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Abstract: Malware detection of non-executables has recently been drawing much attention because
ordinary users are vulnerable to such malware. Hangul Word Processor (HWP) is software for editing
non-executable text files and is widely used in South Korea. New malware for HWP files continues to
appear because of the circumstances between South Korea and North Korea. There have been various
studies to solve this problem, but most of them are limited because they require a large amount
of effort to define features based on expert knowledge. In this study, we designed a convolutional
neural network to detect malware within HWP files. Our proposed model takes a raw byte stream
as input and predicts whether it contains malicious actions or not. To incorporate highly variable
lengths of HWP byte streams, we propose a new padding method and a spatial pyramid average
pooling layer. We experimentally demonstrate that our model is not only effective, but also efficient.

Keywords: malware detection; Hangul Word Processor; HWP; spatial pyramid pooling; spatial
pyramid average pooling; convolutional neural network; stretch padding

1. Introduction

Malware describes malicious software designed for attacking machines in various ways. It may
slow down or shut down machines, and often steals or encrypts important files for ransom. Malware
can be divided into two categories: malware of executables (e.g., EXE files) and malware of
non-executables (e.g., Portable Document Format (PDF) files). Ordinary users are more vulnerable
to non-executables because they simply open infected documents without much worry. Although
many options have been proposed for the detection of the malware within non-executables, it is still
necessary to develop more advanced detection models because new malware for non-executables
keeps appearing.

Hangul Word Processor (HWP) is text editing software provided by Hancom Inc., South Korea.
HWP is one of the most widely used pieces of software in South Korea and is mainly used in schools,
companies, military agencies, and governmental institutions. Due to the relationship between South
Korea and North Korea, most malware attacks for HWP files are created by North Korea [1,2]. The HWP
files belong to non-executables, so many people in schools and governmental institutions are exposed
to threats of malicious HWP files. The malicious HWP files contain byte streams of executable code,
shell code, or script code. The byte streams with malicious actions convey different patterns compared
to benign byte streams, so it is possible to detect malware by analyzing the byte stream patterns as
described in [3].

Meanwhile, many studies have tried to detect malicious actions by applying machine learning
models to the byte streams. Such methods usually involve a set of carefully designed features which
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are then passed to various machine learning models (logistic regression or a support vector machine
(SVM) [4]). These studies have a common limitation in that they require substantial effort from
experts to define features for different target files (e.g., PDF documents, HWP documents, Word
documents); moreover, they require substantial effort regarding the feature definitions whenever
new malware appears. Deep learning models have recently been drawing attention because of their
ability to automatically extract features from data and because they usually exhibit better performance
(e.g., accuracy) compared to traditional machine learning models. Some studies used deep learning
models to extract meaningful features from byte streams to accurately detects malicious actions.
These studies have a common limitation in that their models are not efficient [3,5–7]. That is, the models
are often too complex, so they take a long time to analyze numerous suspicious files. As we encounter
many suspicious files every day, more efficient (i.e., less complex) models are preferable.

In this paper, we design a convolutional neural network (CNN) to detect malicious actions within
HWP files. The CNN model has two newly proposed parts: (1) we propose a new method of padding,
namely, stretch padding, and (2) spatial pyramid average pooling (SPAP), which is a variant of spatial
pyramid pooling (SPP) [8]. We show that our CNN is efficient and effective through experimental
comparisons with other state-of-the-art models.

The rest of this paper is organized as follows. Section 2 reviews previous studies related to
malware detection from various different perspectives. Section 3 provides details about the proposed
model and compares its structure with other models. Section 4 shows the experimental results and
comparisons with other state-of-the-art models. Section 5 provides discussion about the efficiency and
overall effectiveness in terms of false positives and false negatives. Finally, Section 6 summarizes and
concludes the paper.

