was −21.54 ± 0.66 ms (CBTA), −10.45 ± 0.74 ms (SK), and 49.50 ± 3.43 ms (FVA). Average TC detection
difference was 2.47 ± 0.96 ms (CBTA), −56.20 ± 1.02 ms (SK), and −6.88 ± 1.33 ms (FVA) (Table 1).
Average event timing of kinematic GEDMs also varied between groups (Figure 2).
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Table 1. Average initial and terminal contact time difference (mean± SE) of kinematic versus kinetic gait
event detection methods (GEDM) in milliseconds (ms). CBTA: coordinate-based treadmill algorithm;
SK: shank angular velocity algorithm; FVA: foot vertical acceleration algorithm.

Mean SE Mean SE Mean SE

Initial contact −21.54 0.66 −10.45 0.74 49.50 3.43
Terminal contact 2.47 0.96 −56.20 1.02 −6.88 1.33Sensors 2020, 20, x FOR PEER REVIEW 6 of 15 
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Initial contact 
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AD 14.98 62.44 14.76 
TD 27.79 58.69 15.82 
CP 35.09 66.73 61.91 

Gait detection reliability (GDR) was evaluated for 639, 437, and 495 gait events in AD, TD, and 
CP, respectively. Gait detection reliability is listed for each GEDM in Table 3. On average, the GDR 
of the gold standard (GS) was 99.7% detecting 1566 out of 1570 gait events. The CBTA, SK, and FVA 
detected 1503, 1509, and 1483 out of 1570 gait events respectively. Average GDR was highest for SK 
(96.11%) followed by CBTA (95.73%) and FVA (94.46%). 

Table 3. Percent gait detection reliability (GDR) of gait event detection methods (GEDM). 

  Kinetic Kinematic 
Gait Event Group GS CBTA SK FVA 

Initial contact 
AD 100.0 95.3 95.9 96.6 
TD 99.5 97.3 95.5 95.0 
CP 99.2 94.8 94.8 87.1 

Terminal contact AD 99.7 95.6 97.5 96.2 

Figure 2. Initial and terminal contact time difference (mean ± SE) of kinematic versus kinetic gait
event detection methods (GEDM) for each group. Positive values indicate a delay in event detection
while negative values indicate premature detection of the kinematic GEDM. CBTA: coordinate-based
treadmill algorithm; SK: shank angular velocity algorithm; FVA: foot vertical acceleration algorithm;
AD: adult; TD: typically developing children; CP: children with cerebral palsy.

The RMSE values for CBTA, SK, and FVA were 27.22, 47.33, and 78.41 ms, respectively, and suggest
that CBTA most closely approximates the gold standard. Support for this claim is further drawn from
forward stepwise modeling with all three predictors available, where the algorithm clearly prefers
CBTA, to SK, to FVA in the order of entry into the model. Average IC RMSE was similar between
CBTA (28.08 ms) and SK (22.81 ms); however, SK TC RMSE was ~36 ms larger than CBTA TC RMSE
(26.30 ms). FVA had an average IC RMSE of 105.03 ms and TC RMSE of 36.91 ms. RMSE of kinematic
GEDMs also varied between groups (Table 2).

Table 2. Root mean square error (RMSE) of gait event detected timing using kinematic versus kinetic
method in milliseconds (ms). CBTA: coordinate-based treadmill algorithm; SK: shank angular velocity
algorithm; FVA: foot vertical acceleration algorithm; AD: adult; TD: typically developing children; CP:
children with cerebral palsy.

Gait Event Group CBTA SK FVA

Initial contact
AD 33.10 26.53 42.06
TD 27.53 22.55 44.13
CP 20.43 17.06 182.03

Terminal contact
AD 14.98 62.44 14.76
TD 27.79 58.69 15.82
CP 35.09 66.73 61.91

Gait detection reliability (GDR) was evaluated for 639, 437, and 495 gait events in AD, TD, and CP,
respectively. Gait detection reliability is listed for each GEDM in Table 3. On average, the GDR of the
gold standard (GS) was 99.7% detecting 1566 out of 1570 gait events. The CBTA, SK, and FVA detected
1503, 1509, and 1483 out of 1570 gait events respectively. Average GDR was highest for SK (96.11%)
followed by CBTA (95.73%) and FVA (94.46%).



Sensors 2020, 20, 5272 7 of 15

Table 3. Percent gait detection reliability (GDR) of gait event detection methods (GEDM).

