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Abstract: Monitoring the growth of fruit vegetables is essential for the automation of cultivation
management, and harvest. The objective of this study is to demonstrate that the current sensor
technology can monitor the growth and yield of fruit vegetables such as tomato, cucumber, and
paprika. We estimated leaf area, leaf area index (LAI), and plant height using coordinates of polygon
vertices from plant and canopy surface models constructed using a three-dimensional (3D) scanner.
A significant correlation was observed between the measured and estimated leaf area, LAI, and plant
height (R2 > 0.8, except for tomato LAI). The canopy structure of each fruit vegetable was predicted by
integrating the estimated leaf area at each height of the canopy surface models. A linear relationship
was observed between the measured total leaf area and the total dry weight of each fruit vegetable;
thus, the dry weight of the plant can be predicted using the estimated leaf area. The fruit weights of
tomato and paprika were estimated using the fruit solid model constructed by the fruit point cloud
data extracted using the RGB value. A significant correlation was observed between the measured
and estimated fruit weights (tomato: R2 = 0.739, paprika: R2 = 0.888). Therefore, it was possible to
estimate the growth parameters (leaf area, plant height, canopy structure, and yield) of different fruit
vegetables non-destructively using a 3D scanner.

Keywords: canopy structure; Capsicum annuum; Cucumis sativus; dry matter; image analysis; leaf are
index; leaf area; plant height; Solanum lycopersicum; yield

1. Introduction

It is vital to increase the efficiency of agricultural work because of the high labour cost [1],
highlighting the need for automation. Farmers continue to seek methods to increase productivity
using small numbers of individuals [2]. In greenhouse horticulture, environmental control (for
example, temperature, solar radiation, CO2 and vapor-pressure deficit [VPD]) systems have been
developed using information and communication technology (ICT) [3]. In the future, there will be a
need to automate harvesting and cultivation management in order to save energy. Monitoring the
growth of fruit vegetables will provide input data that can be used to control robots for cultivation
management and harvesting. Higashide (2018) showed that when the leaf area index (LAI) was
increased, the amount of solar radiation in the lower canopy was lower than the light compensation
point, meaning that it could not contribute to photosynthesis due to the consumption of assimilation
products by respiration [4]. Therefore, appropriate leaf thinning increases the yield of fruit vegetables;
hence, the technique used to monitor the growth of fruit vegetables should also consider the timing
of leaf thinning. Recently, the growth of trees and grains has been estimated using two- (2D) or
three-dimensional (3D) information.
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Dornbusch et al. (2007) constructed 3D structural models of barley leaves and stems using
triangles calculated by 3D point cloud data to extract morphological traits [5]. The point cloud is a set
of data points comprising coordinates in a space. Benalcázar et al. (2011) extracted soybean leaves
from a 2D image, including the background, using the hue, saturation, intensity (HSI) color model,
and calculated the leaf area using the number of leaf pixels [6]. Casadesús and Villegas (2014) estimated
the LAI and dry weight of wheat by calculating the ratio of green pixels from multiple images [7].
Hosoi and Omasa (2006) estimated the leaf area density (LAD) and LAI of trees using solid models
constructed by a LIDAR, which precisely reproduced the canopy [8]. In addition, the solid model has
been used to predict the volume of trees [9]. Dandois et al. (2015) estimated the canopy height of a
deciduous forest using a 3D multispectral point cloud acquired by unmanned aerial vehicle-structure
from motion (UAV-SFM) remote sensing [10]. Lati et al. (2013) estimated the plant height, leaf area,
and fresh weight of corn and cotton using solid models constructed by 3D stereovision modeling [11].
The use of single-image 2D analysis to estimate growth parameters was affected by imaging position,
plant density, and species compared with the use of a 3D analysis [11]. Hosoi et al. (2011) estimated
the leaf area and LAI of tomato using the polygon area of a canopy surface model scanned from
three places by the LIDAR [12]. Ohashi et al. (2020) estimated the individual leaf area of tomato
using the polygon area of plant surface models constructed by a 3D scanner [13]. Itakura and Hosoi
(2018) constructed surface models of small plants such as pothos and hydrangea from multiple photos,
which were segmented automatically using the watershed algorithm to estimate leaf area and angle of
inclination [14]. Zhang et al. (2018) estimated the plant height, leaf number, and leaf area of sweet
potato under different fertilizer conditions using surface models constructed by the structure from
motion (SfM) method, and observed a linear relationship between measured and estimated value [15].
Itakura and Hosoi (2019) estimated the leaf area and inclination angle of eggplant, pea, and common
bean using solid models constructed by the SfM method, and the absolute error was found to be
8.87% [16].