2. Related Work

2.1. Static Analysis of Non-Executable Malware

As the interchange rate of data continues to grow, so does the threat of malware. Malware exhibits
malicious behaviors (e.g., destroying files or encrypting files for ransom) and may cause serious
damage to individuals, institutions, or companies by stealing or disturbing important information
(e.g., contract documents). Malware can be divided into two types: executables and non-executables.
Many existing security services (e.g., Norton [9] and Kaspersky [10]) are capable of detecting malware
within executables, but the malware in non-executables (e.g., HWP documents) often bypasses security
services because such non-executables are ever-changing. Although security services are making
attempts to address this, they mostly suffer from a high number of false positives. Many ordinary
users tend to open non-executables without much consideration, making them more dangerous.

The non-executables are not executable by themselves, but can be opened or run using
the corresponding software (e.g., HWP software, PDF viewer). We have two ways of analyzing
non-executables: dynamic analysis and static analysis. Dynamic analysis is used to determine the
existence of malicious actions by looking at all of the step-by-step actions of the corresponding binary
run in an isolated virtual environment (e.g., virtual box). Kolosnjaji et al. [11] utilized application
programming interface (API) call sequences as features and employed long short-term memory
(LSTM) [12] with convolutional filters for malware type classification. Xiao et al. [13] defined features
using the behavioral patterns of the binary run and applied them to stacked auto-encoders (SAE) [14]
for malware detection. These dynamic analyses require a virtual environment to simulate executables,
and different studies usually employ different non-public emulation environments; this makes it
difficult to reproduce the previous works of dynamic analyses. On the other hand, static analysis finds
malicious actions by looking for signatures within the files without executing them. This approach does
not require executing the suspicious files, so it is easier to reproduce and compare different models.
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2.2. Byte Stream of Hangul Word Processor Files

New malware associated with Hangul Word Processor (HWP) files keeps appearing and many
users are vulnerable to such attacks because the HWP files are non-executables. Many people recognize
that executable files such as portable executable (PE) format files are not secure. However, the security
consciousness of document files is relatively weak. Document files are often used for targeted attacks
of intelligent malware called advanced persistent threat (APT) attacks. Malicious code is inserted
into the document file and attached to the email. At the moment the user opens the document file,
the malicious code is executed.

HWP files are used more often by the Korean government than Microsoft office files, so hackers
often exploit malicious HWP files for cyber attacks with political purposes. In addition, hackers are
making various attempts to utilize existing well-known vulnerabilities such as common vulnerabilities
and exposures (CVE) in Microsoft Office files, PDF files, Rich Text Format (RTF) files, and HWP files.
In many cases, other vulnerabilities for different document types do not work properly in HWP, but the
potential for malware execution still exists. CVE-2014-1761, for example, is a vulnerability in RTF,
which has been included in the PrvText stream in HWP. As another example, CVE-2017-11882 is a
vulnerability in Microsoft Office Word. In some cases, this vulnerability is included in the stream of
the BinData storage in HWP, and is obviously executable, so all streams must be inspected to check
whether they contain malicious code.

HWP files have a compound file structure and known as Object Linking and Embedding (OLE).
OLE is a file format used in various word documents and is composed of storage and streams similar
to the File Allocation Table (FAT) file system. These file types are easy to understand, assuming that
storage is similar to folders and that streams are similar to files. Table 1 shows the general structure of
an HWP file. In one stream, data are stored in a binary or record structure, and then compressed or
encrypted depending on the stream. All data are contained in the stream, alongside malicious code
contained in the stream. Checking all streams is equivalent to checking all data constituting the HWP
file. If there is an error in the length, compression, or encryption information of each stream, the HWP
file cannot be opened normally. In the process of inserting malicious code into the stream, there are
many cases in which such information has an error and the HWP file cannot be opened. The stream is
composed of several consecutive records, and the record stores header information and data together.
The header information includes the type of data, the depth of the hierarchical structure, and the data
size. The length of each record is fixed or variable depending on the type of data. BinData storage
stores binary data attached to documents, such as images and OLE objects. Streams of BinData or
section storage are not limited in size, so there are cases wherein the length is very long.