Kinetic Kinematic

Gait Event Group GS CBTA SK FVA

Initial contact
AD 100.0 95.3 95.9 96.6
TD 99.5 97.3 95.5 95.0
CP 99.2 94.8 94.8 87.1

Terminal contact
AD 99.7 95.6 97.5 96.2
TD 100.0 96.8 97.2 95.9
CP 100.0 95.1 95.5 95.1

3.2. Statistical Modeling

3.2.1. Fit Diagnostics: Data Reduction

Initial models for fitting GS to CBTA, SK, and FVA were based on 1555, 1557, and 1530 records,
respectively, taken from 17 subjects (6 AD, 6 CP, 5 TD). Performance of the marginal model, expressed
in terms of RMSE for prediction, yielded for CBTA (31.48 ms), SK (43.17 ms), and FVA (116.45 ms),
with marginal coefficients for the three principal predictors scarcely discernable from a perfect fit
(slope = 1) with CBTA (0.99997), SK (1.00008), and FVA (0.99937), (p < 0.0001). However, model
diagnostics identified a pattern of residuals inconsistent with model assumptions, largely attributable
to a single subject in the CP group (Figure A1). This subject was excluded from analysis (Appendix A).

Full models for fitting GS to CBTA, SK, and FVA were based on 1502, 1506, and 1480 records,
respectively, taken from 16 subjects (6 AD, 5 CP, 5 TD). RMSE was revised for CBTA (20.00 ms),
SK (24.14 ms), and FVA (70.02 ms) with significant marginal coefficients for CBTA (0.99999), SK (0.99994),
and FVA (0.99989), (p < 0.0001). Patterning in residuals is absent for CBTA and SK, but exists in
FVA for certain subjects with CP demonstrating large residuals (Figure 3c). Normal quantile plots for
residuals of each model show well-behaved, symmetric distributions but with slightly heavier tails
than a normal distribution.
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Figure 3. Gait event time residuals (ms) when detected with different kinematic methods for each
subject: (a) coordinate-based treadmill algorithm (CBTA); (b) shank angular velocity algorithm (SK);
(c) foot velocity algorithm (FVA).

3.2.2. Model Development

Table 4 summarizes the progression of the analysis toward a final model, grouped by principle
predictor. Full models for each principal predictor, with one subject excluded, are reported with
model coefficient statistics, and marginal and conditional RMSE. Only the coefficients for the principal
predictor and intercept are reported in each full model for comparison to subsequent models.
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Table 4. Model development progression.

Model Marginal
Coefficient

Standard
Error p-Value

Marginal
RMSE
(ms)

Conditional
RMSE
(ms)

Full (CBTA) 20.00 18.93
CBTA 0.99999 0.00006 <0.0001

Intercept 7.78694 4.82735 0.1262

Reduced (CBTA+IC) 22.49 19.16
CBTA 0.99998 0.00006 <0.0001

IC 24.0017 0.99473 <0.0001
Intercept −2.98337 3.40686 0.3985

Final (CBTA) 25.50 22.61
CBTA 1.00001 0.00007 <0.0001

Intercept 8.63979 3.41579 0.0298

Full(SK) 24.14 21.82
SK 0.99994 0.00005 <0.0001

Intercept 55.0062 5.34258 <0.0001

Reduced (SK+IC) 24.52 21.87
SK 0.99994 0.00005 <0.0001
IC −45.7127 1.12596 <0.0001

Intercept 56.2336 2.89395 <0.0001

Final (SK) 33.53 32.03
SK 0.99996 0.00008 <0.0001

Intercept 33.3328 2.91872 <0.0001

Full (FVA) 70.02 65.07
FVA 0.99989 0.00024 <0.0001

Intercept 13.4269 13.7265 0.3442

Reduced (FVA+IC) 70.10 65.10
FVA 0.99989 0.00024 <0.0001
IC −57.4868 3.41134 <0.0001

Intercept 10.7528 7.46160 0.1689

Final (FVA) 75.56 71.19
FVA 0.99994 0.00026 <0.0001

Intercept −18.3814 7.15659 0.0222

The full model performance, with no covariates eliminated, performed well for each of the
three kinematic gait event detection methods. Note coefficients for the principal predictors are nearly
a perfect 1 and marginal RMSEs on the order of 102 ms. The smaller conditional RMSE reflects the
advantage of including subject specific adjustments to the intercept and principal predictor slope.
However, including subject specific adjustment, the effective change on RMSEs is on the order of
101 ms demonstrating relative insensitivity of subject specific variability on the GEDMs to detect gait
events. For example, the full FVA model estimates subject variability (standard deviation) as 27.56 ms
and 5× 10−4, respectively, for the intercept and slope.