Fruits of fruit vegetables have also been detected using 2D or 3D images in order to automate
the harvest. For example, Yamamoto et al. (2014) developed a method that could accurately identify
individual tomato fruits, including immature fruits, on a plant using an RGB digital camera with
machine learning approaches based on classification models of image color, shape, texture, and size [17].
Zhao et al. (2016) detected ripe tomato fruits based on color analysis with machine learning and
achieved 96% detection accuracy [18]. Hashimoto et al. (2012) reported that the change in tomato
surface color during maturation could be measured without the influence of solar radiation when color
was calibrated between morning and evening [19]. Yaguchi et al. (2018) detected tomato fruits using
color information from point cloud data acquired by a 3D camera, and reported that tomato fruits
were harvested at 10 s per fruit using a harvesting robot equipped with cutting scissors and rotational
plucking gripper [20]. Ohmori et al. (2015) detected tomato fruits based on the tone, value, and hue of
a plant image and successfully harvested 76.9% of fruits using a robot [21].

In orchards, fruits have been detected by image analysis. For example, Tu et al. [22] were able to
detect passion fruit and classify ripeness using a neural network from RGB-D images, with an accuracy
of 92.71 and 91.52%, respectively. Guava fruits were detected using RGB-D images to enable automatic
harvesting, without touching branches, using a robot [23]. In addition, the size of mango fruit [24] and
the location of apple [25] were estimated using RGB-D images. Fruits have been frequently detected
using image analysis. Fully automated estimation of yield before harvesting is important for precision
agriculture [17]. Estimating the yield and distribution of fruits provides useful information for staffing
and sales planning.

Although studies have monitored the growth of fruit vegetables, few have investigated tall
fruit vegetables, except for fruit detection. For example, Rose et al. (2015) estimated the leaf area
and plant height of tomato using 3D models; however, small tomato plants were used, 3 weeks
after sowing [26]. In addition, few studies have estimated fruit weight based on 2D or 3D images.
Presently, growth surveys of fruit vegetables have been conducted using a ruler and by destructive
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methods; however, these surveys require a lot of energy and time. Therefore, it is important to estimate
multiple growth parameters simultaneously and non-destructively in order to optimize cultivation
management and automation.

The objective of this study is to demonstrate that the current sensor technology can monitor
the growth and yield of fruit vegetables such as tomato, cucumber, and paprika. In this study,
point cloud data were acquired by a 3D scanner to simultaneously estimate growth parameters of fruit
vegetables, including leaf area, LAI, dry weight, plant height, canopy structure, and fruit weight, in a
non-destructive manner.

2. Materials and Methods

2.1. Test Plants and Greenhouse

Three-week-old tomato (Solanum lycopersicum L., ‘Reika’, Sakata Seed Co., Ltd., Yokohama, Japan),
cucumber (Cucumis sativus L., ‘Freedom-house No. 2′, Sakata Seed Co., Ltd., Kyoto, Japan), and paprika
(Capsicum annuum L., ‘Frupi-yellow’, TAKII Co., Ltd., Kyoto, Japan) were transplanted to rockwool
cubes (DELTA6.5G, Grodan Inc., Roermond, Netherlands) on rockwool slabs (2075 A2W, Grodan Inc.,
Roermond, The Netherlands) on 21 March 2019 in a north-south greenhouse (length: 21 m, width: 8 m,
average height: 4 m, area: 168 m2), and covered by a polyolefin film. The greenhouse was located in
Matsudo, Chiba, Japan. Plants were grown on cultivation benches in the greenhouse (Figure 1) and
arranged in a zigzag pattern, with 33 cm between plants. The canopies were used to estimate the LAI,
canopy structure, and fruit weight.
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Figure 1. Location of cultivation benches and plants (tomato, cucumber, and paprika) in the greenhouse.
The greenhouse was located in Matsudo, Chiba, Japan.

Three-week-old tomato, cucumber, and paprika were cultivated using deep flow technique (DFT)
from 21 March to 2 April 2019, after which they were transplanted to a wagner pot (AS ONE Co., Ltd.,
Osaka, Japan) filled with rock wool (Granulate, Grodan Inc., Roermond, Netherlands). The above
plants were used to estimate leaf area, dry weight, and plant height.