2.3. Neural Networks for Malware Detection

Various machine learning models have been adopted to detect malware in a static manner [15,16].
In Ranveer and Hiray’s work [17], a frequency histogram of pre-defined opcodes was obtained
from executables, and was used as a feature vector for malware detection. They used a support
vector machine (SVM) and achieved a 0.95 true positive rate (TPR) for the data of VXheavens [18].
Morales-Molina et al. [19] employed a random forest (RF) [20] for malware classification; promising
features were selected using principal component analysis (PCA). Darus et al. [21] proposed an
approach for malware classification by analyzing grayscale images extracted from Android Package
Kit (APK) files. They utilized a GIST descriptor [22] to generate features, and achieved about 70%
accuracy. All of these studies have a common limitation in that they require intensive effort for feature
engineering; the feature definitions have a huge impact on the final results, thereby requiring a large
amount of time to define features carefully for every type of malware.
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Table 1. Structure of HWPfiles.

Type Name (*Storage or Stream) Length

File recognition information FileHeader fixed

Document information DocInfo fixed

*BodyText
Main document Section 0 unfixed

Section 1

Document summary HWPSummaryInformation fixed

*BinData
Binary data BinaryData0 unfixed

BinaryData1

Preview text PrvText fixed

Preview image PrvImage unfixed

*DocOptions
Document options LinkDoc unfixed

DrmLicense

*Scripts
Script DefaultJScript unfixed

JScriptVersion

*XML Template
XML template Schema unfixed

Instance

*DocHistory
Document history VersionLog0 unfixed

VersionLog1

Deep learning models have recently been drawing attention because they do not require much
effort in regard to feature engineering and show better performance (e.g., accuracy) than other
machine learning models by automatically extracting promising features. Saif et al. [23] designed a
deep belief network (DBN) for malware detection in both static and dynamic ways. The DBN was
originally proposed in [24]; it is typically pre-trained using an unsupervised contrastive divergence
(CD) algorithm for every pair of adjacent layers, and is fine-tuned using standard back-propagation.
They compared the DBN with other models (e.g., SVM, random forest) experimentally, and the DBN
achieved the best accuracy of 99.1%. In [25], a recurrent neural network (RNN) [26] was employed to
detect malware in a dynamic manner. They took a short snapshot of the behavioral history of portable
executable (PE) samples and achieved an accuracy of 94% using RNN with gated recurrent units
(GRU) [27]. Yan et al. [5] utilized both an RNN and a CNN [28] for malware detection of executables.
At the pre-processing phase, they generated grayscale images from byte streams and extracted opcode
sequences. They delivered the grayscale images and the opcode sequences to the CNN and RNN,
respectively. The results generated by the two deep learning models were then delivered to a stacking
ensemble model that achieved 99.88% accuracy. These studies have a common drawback in that they
require hand-crafted features, although deep learning models are known to automatically extract
features; the deep learning models may give better results when given carefully designed inputs based
on domain knowledge, but these studies have a strong downside, as they require large amounts of
effort from domain experts whenever new malware appears. It is necessary, therefore, to develop deep
learning models that work with more hands-off approaches toward feature engineering, and using
only byte streams may be the best choice in this sense.

There have been few studies on malware detection that used byte streams for training deep
learning models. Jeong et al. [6] designed a CNN model for malware detection of PDF files, wherein
the input length is assumed to be 1000 bytes. They extracted byte streams from the PDF files and
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directly fed them to the CNN model. Their CNN model achieved an F1 score of 98.48–98.65%, which
was superior to other machine learning models. In [3], a CNN model was proposed for malware
detection of HWP files, wherein the input length is assumed to be 600 bytes. This was the first
study of malware detection for HWP files using only byte streams, and achieved an F1 score of
93.33–93.45%. Raff et al. [7] designed a shallow structure of a CNN for analyzing byte streams of PE
headers. They assumed an input length of 1–2M bytes, in order to resolve the issue of variable length
of byte streams. Their proposed model achieved 94% accuracy but suffered from poor efficiency; they
had to consider small batch sizes because of the huge amount of trainable parameters of the model.
These studies commonly employed a CNN rather than other deep learning models (e.g., RNN or DBN)
because CNN has relatively smaller number of parameters and is known to be effective for capturing
local patterns.

