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Abstract: Wearable health and activity monitoring devices must minimize the battery charging
and replacement requirements to be practical. Numerous design techniques, such as power
gating and multiple voltage-frequency (VF) domains, can be used to optimize power consumption.
However, circuit-level techniques alone cannot minimize energy consumption unless they exploit
domain-specific knowledge. To this end, we propose a system-level framework that minimizes
the energy consumption of wearable health and activity monitoring applications by combining
domain-specific knowledge with low-power design techniques. The proposed technique finds the
energy-optimal VF domain partitioning and the corresponding VF assignments to each partition.
We evaluate this framework with experiments on two activity monitoring and one electrocardiogram
applications. Our approach decreases the energy consumption by 33–58% when compared to baseline
designs. It also achieves 20–46% more savings compared to a state-of-the-art approach.

Keywords: voltage-frequency domains; optimization; wearable devices; low-power design; energy
consumption

1. Introduction

Advances in wearable devices have led to a variety of health and activity monitoring applications,
such as pacemakers and electrocardiogram (ECG) trackers [1]. Wearable solutions allow for the
monitoring of everyday routines of users in their home environment that can lead to a multitude
of quality of life improvements, such as remote diagnostics and biofeedback, and even promote
preventive medicine [2]. However, frequent charging requirements and privacy concerns prevent
wearable healthcare devices from being a ubiquitous technology [3]. A recent survey demonstrates
that nearly one-fourth of wearable device owners stop using the device, because charging is too
frequent and inconvenient [4]. A considerable number of users also do not want their personal
data uploaded to a remote device due to privacy concerns [3]. Therefore, there is a strong need
for energy-neutral devices that perform local processing of the data. Energy-neutrality ensures
that the energy consumption in a given period, such as a day, is equal to the energy harvested
during the period. Consequently, achieving energy-neutrality in wearable devices will eliminate their
charging requirements.
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Health and activity monitoring applications consist of multiple processing pipelines that may
not be active simultaneously. The front-end of the pipeline samples, filters, and stores data from
multiple sensors, such as accelerometer and ECG electrodes, as illustrated in Figure 1. Because the
speed of human body dynamics ranges from a few hundreds of milliseconds to seconds, a sequence
of samples (i.e., a data frame) is needed to extract useful information from sensors. For example,
1–2 s of data is needed to perform human activity monitoring [5]. Therefore, sensors, analog front
end, and preprocessing modules run continuously in order to construct data frames when the user
is active. In contrast, processing modules do not need to operate until their inputs are available.
For example, the feature extraction modules in Figure 1 can wait in a low-power sleep state until
the data is segmented. Likewise, the classification module can wake up after feature extraction is
complete. Because this pipeline behavior is broadly applicable to other health and activity monitoring
applications, it can be utilized to minimize energy consumption. To this end, we leverage this
domain-specific knowledge to optimally partition the modules into multiple voltage-frequency
(VF) domains.

Figure 1. A sample activity monitoring application with three VF domains. Modules A1 and A2
continuously sample and process data, while the other modules become active only when a data frame
is ready.

This paper presents a system-level optimization framework to help achieve energy-neutrality in
wearable devices for health and activity monitoring applications. One of the primary challenges for
achieving energy-neutral devices is that the power consumption of health monitoring applications
is higher than the harvesting potential of ambient sources. We can solve this by increasing the
harvested energy while decreasing the energy consumption of the application. Because the energy
harvesting potential is limited, we must reduce the energy consumption of the target application
through low-power design practices, such as clock and power gating. To this end, we focus on
minimizing the energy consumption of health monitoring applications by optimizing the VF domain
partitioning. We achieve this using two complementary techniques. The first technique finds the
energy-optimal voltage-frequency assignments to each domain in a given arbitrary VF domain partition
for a target application. The second technique is a VF domain partitioning algorithm that explores the
design space by evaluating different partitioning configurations using the first technique. Comparisons
to exhaustive search reveal that the energy consumption results with the partitions obtained by the
proposed framework are within 3% of the minimum achievable energy.