Air temperature and vapor pressure inside the greenhouse were measured and controlled by
an integrated environmental control system (Profarm-controller, Denso Co., Ltd., Kariya, Japan).
Photosynthetic photon flux density (PPFD) inside the greenhouse was measured by a PPFD
sensor (ML-020P sensor, EKO Instruments Co., Ltd., Tokyo, Japan). The average air temperature,
vapor pressure, and daily integrated PPFD during the cultivation period (21 March–5 September) inside
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the greenhouse were 23.6 ◦C, 0.59 kPa, and 15.6 mol m−2 d−1, respectively. A one-fold concentration of
A recipe (OAT Agrio Co., Ltd., Tokyo, Japan) was used as a nutrient solution.

2.2. Growth Monitoring

2.2.1. Obtaining Point Cloud Data of Plants

A flow chart of the study is shown in Figure 2. A 3D scanner (DPI-8X, Opt Technologies Co., Ltd.,
Tokyo, Japan) scanned around the individual plants at sunset in order to acquire point cloud data for
use to estimate leaf area, dry weight, and plant height. The PrimeSense Carmine sensor 1.08 (Apple Inc.,
Cupertino, CA, USA) was installed onto the 3D scanner. The measuring range was from 0.6 to 4.0 m
(spatial x/y resolution at 2 m was 3.4 mm, depth resolution at 2 m was 12 mm). When the measured
distance was 1.0, 2.0, and 3.3 m, the accuracy of the 3D scanner was 2, 6, and 10 mm, respectively.
When the point cloud data was acquired, the measured distance between the 3D scanner and plant
canopy ranged from 0.6 to 1.0 m. Each point cloud comprised XYZ coordinates. Tomatoes were
scanned from 7 April to 19 May (17–59 days after transplanting (DAT)), cucumber from 7 April to
19 May (5–47 DAT), and paprika from 7 April to 12 June (5–71 DAT) about once a week at different
growth stages (plant height and leaf area). After scanning, a destructive survey was conducted to
measure leaf area, plant height, and dry weight (leaf and stem without a fruit) per plant. Leaf area was
measured by an area meter (LI-3100, LI-COR Inc., Lincoln, NE, USA).
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Figure 2. Flow chart of monitoring of the growth and yield of fruit vegetables using a three-dimensional
(3D) scanner. LAI, leaf area index.

Canopies composed of six plants were scanned using the 3D scanner at sunset to estimate LAI
and canopy structure. Tomatoes were scanned from 5 April to 23 May (15–63 DAT), cucumber from
3 April to 23 May (1–51 DAT), and paprika from 5 April to 2 August (3–122 DAT) at different growth
stages. After scanning, leaf length and width were measured. An equation (leaf area = leaf length
× leaf width × coefficient) was used to calculate the leaf area of the canopy. The above equation has
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been applied to various plants [27–29]. Leaf area was calculated using the following Equation (1) to
calculate the LAI of the canopy in a non-destructive manner.

Leaf area
(
cm2

)
= a× leaf length (cm) × leaf width (cm) (1)

Here, a is a plant-dependent parameter (tomato 0.25, cucumber 0.87, paprika 0.59). We measured
the leaf area, leaf length, and leaf width to investigate the relationship between the leaf area and leaf
length × leaf width and to calculate a in Equation (1). The values of R2 between the two datasets for
tomato, cucumber, and paprika were 0.902, 0.981, and 0.980. Color information from the point cloud
data was deleted to limit the inclusion of unnecessary information.

2.2.2. Construction of a Surface Model for Growth Estimation

The point cloud data for individual plants and canopies (see Section 2.2.1) was converted to a surface
model, which was constructed by polygons with three coordinates in standard triangulated language
(STL) format using OPT Cloud Survey (Opt Technologies Co., Ltd., Tokyo, Japan). Therefore, it was
possible to calculate the surface area of the surface model using the polygon. Unnecessary parts of the
surface model were trimmed using Houdini FX 17 (Side Effects Software Inc., Toronto, ON, Canada)
(Figures 3 and 4).

The polygon area was calculated from the plant surface model to estimate leaf area as follows.

In order to calculate the surface area of a given polygon ∆OAB, the values of its cross products
→

OA

and
→

OB were halved. If
→

OA and
→

OB are defined as
→

OA = (a1, a2, a3) and
→

OB = (b1, b2, b3), respectively,
then the following Equation (2) could be used to calculate the surface area of ∆OAB.

∆OAB =
1
2
×

√
(a2b3 − a3b2)

2 + (a3b1 − a1b3)
2 + (a1b2 − a2b1)

2 (2)

This equation was applied to all polygons of the plant surface model, and the leaf area was
estimated to integrate the area of all polygons. We wrote a simple program in Python to read the
coordinates of the polygons (up to ~400 thousands) in the STL file and calculated the leaf area. LAI was
estimated using the leaf area of canopy calculated by the canopy surface model, and the cultivation area.