The previous studies that applied a CNN model to byte streams were successful in some sense,
but may not be useful when the byte streams are very long. For example, we may have to run the model
proposed in [3] numerous times (about hundreds times) to make a decision for a single file. Indeed,
we found that the mean stream length of PDF files of [6] is about 600, whereas the mean stream length
of HWP files used in [3] is about 350,000–710,000 with a standard deviation of 2,000,000–4,000,000.
This implies that we may need to run the model of [3] about 580–1180 times for each byte stream,
as it is assumed that the input length is 600 bytes. Moreover, if a target HWP file has multiple byte
streams, then we may need to run the model tens of thousands of times. The model proposed in [7] has
a shallow convolutional structure to cover 1M–2M byte streams. However, the core of this structure is
just a couple of standard convolutional layers together with a global max-pooling layer, and thus it
has no way to incorporate the highly variable stream lengths of HWP files; the length of HWP byte
streams has a high standard deviation, so the model of [7] is generally poor at capturing important
local patterns and suffers from low performance in terms of effectiveness (e.g., F1 score).

In this paper, we design a CNN for malware detection that works in a static manner. The model
takes byte streams as input and predicts whether the corresponding byte stream has malicious actions
or not. This model has an extremely small number of parameters, but we will show that the model
achieves high efficiency (e.g., number of parameters) and effectiveness (e.g., F1 score). We believe
that our proposed model is practically useful because it works fast without requiring highly specific
machines and gives accurate results.

3. Proposed Method

The purpose of this study to develop a CNN model for malware detection of HWP files.
We designed the CNN model with two requirements in mind: (1) it had to take long byte streams
as input so that we do not have to run the model numerous times for decision making, and (2) it
should be as light as possible. It is difficult to satisfy both requirements; if we lean too much to the first
requirement, then we may completely lose the second one. The first requirement allows the model
to be easily applicable to any newly appearing piece of malware, while the second requirement is
associated with the efficiency (e.g., the number of parameters) of the model. The model, of course,
should be effective (e.g., high accuracy) as well, but will be ultimately useless if it works too slowly.
Therefore, the model should be both efficient and effective.

Figure 1 shows examples of malicious and benign byte streams within HWP files; if a byte
stream has at least one malicious action, then it is considered a malicious byte stream. Different HWP
files typically have different numbers of byte streams, and the byte streams have variable lengths.
Although malicious actions are known to be 600 bytes or shorter in length, as reported in [3], a model
taking a longer byte stream will be preferable because the byte streams of HWP files have much longer
lengths (e.g., 350,000–700,000) than PDF files. Our model is designed to deal with such long streams
and its graphical representation is depicted in Figure 2.
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Figure 1. Malicious/benign byte streams within HWP files.

Figure 2. Graphical structure of the proposed model.

The first layer is the embedding layer, which projects each byte of the stream into a vector of a
certain dimension E. As described in [7], a byte is just a categorical value, so it is not proper to take
the raw byte as an input. The embedding layer converts every byte into a vector with meaningful
representation, which in turn helps the following layers better comprehend or extract arbitrary patterns
from the given byte stream. In this study, the embedding layer was trained on our data.

If an input is a byte stream of length I, then it will be transformed into an I × E matrix via
the embedding layer. As the E-dimensional transformed vector conveys semantic patterns of the
corresponding byte, semantically related (or similar) bytes would have small distance between them.