The proposed framework is evaluated experimentally using human activity monitoring and ECG
applications. We designed and implemented the activity monitoring application in TSMC 65 nm
LP process in prior studies [6,7]. For the current work, we first synthesize the baseline design to
characterize the switching capacitance, leakage current, and the number of active cycles of each
module and use these inputs along with the application pipeline to determine the optimal VF domain
configuration. Finally, we implement the optimal configuration to validate the proposed framework.
Our detailed evaluation using Synopsys PrimeTime and user activity data shows that we achieve 1.5 µJ
energy consumption per activity, which is 45% lower than a baseline with two VF domains. Moreover,
the proposed technique achieves 12% lower energy consumption than a state of the art method [8].
Similarly, we achieve approximately 35% energy savings on an ECG application when compared to the



Sensors 2020, 20, 5255 3 of 14

literature [1]. Hence, we argue that these applications can be sustained by either a 1 cm2 indoor solar
harvester that generates 100 µJ every second at 0.1 mW/cm2 [9], a small (0.1 cm3) electromagnetic
human motion harvester that generates 70 µJ at 0.7 mW/cm3 [10], or a flexible piezoelectric based
energy harvester that generates 7.8 µJ per step during walking [11] to achieve energy-neutrality.

The major contributions of this work are:

• A technique that finds the energy-optimal voltage and frequency levels for a given design and VF
domain partition;

• An exact algorithm and an efficient heuristic to find the optimum VF domain configuration; and,
• Experimental evaluation on three applications: two activity monitoring applications implemented

using TSMC 65 nm LP technology and a low-power ECG application from the literature.

In the rest, Section 2 reviews the previous work and highlights our contributions. Section 3
introduces the application and hardware models. Section 4 presents the optimal VF domain assignment
techniques. Section 5 presents the experimental validation and Section 6 concludes the paper.

2. Related Work

Low-power design techniques have been extensively studied due to their applications
in energy-constrained devices. They can be broadly classified as circuit- or system-level
optimizations [12,13]. Circuit-level approaches analyze the logic in each module and insert
power/clock gating blocks to achieve power savings. For example, the impact of voltage distribution
and DC-DC converter placement on power consumption is analyzed in [12]. Blutman et al. [13] explore
subblock-level partitioning for stacked power domain designs. Similarly, the approach in [14] analyzes
the high-level description of a design and generates granular power domains. While circuit-level
power optimizations are crucial, in many cases the designers do not have control over the details
of individual sub-blocks. Therefore, recent research has also explored system-level techniques for
low-power optimizations.

These techniques consider optimization for each computation module and assign the VF for these
modules. For instance, Wang et al. [15] use an evolutionary algorithm to obtain a VF partitioning of
modules in a voice-over LTE application. The work in [8] proposes an iterative algorithm to perform
VF partitioning for network-on-chip (NoC) architectures. The approach starts with an individual VF
domain for each NoC tile and progressively merges neighboring domains to find the partitioning with
minimum energy. However, this approach does not exploit inherent pipelining in wearable applications
since its focus is high-end systems. Furthermore, it considers merging only neighboring tiles, while our
approach considers all possible options when merging domains. Finally, unlike previous approaches,
we exploit application-specific information to obtain additional savings, as discussed in Section 5.3.

Application-specific power gating has been successfully used in [16,17]; however, these
approaches rely on manual optimization that is not practical for large designs. In contrast, our proposed
framework utilizes the inherent characteristics of the target application to generate the optimal VF
domain partitioning and VF assignments. Specifically, we utilize application-specific knowledge,
such as dependencies of tasks and the number of active clock cycles per module, in order to minimize
the energy per activity in health monitoring applications. Using the proposed efficient algorithm,
we find the configuration that provides minimum energy per activity.