The relationship between the measured leaf area and the dry weight of leaf and total (leaf and
stem without fruits) was investigated to estimate the dry weight of the plant. If a linear relationship
was found between leaf area and dry weight, the dry weight of the plant could be predicted from the
estimated leaf area. The relationship between the estimated leaf area and the measured dry weight of
leaves and total dry weight was investigated.

Plant height from the base to the growing point was estimated using the measuring tool of
SketchUp 2017 (Trimble Inc., Sunnyvale, CA, USA).

The regression analysis and calculation of root mean square error (RMSE) were conducted between
the measured and estimated value to obtain their accuracy.

Canopy structure, which is a vertical distribution of leaf area, was estimated using the estimated
leaf area at each height.
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Figure 3. Surface model of individual plants to estimate leaf area, dry weight, and plant height.
Tomato plants were scanned using a 3D scanner (DPI-8X, Opt Technologies Co., Ltd., Tokyo, Japan)
from 7 April to 19 May 2019 (17–59 days after transplanting (DAT)) (A). Cucumber plants were scanned
from 7 April to 19 May 2019 (5–47 DAT) (B). Paprika plants were scanned from 7 April to 28 July 2019
(5–117 DAT) (C). Individual plant surface models were constructed using SketchUp 2017 (Trimble Inc.,
Sunnyvale, CA, USA).
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Figure 4. Surface model of plant canopies for estimation of LAI and plant structure. Tomato canopies
were scanned using the 3D scanner (DPI-8X, Opt Technologies Co., Ltd., Tokyo, Japan) from 5 April
to 23 May 2019 (15–63 days after transplanting (DAT)) (A). Cucumber canopies were scanned from
3 April to 23 May 2019 (1–51 DAT) (B). Paprika canopies were scanned from 5 April to 2 August 2019
(3–122 DAT) (C). Plant canopy surface models were constructed using SketchUp 2017 (Trimble Inc.,
Sunnyvale, CA, USA). LAI, leaf area index.

2.3. Yield Monitoring (Tomato and Paprika)

2.3.1. Detection of Fruits from Canopy Point Cloud Data Using RGB Values

The 3D scanner was used at sunset to scan the canopy composed of six plants of tomato from
14 August to 5 September 2019 (146–168 DAT) and six paprika from 28 August to 30 2019 (148–150 DAT)
to acquire canopy point cloud data. The plant height, number of leaves, and LAI of tomato were
~150 cm, ~20, and ~3, respectively. The plant height, number of leaves, and LAI of paprika were
~160 cm, ~35, and ~2, respectively. After the tomato canopy with 3–23 mature fruits was scanned,
the total fresh weight of mature fruits inside the canopy was measured. The above measurements
were made several times during the tomato cultivation period. A dataset was created including the
tomato canopy point cloud and the weight of mature fruits. After the paprika canopy was scanned
and the two mature fruits were harvested, the fresh weight of those fruits was measured. The above
measurements were repeated until all fruits were harvested. A dataset was created including the
paprika canopy point cloud and the weight of mature fruits. The method used to measure fruit weight
differed between tomato and paprika because the time required for paprika fruit to ripen is longer
than that for tomato, and it was difficult to prepare a variety of paprika canopies.

The point cloud data acquired in this study included plants and fruits. It was possible to
differentiate fruits from color images of the canopy [30]. The point cloud acquired by the 3D scanner
had XYZ coordinates and RGB values. The RGB value is a value of 0–255 that is used to express red,
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green, and blue [31]. The point cloud data were outputted in PTS format using OPT Cloud Survey.
In the experiment described in Section 2.2.2, the RGB value of point cloud data was erased to reduce
file size. Conversely, here, RGB values were used to detect fruits.

The point cloud data of tomato and paprika fruits fulfilling R > 140, G < 100, B < 100, and R > 150,
G > 110, and B < 50 were obtained from the canopy point cloud data (Figure 5). When the above
conditions were determined, a color chart was used to identify suitable conditions for detecting tomato
and paprika fruits.
Sensors 2020, 20, x FOR PEER REVIEW 8 of 19 

 

 

Figure 5. Plant canopy and fruit point cloud data. Tomato canopies for estimation of fruit weight were 
scanned using the 3D scanner ((DPI-8X, Opt Technologies Co., Ltd., Tokyo, Japan) from 14 August to 
5 September 2019 (A). Paprika canopies for estimating fruit weight were scanned from 28 August to 
30 2019 (B). Fruit point cloud data were detected from the canopy point cloud data using the RGB 
value. Point cloud data of tomato fruits fulfilling R > 140, G < 100, and B < 100 were acquired (C). Point 
cloud data of paprika fruits fulfilling R > 150, G > 110, and B < 50 were obtained (D). Point cloud data 
were obtained using OPT Cloud Survey (Opt Technologies Co., Ltd., Tokyo, Japan). 