Among the covariates, only IC was statistically significant and with a potentially clinically relevant
effect size in models involving each of CBTA, SK, and FVA. For CBTA, the coefficient for the CP
indicator was significant (p = 0.0164) as well as the indicator for the left side (p < 0.0001). The CBTA
method in particular, demonstrated errors in determining IC/TC timing for individuals with CP and
particularly with gait differences for the left side of these individuals. The effect sizes (adjusting the
model up or down), however, were only −22.4 and −6.0 ms, respectively. Because of these small
magnitudes and in deference to a parsimonious model, the exclusion of group and side caused little
change in the overall RMSE. Therefore, these two terms were not included in subsequent models using



Sensors 2020, 20, 5272 9 of 15

CBTA. Only gait event (IC) was initially carried forward as it was common to models based on all
three principal predictors.

Reduced models, (CBTA, SK, FVA) + IC retained only the principal predictors, IC, and random
coefficients. IC was consistently significant in the full models and remained so in the reduced models.
The RMSE necessarily grows with the paring of model terms and is most readily apparent in the small
increase in marginal and conditional RMSEs when moving from the full CBTA model to the reduced
model (CBTA+IC) (Table 4). Final models, listed by principal predictor, contain only the principal
predictor and random coefficients. Relative to the reduced models the RMSE grew <10 ms for each
model as can be seen in Table 4 RSMEs when moving from the reduced to final models.

4. Discussion

Three kinematic gait event detection methods (GEDM) for detecting gait events (IC and TC)
during walking were evaluated in three populations (AD, TD, and CP). Comparisons of gait event
detection (GED) time and gait detection reliability (GDR) of each kinematic GEDM were made to
the gold standard (GS) of using force plates (kinetic) data to detect events. Our approach helps to
characterize the errors in GED among different kinematic methods such that, with compensatory
algorithms for timing errors, non-laboratory-based gait analysis systems using such techniques can be
equivalent to gold standard laboratory systems. A novelty of our work is the advantage of applying the
four GEDMs to the same dataset for the direct comparison of GEDM accuracies rather than comparing
across different studies and validation techniques. Thus, the present work assists in the validation of
various kinematic methods in detecting gait events, and to our knowledge, is the first to use a statistical
model demonstrated insensitivity of the GEDMs to variations in group, side, and individuals.

Gait event detection timing of CBTA, SK, and FVA were compared to previously reported
accuracies and highlight the benefit of using a standardized dataset. Although GEDM algorithms were
the same, variations in validation techniques resulted in different GED accuracies. Zeni et al. compared
gait event times detected by CBTA between motion capture data collected at 60 Hz vs. force plate data
collected at 600 Hz [12]. Our study performed the same comparison of gait events detected by CBTA
vs. force but data were collected at higher sampling rates for both kinematic (128 Hz) and kinetic
(3200 Hz) signals. Zeni reported differences of −17.36 ms (right IC), −15.03 ms (left IC), −0.37 ms
(right TC), and 11.69 ms (left TC) [12] while our analysis resulted in average differences of −26.78 ms
(IC) and −2.49 ms (TC). While results differed in absolute value, the direction matched their previous
validation demonstrating that CBTA detected right/left IC and right TC before GS. In another study,
IC and TC RMSEs were 26 and 25 ms, respectively, when SK was applied to gyroscope signals and
compared to gait event times detected by footswitches [27], whereas, IC and TC RMSEs were 26.53 and
62.44 ms, respectively, when SK GEDM was validated with a motion capture system and force plates
in our work. Lastly, two populations (TD and CP) were included in the comparison of gait event times
detected by FVA vs. force plate to the literature. Similar to the data collection for CBTA validation,
our kinematic and kinetic dataset was collected at higher sampling rates. O’connor et al. demonstrates
that IC and TC were detected by FVA 16 ± 15 ms and 9 ± 15 ms later than determined by force plate
data, respectively, in TD while IC and TC were detected by FVA 3 ± 9 ms and 6 ± 26 ms earlier in
CP [11]. We report that FVA detects IC later in both TD (39.9 ± 22.67 ms) and CP (77.9 ± 164.9 ms)
and detects TC earlier in both groups (TD: −3.19 ± 15.53 ms, CP: −20.68 ± 58.48 ms) compared to
force plate data. In general, we report gait event timing errors of similar magnitudes and directions as
previous investigations. The direct comparison of GED timing of multiple GEDMs in the same dataset
illustrates the variation in amount of delay compensation needed and may facilitate sensor selection.