3. Overview and Problem Formulation

3.1. Application Model

We consider health and activity monitoring applications that are similar to the example shown in
Figure 1. These applications collect and analyze physiological data in realtime. They first construct
a data frame by sampling the sensors for a duration of time, called an activity window (ta). For instance,
at least 1–2 s of gyroscope and accelerometer readings are needed to perform accurate human activity
monitoring [5]. Once a sufficient number of data samples are collected and preprocessed (e.g., filtered
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as in Figure 1), a new data frame of length ta becomes ready for processing. This frame is then
processed by the modules that perform the final analysis, such as feature extraction and classification.
Because of this characteristic of activity monitoring applications, the modules that process a complete
frame need to be active only when a new frame is ready. Using this insight, the hardware modules are
divided into two broad categories: always-on and sporadic.

Always-On Modules: the modules that operate on every new data sample are referred to as
always-on, as they stay active throughout the activity window ta. This category includes the modules
that interface the analog front-end and digital processing, such as filters and buffers (Domain 1 in
Figure 1).

Sporadic Modules: the modules that run on a completed data frame are referred to as sporadic,
since they become active only after their inputs are available and return to an idle state after producing
an output. All of the modules that are part of the processing pipeline fall into this category.

3.2. Problem Formulation

Our goal is to minimize the energy consumption of health and activity monitoring applications,
such that energy harvesting solutions can more easily sustain them. We denote the set of always-on
modules as A and the set of sporadic modules as S . Let the dynamic capacitance, switching activity,
and leakage current of module m ∈ {A,S} be Cm, αm, and Im, respectively. Using the notation that is
summarized in Table 1, we express the total energy consumption of always-on modules per activity
window as a sum of its dynamic and leakage power consumption:

EA = ∑
m∈A

αmCmV2(m) f (m)ta + ImV(m)ta (1)

where functions V : {A,S} → R+ and f : {A,S} → R+ give the voltage and frequency of module
m ∈ {A,S}.

Unlike always-on modules, the active time of a sporadic module m ∈ S is given by the ratio of its
active cycles (nm) and frequency: nm/ f (m). The total energy consumption of sporadic modules per
activity window is:

ES = ∑
m∈S

αmCmV2(m)nm + ImV(m)
nm

f (m)
(2)

Table 1. List of major parameters (m ∈ {A,S}).

Symbol Description Symbol Description

A,S Set of always-on and sporadic modules, respectively EA Total energy of always-on modules

ES Total energy of sporadic modules αm Switching factor of module m

Cm Capacitance of module m M Total no. of modules

Im Leakage current of module m ta Activity window duration

nm Active cycles of module m D Set of all domains

V(m) Voltage of module m f (m) Frequency of module m

texe Exe. time of a module at a given frequency f (m) tmax Maximum allowed exe. time of a module m

fmin(m) Minimum frequency of module m fopt(m) Optimum frequency for module m

The following problem formulation helps us find the number of VF domains, modules in each
domain (as in Figure 1), and VF assignments that minimize the total energy consumption:

Given: A design with αm, Cm, nm, and Im ∀m ∈ {A,S},
Find:
(1) The number (N) and set of voltage-frequency domains D = {D1, D2, . . . , DN};
(2) The mapping h :{A,S}→D of the modules to domains;
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(3) The voltage V(m) and frequency f (m) of each module m ∈ {A,S}.
Such that:
min Etotal = EA + ES + Eoverhead

f (m) = f (n) if h(m) = h(n) ∀m, n ∈ {A,S} (3)

where Eoverhead is the energy consumption overhead of introducing new voltage-frequency domains.
The constraint in Equation (3) ensures that all of the modules in the same domain have the same voltage
and frequency. For example, the inputs to the problem for the activity monitoring application in Figure 1
are the switching capacitance, leakage current, and activity factors after synthesizing the application
in hardware. Besides this, the timing information of the sporadic modules (e.g., nm ∀m ∈ {A,S}) is
also provided to the problem. The timing information is obtained by simulating the hardware with
real-world sensor data, as illustrated in Figure 2 for our activity monitoring application.