The output matrix of the embedding layer is delivered to the spatial pyramid average pooling
(SPAP) layer. We next designed the SPAP layer, which is a variant of a spatial pyramid pooling (SPP)
layer [8]. The SPP layer allows for generating an output of the same size by picking an item from S× S
divided regions even with different input sizes. There are two key differences between SPAP and SPP:
(1) the SPP runs in two dimensions, whereas the SPAP runs in a single dimension; and (2) the SPP
basically considers a max-pooling, whereas the SPAP takes an average-pooling. The SPP layer was
originally designed for image processing, so it assumed that the input is a two-dimensional matrix
(e.g., height H and width W). As shown in Figure 3, the SPP layer generates the output by applying the
function fSPP to every region of W/S× H/S elements (e.g., pixels). In contrast, the SPAP layer takes a
stream of I embedding vectors and generates the output by applying the function fSPAP to every I/S
adjacent embedding vector. Furthermore, the fSPP for the SPP layer is basically a max-pooling function
that picks the biggest value (i.e., the brightest pixel), but the fSPAP is an average-pooling function,
as defined in Equation (1), where ei represents the i-th embedding vector. Adopting the average-pooling
function is crucial because the input consists of not just values (e.g., pixel intensity) of the region,
but also includes the embedding vector conveying semantic information. As described in [29],
the averaging embedding vectors may find deeper semantic information (i.e., relational information)
between the given adjacent embedding vectors; we demonstrated its validity experimentally.

fSPAP(e1, e2, ..., eW/S) :=
1

W/S ∑
i

ei (1)



Sensors 2020, 20, 5265 7 of 12

Figure 3. Comparison between the SPP and the SPAP. (left) The SPP working on a two-dimensional
image; (right) the SPAP working on a stream of embedding vectors.

The S× E output matrix is passed on to two consecutive convolutional layers as described in
Figure 2. The first convolutional layer takes the C1 adjacent embedding vectors and generates outputs
via K1 channels; similarly, the second convolutional layer generates outputs via K2 channels based
on the C2 adjacent values of the previous layer. Adopting the two consecutive layers is inspired
from [3], where the consecutive layers were found to effectively capture local semantic patterns of the
byte sequence. The output of the second convolutional layer is delivered to the global max-pooling
(GP) layer. Using the GP layer is inspired from [7]; it is known to dramatically reduce the number of
parameters without losing important information. The GP layer is followed by a fully-connected (FC)
layer of F nodes, and finally it ends with the output layer. The output layer has two nodes: a benign
node and a malware node. Thus this model solves a binary classification.

When we train the model, we first need to ensure the input data have equal shape; in other words,
every byte stream has to be equal in length. The most widely-used method for this is a padding.
As shown in the left figure of Figure 4, conventional padding is used to attach some special-purposed
tokens (e.g., padding token) to the tail (or front) of a sequence. For example, if we need to make all
byte streams have the same length of I, then the third byte stream D3 will be padded with I − |D3|
special tokens at its tail. However, this may result in important information loss since our input length
has high variance (e.g., σ = 3,977,756 for benign HWP streams); such high variance may cause pooling
operations on embedding vectors of only padding tokens. To alleviate this “pooling on padding tokens”
problem, we propose “stretch padding,” which stretches the existing elements of the vector to have
the desired length I. As shown in the right figure of Figure 4, the byte streams are stretched to have
equal length by interleaving padding tokens within the stream; this helps prevent the “pooling on
padding tokens” problem. We demonstrate the impact of the stretch padding experimentally in the
following section.

Figure 4. Comparison between two padding methods, where the shaded squares represent padding
tokens. (left) Conventional padding. (right) Stretch padding.

4. Experimental Results

We compared our model with other state-of-the-art models experimentally. We considered
the HWP dataset used in [3], which is the largest public dataset of HWP files as far as we know.
The dataset contains 534 HWP files (benign: 79; malicious: 455); the imbalance between the two classes
(e.g., benign and malicious) is for incorporating diverse attack strategies among the malicious HWP
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files. As described in Figure 1, there might be one or more malicious byte streams within a malicious
HWP file. Thus, we generated benign and malicious stream samples using Algorithm 1 of [3] with
the same parameters, but with the input length of 100,000. The training dataset and the test dataset
were sampled from different files. The stream samples were divided into a training set and a test
set, and their statistics are summarized in Table 2. With the stream samples, all experiments were
conducted using a machine with an Intel(R) Core(TM) i7-9800 CPU 3.80 GHz, four Geforce RTX 2080
Ti, and 64 GB RAM. We implemented the model using Tensorflow Keras 1.13.