2.3.2. Construction of a Solid Model for Estimation of Fruit Weight 

The point cloud data for tomato and paprika fruits (see Section 2.3.1) were converted to a surface 
model using OPT Cloud Survey (Figure 6A,B). The surface model of fruits was converted to a solid 
model using Meshmixer 3.5 (Autodesk Inc., San Rafael, CA, USA) (Figure 6C,D). The solid model is 
full of voxels; therefore, it was possible to calculate volume by counting several voxels [32], whereby 
a voxel is a cube used to construct a 3D model. The volume of the fruit solid model was calculated by 
Meshmixer 3.5. The fruit weight was estimated by multiplying the fruit volume (cm3) by the density 
(g cm−3). Fruit volume was measured by the water displacement method based on the Archimedes 
principle [33]. We prepared a plastic beaker poured with water. The fruit was submerged in the 
beaker. Then, the increased volume was the volume of the fruit. The fruit density was calculated 
using the volume and weight. The density of tomato and paprika fruit was 0.84 and 0.59 g cm−3 
(average of five fruits), respectively. The relationship between the measured and estimated fruit 
weight was investigated. The regression analysis and calculation of RMSE were conducted between 
the measured and estimated values to obtain their accuracy. 

Figure 5. Plant canopy and fruit point cloud data. Tomato canopies for estimation of fruit weight were
scanned using the 3D scanner (DPI-8X, Opt Technologies Co., Ltd., Tokyo, Japan) from 14 August to
5 September 2019 (A). Paprika canopies for estimating fruit weight were scanned from 28 August to
30 2019 (B). Fruit point cloud data were detected from the canopy point cloud data using the RGB
value. Point cloud data of tomato fruits fulfilling R > 140, G < 100, and B < 100 were acquired (C).
Point cloud data of paprika fruits fulfilling R > 150, G > 110, and B < 50 were obtained (D). Point cloud
data were obtained using OPT Cloud Survey (Opt Technologies Co., Ltd., Tokyo, Japan).

2.3.2. Construction of a Solid Model for Estimation of Fruit Weight

The point cloud data for tomato and paprika fruits (see Section 2.3.1) were converted to a surface
model using OPT Cloud Survey (Figure 6A,B). The surface model of fruits was converted to a solid
model using Meshmixer 3.5 (Autodesk Inc., San Rafael, CA, USA) (Figure 6C,D). The solid model is
full of voxels; therefore, it was possible to calculate volume by counting several voxels [32], whereby a
voxel is a cube used to construct a 3D model. The volume of the fruit solid model was calculated by
Meshmixer 3.5. The fruit weight was estimated by multiplying the fruit volume (cm3) by the density
(g cm−3). Fruit volume was measured by the water displacement method based on the Archimedes
principle [33]. We prepared a plastic beaker poured with water. The fruit was submerged in the
beaker. Then, the increased volume was the volume of the fruit. The fruit density was calculated using
the volume and weight. The density of tomato and paprika fruit was 0.84 and 0.59 g cm−3 (average
of five fruits), respectively. The relationship between the measured and estimated fruit weight was
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investigated. The regression analysis and calculation of RMSE were conducted between the measured
and estimated values to obtain their accuracy.
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3. Results

3.1. Growth

The relationship between measured and estimated leaf area per plant is shown in Figure 7.
Unnecessary polygons were observed as a noise in the tomato surface model. A significant correlation
was observed between the measured and estimated leaf area of tomato (R2 = 0.828 and RMSE = 914.1 cm2)
(Figure 7A), cucumber (R2 = 0.970 and RMSE = 533.5 cm2) (Figure 7B), and paprika (R2 = 0.959 and
RMSE = 204.1 cm2) (Figure 7C).