Figure 2. Timing information and activity window example.

4. Optimal VF Domain Design

The proposed framework consists of two steps. First, we develop a technique that finds the
energy-optimal voltage and frequency for a given VF domain partition (Section 4.1). Subsequently,
we present an algorithm that uses this technique to find the VF domains D and the modules in them
(Section 4.2). The proposed framework can also be used to optimize the energy-delay-product (EDP)
if the designer prefers to emphasize performance. This can be achieved by expressing the EDP of
always-on modules as EDPA = EAta and that of sporadic modules as:

EDPS = ∑
m∈S

αmCmV2(m)
n2

m
f (m)

+ ImV(m)
n2

m
f 2(m)

(4)

4.1. Optimal Voltage and Frequency in a Domain

This section describes the methodology to compute the energy-optimum voltage and frequency
for a design with given VF domains. For instance, three domains and the modules in them are given
as inputs, as illustrated in Figures 1 and 2. Our goal is to find the VF assignments that minimize Etotal .

Optimum Voltage-Frequency for Always-On Modules: The energy consumption of always-on
modules is given in Equation (1). The partial derivative of EA with respect to the frequency of a given
module m ∈ A can be found as:

∂EA
∂ f (m)

= αmCmV2(m)ta + 2αmCmV(m)
dV(m)

d f (m)
f (m)ta + Im

dV(m)

d f (m)
ta ∀m ∈ A (5)

The derivative of V(m) with respect to f (m) is greater than or equal to zero (dV(m)/d f (m) ≥ 0),
since the minimum required supply voltage is a non-decreasing function of frequency [18].

Hence, the partial derivative of the always-on energy with respect to the operating frequency
is positive. Consequently, always-on modules should operate at the minimum allowed operating
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frequency, which is limited by the fastest sensor sampling rate denoted by Fs for the technology node.
The processing time of module m ∈ Di must be less than or equal to 1/Fs in order to not miss any data
point. If the processing takes nm cycles, the minimum frequency of module m ∈ Di can be found as:

nm

fmin(m)
=

1
Fs

=⇒ fmin(m) = nmFs (6)

The domain frequency must be greater than the minimum frequencies of the modules it contains.
Hence, the optimum frequency for a given domain Di can be found as:

fopt = max
m∈Di

fmin(m) (7)

Optimum Voltage-Frequency for Sporadic Modules: Energy consumption of sporadic modules
is given in Equation (2). Unlike the always-on modules, the partial derivative of ES with respect to
frequency is not always positive. Furthermore, the processing deadline is a nontrivial function of the
application pipeline and task dependencies. Hence, a closed-form solution for the sporadic modules is
not guaranteed, unlike the always-on modules. Instead, the optimal frequency is found by solving the
following nonlinear constrained optimization problem:

minimize
V(m), f (m)

ES = ∑
m∈S

αmCmV2(m)nm + ImV(m)
nm

f (m)

subject to texe( f (m), nm,D) ≤ tmax, m ∈ S
(8)

where texe( f (m), nm,D) gives the completion time of the whole pipeline as a function of the frequency
assignments, active cycles of each module m ∈ Di, and domain configuration.

The maximum time constraint tmax is determined by the target application. For example, tmax

is in the order of seconds for human activity monitoring, while it is in the order of milliseconds for
heartbeat monitoring. This information is available in the input design, as illustrated in Figure 2
and elaborated upon in Section 5.1.2. We solve this optimization problem in the domain partitioning
algorithm using a standard solver, such as the fmincon function in MATLAB.