Table 2. Statistics of sampled data.

Total Malicious Benign

Train + Test 6520 3668 2852
Train 5868 3265 2603
Test 652 403 249

Table 3 shows the experimental results for efficiency, where Cons-Conv, Mal-Conv, and SPAP-Conv
indicate [3,7], and our model, respectively. The Cons-Conv was originally designed with the
assumption that the input length is 600, and the Mal-Conv assumed that the input length is 1M–2M.
For fair comparison, we set them to have the same input length of I = 100,000. Except for the input
length I, the Cons-Conv and Mal-Conv followed their original structures. For the SPAP-Conv, we set
S = 512, E = 8, K1 = 64, K2 = 256, C1 = 3, C2 = 3, and F = 64. We applied batch normalization [30] with a
momentum of 0.99 and a leaky Relu activation function [31] with α = 0.3 to the two convolutional layers.
The fully-connected layer is followed by a Relu activation function and dropout with a probability of
0.5. The output layer is followed by the softmax function. We used a cross entropy function as the loss
and Adam’s optimizer [32] with an initial learning rate of 0.001. Similarly to SPAP-Conv, the batch
normalization and dropout were applied to Cons-Conv, whereas Mal-Conv was trained without batch
normalization since batch normalization is known to be not helpful to Mal-Conv, as reported in [7].
SPAP-Conv was trained for five epochs, and the two other models were trained for 10 epochs.

Table 3. Experimental results about efficiency, where #Params indicates the number of trainable
parameters, FLOPS stands for floating-point operations per second, and Runtime is the time spent for
running the model on the test set in seconds.

#Params FLOPS Runtime

Cons-Conv 2,056,354 4,112,896 15.8662
Mal-Conv 1,043,074 2,085,384 0.8572

SPAP-Conv 70,274 143,453 0.9831

The three models are compared according to the number of trainable parameters (#Params),
floating-point operations per second (FLOPS), and runtime for the test set in seconds (Runtime). It is
obvious that smaller #Params, FLOPS, and runtime are better; smaller #Params and FLOPS will allow
the model to work without highly specific machines, while a smaller runtime will reduce the time
needed for the malware detection process. Cons-Conv turned out to be the heaviest and slowest model;
the runtime for 652 byte streams was 15.8662 seconds, meaning it may take several minutes if we need
to analyze multiple HWP files with 20–30 byte streams. Mal-Conv is about half the size compared
to Cons-Conv in terms of #Params and FLOPS, but is much faster than Cons-Conv. The reason for
this might be that the heavy structure of Cons-Conv caused a hardware-level delay (e.g., virtual
memory or fragment memory) as reported in [33], so the runtime gap is much greater than the size
gap. Meanwhile, SPAP-Conv is the best in terms of size; SPAP-Conv is about 15 times lighter than
Mal-Conv. However, We observed that Mal-Conv has a comparable runtime to SPAP-Conv. This is
because Mal-Conv was implemented using public Keras layers (e.g., Conv2D layer and dense layer),
whereas SPAP-Conv had our implemented SPAP layer which is not provided by Keras. We used the
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“slicing” operation to implement the SPAP layer; the tensorflow version of this operation is known to
be about 300 times slower than other alternative (e.g., numpy); in short, this is an implementation issue.
That said, it is obvious that SPAP-Conv works quickly as it needs only 1.5 milliseconds to analyze a
byte stream.

Table 4 summarizes the results regarding effectiveness. This table has two parts: the results of
our proposed stretch padding and the results of conventional tail padding. The three models improve
with stretch padding; these models are commonly CNN models, and thus benefit from stretch padding
because such padding helps to prevent the “pooling on padding tokens” problem by making the sizes
of the padding chunks small. If the byte stream is extremely short (e.g., 1–10 bytes), then the sizes
of the padding chunks may be too big (e.g., 10,000 bytes). In such cases, it will be better to consider
overlapped byte streams. For example, if we take overlapped byte streams of length 3 for a given byte
stream [A,B,C,D], then we will have [A,B,C] and [B,C,D].