Statistical modeling was employed to systematically assess the influence of covariates such as gait
event, subject group, side, and subject-specific differences on the differences observed between the
kinematic GEDMs and the GS. Individual models were created for each of the kinematic GEDMs and
incorporated adjustments for the additive covariates (group, gait event, side, and subject). The full
model performed well for each of the kinematic GEDMs and provided values for comparison of RMSEs
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for the reduced and final models. Final models containing only the principal predictor (CBTA, SK,
or FVA) and random coefficients grew <10 ms RMSE of the full models. The small RMSE difference
demonstrates the large contribution that GEDM has on gait event timing differences compared to GS.
The RMSE differences of 5 ms or less between the marginal model (excludes subject-specific adjustments)
and the conditional model (includes subject-specific adjustments) at each level of model progression
illustrate the robustness of each GEDM to subject differences. The final model shows that only the
principal predictor and random coefficients are needed to have the best approximate gait events
compared to GS.

Using the RMSE for model comparison indicates little difference between the full model with all
predictors and a reduced model with a principal predictor +IC, however, given the relative small effect
size for IC, one might question the practical advantage of that model over a simple linear regression
using the marginal model coefficients for each of CBTA, SK, and FVA. We recommend the more
parsimonious simple linear models with the statistically significant intercepts and slopes appearing as
the final marginal model for each measure in Table 4. Results from our models, inclusive of adults and
children with and without CP, suggest that timing differences of our data and that of the literature
can be accounted for by the RMSEs of the method employed. A conditional RMSE that improves the
marginal RMSE less than 101 ms suggests that these models can be confidently applied to a wide
range of gait characteristics without tuning to subject population characteristics. From a statistical
perspective, the tradeoffs between models are minimal. Depending on the desired precision of gait
event detection timing, however, the error differences need to be evaluated to determine if they are
clinically relevant when applied to gait analysis or rehabilitation applications. Thus, the choice of model
and variables included in gait event detection timing compensations may have a small, but meaningful
impact upon application.

Any one of the three kinematic GEDMs can be translated into sensor-based systems for gait
event detection [28] as they all showed high gait detection reliability of IC and TC. However, not all
kinematic GEDMs are equally practical for implementation. Despite the GED accuracy of the CBTA,
implementation of this GEDM requires a relatively high number of sensors and sophisticated arithmetic
processing. Seven inertial measurement units were used in a CBTA-based sensor system to generate
the necessary input signals for GED as well as other spatiotemporal parameters [43]. The number of
sensors may be reduced, however, depending the desired output. For example, CBTA-based sensor
system may only require three IMUs if only bilateral GED is required. This GEDM may be useful as
an alternative for laboratory-based gait analysis, however, it may not be computationally and cost
efficient for wearable applications such as orthotics and prosthetics.

Foot velocity (FVA) and shank angular velocity (SK) GEDMs are more easily applied to wearable
sensor signals and are commonly used in research laboratories [5,21,44]. Foot velocity can be captured
via shoe/foot-attached accelerometers, requiring a minimal sensor setup of one sensor on each side [28],
by integrating acceleration over time. A source of GED timing error is the potential drift introduced
with signal integration. Sophisticated techniques, such as zero velocity update [45], extended Kalman
filters [46] combined with sensor fusion [47], however, may be used to reduce drift. In addition to
timing errors introduced from the signal, previous studies have reported that FVA is not applicable
to clinical cases [11,48]. Pathologic gait, as demonstrated in CP, does not have a regular heel to
toe progression; therefore, difficulty in detecting gait events with non-kinetic based methods is a
limitation of this GEDM. If adjustments cannot be made for missing the trough in the foot velocity
signal (Figure 1), it can result in decreased detection reliability.