The relationship between measured and estimated LAI is shown in Figure 8. A significant
correlation was observed between the measured and estimated LAI of tomato (R2 = 0.600 and
RMSE = 0.27), cucumber (R2 = 0.975 and RMSE = 0.39), and paprika (R2 = 0.934 and RMSE = 0.37).
The LAI of paprika was underestimated compared with those of tomato and cucumber.
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Figure 7. Relationship between measured and estimated leaf area per plant. The leaf area was measured
using an area meter (LI-3100, LI-COR Inc., Lincoln, NE, USA). The leaf area was estimated based on the
area of polygons in the plant surface model. Tomato plants were scanned using a 3D scanner (DPI-8X,
Opt Technologies Co., Ltd., Tokyo, Japan) from 5 April to 23 May 2019 (A). Cucumber plants were
scanned from 3 April to 23 May 2019 (B). Paprika plants were scanned from 5 April to 2 August 2019
(C). ** significant at p < 0.01 according to the regression analysis. RMSE means root mean squared error.Sensors 2020, 20, x FOR PEER REVIEW 11 of 19 
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Figure 8. Relationship between measured and estimated leaf area index (LAI). LAI was measured
non-destructively using the leaf area (leaf area = leaf length × leaf width × coefficient) and cultivation
area. LAI was estimated based on the polygon area of the canopy surface model and cultivation area.
Tomato and cucumber canopies were scanned using the 3D scanner (DPI-8X, Opt Technologies Co., Ltd.,
Tokyo, Japan) from 7 April to 23 May 2019. Paprika canopy was scanned from 7 April to 12 June 2019.
** significant at p < 0.01 according to the regression analysis. LAI, leaf area index. RMSE means root
mean squared error.
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The relationship between measured leaf area and leaf dry weight is shown in Figure 9A.
A significant correlation was observed between the measured leaf area and leaf dry weight of tomato
(R2 = 0.906), cucumber (R2 = 0.966), and paprika (R2 = 0.982). The relationship between measured leaf
area and total dry weight without fruit is shown in Figure 9B. A significant correlation was observed
between the measured leaf area and total dry weight of tomato (R2 = 0.847), cucumber (R2 = 0.959),
and paprika (R2 = 0.927).
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Figure 9. Relationship between measured leaf area and dry weight (leaf or total). (A,B) show the dry
weights of leaf and total, respectively. The total dry weight does not include fruit. The leaf area was
measured using an area meter (LI-3100, LI-COR Inc., Lincoln, NE, USA). Tomato plants were scanned
using the 3D scanner (DPI-8X, Opt Technologies Co., Ltd., Tokyo, Japan) from 5 April to 23 May 2019.
Cucumber plants were scanned from 3 April to 23 May 2019. Paprika plants were scanned from 5 April
to 2 August 2019. ** significant at p < 0.01 according to the regression analysis.

The relationship between estimated leaf area and measured leaf dry weight is shown in Figure 10A.
A significant correlation was observed between the estimated leaf area and measured leaf dry weight
of tomato (R2 = 0.801), cucumber (R2 = 0.970), and paprika (R2 = 0.941). The relationship between the
estimated leaf area and measured total dry weight without fruit is shown in Figure 10B. A significant
correlation was observed between the estimated leaf area and measured total dry weight of tomato
(R2 = 0.743), cucumber (R2 = 0.973), and paprika (R2 = 0.929).

The relationship between measured and estimated plant height is shown in Figure 11. A significant
correlation was observed between the measured and estimated plant height of tomato (R2 = 0.999 and
RMSE = 1.33 cm) (Figure 11A), cucumber (R2 = 0.999 and RMSE = 2.18 cm) (Figure 11B), and paprika
(R2 = 0.999 and RMSE = 1.64 cm) (Figure 11C).

The canopy structures of tomato (49 DAT), cucumber (37 DAT), and paprika (107 DAT) obtained
by the estimated leaf area at each height are shown in Figure 12.
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Figure 10. Relationship between estimated leaf area and measured dry weight (leaf or total). (A,B) show
the dry weights of leaf and total, respectively. The total dry weight does not include fruit. The estimated
leaf area is the area of polygons in the plant surface model. Tomato plants were scanned using the 3D
scanner (DPI-8X, Opt Technologies Co., Ltd., Tokyo, Japan) from 5 April to 23 May 2019. Cucumber
plants were scanned from 3 April to 23 May 2019. Paprika plants were scanned from 5 April to 2 August
2019. ** significant at p < 0.01 according to the regression analysis.
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Figure 11. Relationship between measured plant height and estimated plant height. Plant height was
estimated using the measuring tool in SketchUp 2017 (Trimble Inc., Sunnyvale, CA, USA). Tomato plants
were scanned using the 3D scanner (DPI-8X, Opt Technologies Co., Ltd., Tokyo, Japan) from 5 April to
23 May 2019 (A). Cucumber plants were scanned from 3 April to 23 May 2019 (B). Paprika plants were
scanned from 5 April to 2 August 2019 (C). ** significant at p < 0.01 according to the regression analysis.
RMSE means root mean squared error.
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Figure 12. Plant structure estimated based on the height and polygon area of the canopy surface model.
Tomato and cucumber canopies were scanned using the 3D scanner (DPI-8X, Opt Technologies Co.,
Ltd., Tokyo, Japan) on 23 May 2019. Paprika canopies were scanned on 12 June 2019.