Table 4. Experimental results about effectiveness, where the two values b/m of each cell correspond to
benign and malicious cases, respectively.

Model F1 (%) Precision (%) Recall (%)

stretch
Cons-Conv 81.32/89.99 89.81/85.65 74.30/94.79
Mal-Conv 89.05/92.06 81.61/98.58 97.99/86.35

SPAP-Conv 92.86/95.08 87.28/99.46 99.20/91.07

tail
Cons-Conv 80.00/88.54 84.07/86.15 76.31/91.07
Mal-Conv 86.83/90.72 80.69/95.86 93.98/86.10

SPAP-Conv 86.96/92.33 89.74/90.67 84.34/94.04

Among the three models, Cons-Conv achieved the best recall of 94.79 for the malicious case.
As our focus is the malware detection problem, Cons-Conv might be the best option if we wish to
never miss malicious streams. However, its precision for the malicious case and its F1 score were the
worst of the three models; moreover, it was the worst model in terms of efficiency, so it will not be good
for practical usage. On the other hand, SPAP-Conv achieved the best F1 score with stretch padding
and its recall for the malicious case was not much poorer compared to Cons-Conv. Furthermore, it is
the lightest model among the three and its runtime is much shorter than that of Cons-Conv.

5. Discussion

Based on the results concerning effectiveness, SPAP-Conv is the best among the three models.
Note that SPAP-Conv is about 15 times lighter than Mal-Conv, but SPAP-Conv achieved a greater F1
score than Mal-Conv. As the runtime of SPAP-Conv is also fast, we believe that it will be the best for
practical usage. It is also worth noting that SPAP-Conv has the largest F1 score gap between stretch
padding and tail padding. This implies that the SPAP layer is the appropriate layer for gathering
important information given by stretch padding.

One may argue that the average pooling of the SPAP layer might not be very helpful. To respond
to this, we replaced the average pooling of the SPAP layer with conventional max pooling and provide
the results in Table 5. By comparing these results with Table 4, we observe that max pooling degrades
the F1 score compared to SPAP-Conv with tail padding. This implies that the average pooling plays a
crucial role in the SPAP layer, which is consistent with [29]; that is, averaging the embedding vectors
helps to find deeper semantic information among the embedding vectors.

Table 5. Effectiveness of the SPAP-Conv with max pooling, where the two values b/m of each cell
correspond to benign and malicious cases, respectively.

F1 (%) Precision (%) Recall (%)

SPAP-Conv with max-pooling 84.67/92.27 98.40/86.21 74.30/99.26
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High recall in the malicious case indicates that malware is detected without omission, and the best
model for this is Cons-Conv with a recall of 94.79% for the malicious case. However, Cons-Conv may
suffer from false positives because its precision in the malicious case was only 85.65%, which was the
worst among the three models. As described in [34], a high risk of false positives affects the security
software development process and can lead to loss of business. On the other hand, Mal-Conv was the
best in terms of false positives, with a precision of 98.58% for the malicious case. Mal-Conv, however, may
suffer from false negatives because its precision in the benign case was only 81.61%. Mal-Conv also has
the worst recall in the malicious case of 86.35%. SPAP-Conv had the best F1 scores for both the benign
and malicious cases, making it a suitable point of compromise between false positives and false negatives.

6. Conclusions

We designed a new CNN model for malware detection by analyzing byte streams within HWP files.
To incorporate the highly variable length of HWP byte streams, we propose a new padding method,
stretch padding, in conjunction with an SPAP layer. We experimentally demonstrated that stretch padding
together with the SPAP layer improves the performance (e.g., F1 score). Compared to other recent models,
we showed that the proposed model is not only effective, but also efficient. In future studies, we will
consider more malicious HWP files and investigate better model structures; for example, we will check
whether a deeper SPAP layer is helpful or look for a more shallow structure to obtain better efficiency.
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