We have identified SK, out of the three GEDMs evaluated in this study, as the kinematic-based
method that can best be used for sensor-based gait event detection. The SK GEDM can be applied to
signals collected via shank-attached gyroscope sensors (one sensor on each side). Gyroscopes are easy
to use, miniature in size and can be used with FES systems, exoskeletons and other clinical/research
training systems [5,16,21,49]. This minimal sensor set up facilitates implementation (similar to FVA),
is of modest cost, and computationally efficient in wearable applications. Unlike CBTA, minimal
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processing is required to condition the sensor signals for the SK detection algorithm providing improved
processing capacity and enabling implementation of more sophisticated control algorithms in the
system [50]. The ample amount of data on reliability and performance of the SK GEDM evaluated in
patient populations such as amputees [51], spinal cord injuries [49], and post-stroke survivors [52]
demonstrate its robustness to variations in gait. The SK GEDM includes the advantages of the other
two GEDMs, such as minimal sensor set (similar to FVA) and comparable detection accuracy and
reliability to CBTA, as well as demonstrated GED ability in multiple patient populations.

A limitation of this study is the assumption that GEDM performance in a motion capture system
translates to equivalent performance in a sensor-based system. We have demonstrated the advantage of
assessing GEDM performance on the same dataset. Previous work reported real-time GED performance
using SK against force plates in adults, typically developing children, and children with CP during
treadmill walking [5,50]. Gait detection reliability was higher when SK was applied to sensor signals
(AD: 99.8% [50], TD: 99.9%, CP: 99.6% [5]) than to motion capture signals (AD: 96.7% TD: 96.3%
CP: 95.2%). Comparisons of SK GEDM accuracies between the sensor system (gyroscope signal) and
motion capture system are outlined in Table 5. Although gait event detection had a greater RMSE
in the sensor system, with the exception of TC in AD, the range of delay was similar (sensor: 49 ms,
motion capture: 40 ms) and smaller than the FVA range (166.21 ms).

Table 5. Root mean square error (RMSE) of gait event detection (ms) of shank angular velocity versus
gold standard for sensor and motion capture systems. The sensor system used a gyroscope signal
[5,50]. AD: adult; TD: typically developing children; CP: children with cerebral palsy.

Gait Event Group Sensor Motion Capture

Initial contact
AD 32 27
TD 52 23
CP 63 17

Terminal contact
AD 33 62
TD 70 59
CP 81 67

Other study limitations include small group sizes, although a large number of gait cycles were
included in analysis, GEDM performance was isolated to treadmill walking, and we did not account
for speed variation. The walking speeds were similar for the AD and TD groups (AD: 0.92 ± 0.18 m/s,
TD: 0.99 ± 0.17 m/s), while individuals with CP walked slower (CP: 0.72 ± 0.15 m/s). Exclusion of one
subject in the CP group from analysis indicates that kinematic GEDM, and wearable sensors, may be
challenging to use in patient populations with more severe gait deviations (discussed above). Further
investigation is required to fine-tune our model for these patient populations.

5. Conclusions

Three kinematic gait event detection methods (CBTA, SK, FVA) for detecting gait events (IC and TC)
during walking were evaluated in three populations (AD, TD, and CP). A standardized dataset was
used to compare GEDM performance to the GS and illustrated the differences in detection accuracy and
reliability of each GEDM. Covariates were systematically assessed using statistical modeling which
showed that GEDM contributed the most to GED accuracy and kinematic-based GEDMs were relatively
insensitive to covariates of subject group differences, person-specific variability, and side-to-side gait
differences. The SK GEDM was identified an accurate, robust, reliable and easy to implement method
in sensor-based systems. Future work will explore leveraging the statistical models to design GED
timing compensation algorithms.
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Appendix A

Model diagnostics identified a pattern of residuals inconsistent with model assumptions, largely
attributable to a subject in the CP group. Plots representing residuals by order, color-coded by subject
order suggest that residuals from this single subject with CP were unusual (blue dots) with respect to
other subjects and both created an upward bias in the RSME and caused the overall pattern of residuals
to depart from normality (Figure A1).

This individual with CP had inconsistent scissoring across midline, exhibited dragging of the toes,
and had a lower functioning GMFCS level III. This subject used a rollator walker during over-ground
walking and walked with a shorter step width (0.086 m), stride length (0.648 m), increased hip flexion
throughout gait, increased knee flexion from midswing to midstance and increased ankle dorsiflexion.
These gait deviations contributed to misdetections in the standard kinetic force plate detection method
as well as for the three kinematic methods. This individual was excluded from the analysis.
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