3.2. Yield

The relationship between measured and estimated fruits weight calculated by the solid model
is shown in Figure 13. A significant correlation was observed between the measured and estimated
fruit weights of tomato (R2 = 0.739 and RMSE = 278.2 g) (Figure 13A) and paprika (R2 = 0.888
and RMSE = 275.5 g) (Figure 13B). Notably, the estimated fruit weight of paprika tended to be
underestimated compared with the actual fruit weight.
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Figure 13. Relationship between the measured and estimated fruit weights. (A,B) show the fruit
weights of tomato and paprika, respectively. Fruit weight was estimated using the volume calculated
by the fruit voxel model and density. Fruit volume was calculated by Meshmixier 3.5 (Autodesk Inc.,
San Rafael, USA). ** significant at p < 0.01 according to the regression analysis. RMSE means root mean
squared error.
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4. Discussion

4.1. Growth

Regarding the estimation of leaf area per plant (Figure 7), the R2 of tomato was lower than
that of cucumber and paprika. This was because tomato plants have complicated leaflets making it
difficult to construct a surface model. Notably, unnecessary polygons were constructed in the tomato
surface model because of noise (unnecessary point cloud; known as the drift point) between leaflets.
Many denoising technologies have been developed [34]. For example, Zhou et al. (2020) eliminated the
drift point using a non-interactive dual threshold denoising method [34], indicating that an accurate
plant surface model could be constructed using this method. Conversely, cucumber and paprika plants
could be easily scanned to enable the construction of a surface model because they have simple leaves.

Regarding the estimation of LAI (Figure 8), the R2 of tomato was also lower than that of cucumber
and paprika, for the same reason described above. In addition, in a few surface models of tomato,
the LAI was underestimated because it was difficult to acquire point cloud data inside the canopy.
The LAI of paprika tended to be underestimated because the overlap of leaves in the lower layer was
greater than that of other plants for morphological reasons, and point cloud data were lacking in low
leaves. It was easy to estimate the LAI of cucumber because there was little overlap of leaves inside
the canopy. In addition, the advantage of 3D models over 2D ones is the ability to get images from
various perspectives and provides the information on the plant growth and physiological condition [11].
Therefore, when the 3D scanner was used, objects other than the target had little influence on estimates
of growth parameters compared with the use of 2D images.

Ahn et al. (2015) reported a correlation between leaf fresh weight and leaf area of cucumber [35].
In our study, a significant correlation between the measured leaf area and leaf dry weight or total
dry weight per plant was also observed (Figure 9). The R2 of the relationship between the estimated
leaf area and measured leaf dry weight or total dry weight per tomato plant was lower than that
of cucumber and paprika (Figure 10). This was because the leaf area of the tomato surface model
was of low accuracy compared with that of other plants. Therefore, the R2 of cucumber and paprika
was higher than that of tomato. In addition, when estimating the total dry weight of the plant using
the relationship between total leaf area and dry weight, unchanged dry matter distribution to each
organ is needed during cultivation. The inclination of the approximate curves for the relationship
between total leaf area and total leaf dry weight or total dry weight (Figure 9) differed between tomato,
cucumber, and paprika. This was because the specific leaf area and dry matter distribution changed
in a species-dependent manner. Based on this, here, if the leaf area is estimated, it will be possible
to estimate the total dry weight using the equation for the relationship between total leaf area and
dry weight (Figure 9). Therefore, application of this approach to plant canopies to estimate the total
plant dry weight will enable the optimal greenhouse environment for growing fruit vegetables to
be determined.

Plant height was estimated with good accuracy (R2 = ~1.0), regardless of plant species (Figure 11),
because the influence of leaf shape and overlap was small when plants were scanned by the 3D scanner.
In addition, it was possible to estimate the canopy structure (Figure 12) because plant height and leaf
area could be estimated (Figures 7 and 11). Therefore, the canopy 3D model provided canopy structure
information. The canopy structure changes depending on plant species and cultivation environment.
Hence, the above information can be used for cultivation management such as defoliation. In addition,
the estimation of canopy structure is useful to discuss the status of light environment in different leaf
layers under various light conditions. The plant structure is an important factor to affect the light
interception and photosynthesis of plants [36]. Kim et al. (2020) estimated the light interception on the
plant surface using a 3D plant model and optical simulation and revealed the effect of the accuracy of
the 3D structural model on the estimated light interception and photosynthesis [36]. It is necessary to
maintain the canopy structure that increases light interception and photosynthesis by the cultivation
management for improving productivity.
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4.2. Yield

The R2 of the estimated paprika fruit weight was higher than that of tomato (Figure 13), because the
LAI of paprika was smaller than that of tomato; therefore, fruit point cloud data were easily obtained
inside the canopy. In addition, several estimated fruit weights of tomato were heavier than the actual
weights (Figure 13A) because some unripe tomatoes were detected as noise.

The approximate curves used to evaluate the relationship between measured and estimated fruit
weights (Figure 13) underestimated the fruit weight. This was because it was difficult to scan behind
tomato and paprika fruits because of the canopy structure, resulting in missing point cloud data.
Dadwal and Banga (2012) reported that when the color image segmentation was conducted to estimate
the ripeness level of apple, four images of a single fruit from four different directions was prepared [31].
In addition, the RGB settings used (0–255) to detect fruit point cloud affected the output data. Therefore,
the detection of noise in the point cloud, aside from fruits, will be reduced using optimal RGB settings.
If objects similar to the color of the fruit exist inside the greenhouse, the false detection of fruits probably
occurs. Moreover, the color temperature over the fruit changed depending on the date, time, and
weather [19]. Therefore, when scanning the canopy, the use of artificial light at night to maintain a
stable light environment is recommended to detect fruits. Teixidó et al. (2012) reported that the use of
a color-based detection algorithm under low light intensity to detect peach resulted in the upper part
of an unripe fruit being mistaken for part of a leaf [37]. Rose et al. (2016) acquired point cloud data to
detect grape fruits using homogeneous lighting after sunset [38]. Font et al. (2014) counted several red
grapes based on the detection of specular reflection peaks from the spherical surface of the grapes using
high-resolution images taken under artificial light at night [39]. Thus, the use of artificial light at night
is most effective when a 3D scanner is used to scan the canopy to acquire point cloud data and detect
mature fruits. In addition, Malik et al. (2018) converted RGB images to HSV when detecting tomato
fruits, because the hue component was less sensitive to variations in lighting [40]. The saturation
component was not affected by light quality [19]. Therefore, converting the RGB value of point cloud
data acquired by a 3D scanner to HSV or HSL will improve the accuracy of fruit detection. El-Bendary
et al. (2015) evaluated tomato ripeness using machine learning with an image of fruits after converting
the RGB to HSV, and obtained a classification accuracy of 90.8% [41].

Therefore, it was possible to detect fruit and to estimate their weight using the RGB value of
point cloud data. In addition, this method will automatically provide growth monitoring (leaf area,
LAI, plant height, and fruit weight) because it will be possible to divide the canopy point cloud data
including the greenhouse structural material, and cultivation bench, into plants using color information.
In the civil engineering field, several types of objects, including forest and signal, have been separated
from point cloud data using color information [42,43]. An editor for point cloud data was recently
developed [44], which is expected to be used in the agricultural field in the future.

5. Conclusions

We constructed surface models of individual plants and canopies of fruit vegetables (tomato,
cucumber, and paprika) using a 3D scanner to estimate leaf area, LAI, and plant height. Using this
approach, a significant correlation was observed between the measured and estimated values. The R2

was > 0.8, except for the LAI of tomato. In addition, a linear relationship was found between the total
leaf area and total dry weight without fruit. Therefore, the dry weight of the plant can be predicted
using the estimated leaf area. We were able to predict the canopy structure of each fruit vegetable by
integrating the estimated leaf area at each height of the canopy surface models.

We detected tomato and paprika fruits to estimate fruit weights from the point cloud data acquired
by the 3D scanner using the RGB values and constructed a solid model of fruits. The fruit weight was
estimated using the volume of the solid model and the fruit density. A significant correlation (tomato:
R2 = 0.739, paprika: R2 = 0.888) was observed between the measured and estimated fruit weights.
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Therefore, using this method, it was possible to estimate multiple growth parameters of fruit
vegetables simultaneously in a non-destructive manner. In the future, the 3D scanner is expected to be
used to monitor the growth and yield of fruit vegetables.
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