4.2. Optimum VF Domain Partitioning

The energy consumption of the design is a function of the partitioning of modules into domains.
The greatest degree of freedom, hence the lowest application energy (EA + ES) is achieved if each
module has its domain. However, this choice also incurs the highest energy consumption overhead
due to larger number of VF domains. More specifically, each additional VF domain introduces energy
overhead due to IR drop, regulator, level shifter, sleep transistors, and clock domain crossing. Because
the VF domain overhead Eoverhead increases with the number of domains, the optimal solution can be at
an intermediate point between a single VF domain and putting each module into a dedicated domain.

Design Space Complexity: Suppose that the total number of always-on and sporadic modules
is M = |A|+ |S|. The number of ways to partition M modules into K non-empty sets is given
by the Stirling number of the second kind, s(M, K). The sum of all possible partitions of a set,
which is ∑M

K=0 s(M, K), is the Bell number Bell(M), which grows exponentially [19]. To cope with
the complexity, we first consider the always-on and sporadic modules separately; this reduces the
design space significantly without ruling out any promising solution since placing sporadic modules
into the same domain with always-on modules would undermine their power-gating potential.
Subsequently, we present an efficient iterative algorithm, illustrate it using a small problem size
in Figure 3 for M = 4, and compare its results against an exhaustive search for a larger problem size in
Figure 4 for M = 9.



Sensors 2020, 20, 5255 7 of 14

6 partitions with 
3 domains

7 partitions with 
2 domains

1 partition with 
1 domain

1 partition with 
4 domains

Exhaustive 
Search

Iterative 
Algorithm

Visits all C(M,2)
partitions

Visits only 
C(M-1,2) partitions

Total: 15 Total: 11

a b c d

a b c d a b c d a b c da c b d a d b c a b d c

a b c d a d b ca b c da b d c a c d b a c b d a b c d

a b c d

Figure 3. Illustration of the VF partitioning algorithm.

Proposed VF Partitioning Algorithm: We start by placing each module into a dedicated VF
domain, since it can achieve the minimum application energy without considering the VF domain
overhead (top row in Figure 3). Subsequently, the proposed algorithm builds its way down to a single
domain by iteratively merging VF domains. While moving from M to M− 1 domains, it explores all
possible combinations, i.e., (M

2 ) similar to the exhaustive search, as shown in Figure 3 (six partitions
with three domains). It applies the optimization technique presented in Section 4.1 for each of
these partitions to find the optimum voltage-frequency values and the minimum possible energy
consumption. Subsequently, the proposed iterative algorithm selects the partition that gives the
minimum total energy consumption. After this point, the algorithm explores only the partitions that
can be obtained starting with the current solution. In Figure 3, for example, it decides that the best
three-domain solution is the one that merges modules a and d, i.e., |a, d|b|c|. Hence, it further explores
only |a, b, d|c|, |a, c, d|b|, and |a, d|b, c|, which can be obtained by merging only one additional domain.
In general, the proposed algorithm explores (M−1

2 ) combinations, in contrast to the exhaustive search,
which would consider all partitions with M− 2 domains (i.e., third row in Figure 3). The algorithm
continues merging domains until reaching the single domain solution. Finally, it chooses the
configuration with the minimum total energy consumption when considering the VF domain overhead.
We stress that the algorithm also includes Eoverhead when performing the partitioning of the domains
using the approach described in Section 5.3.1.

Complexity of the proposed VF Partitioning Algorithm: When there are a total of M modules,
the algorithm explores 1 + (M

2 ) + (M−1
2 ) + ... + (2

2) partitions. Hence, its complexity is O(M3).
Because we apply the algorithm to always-on and sporadic modules separately, the overall
computational complexity is O(|A|3) + O(|S|3), which is significantly lower than the Bell number
Bell(|A|+ |S|).

Comparison to Exhaustive Search: We also implement an exact algorithm, which is practical
only for small problem sizes, in order to demonstrate the effectiveness of the proposed algorithm.
Figure 4 depicts the minimum energy consumption found by the exhaustive search and our algorithm
for a synthetic example with nine modules before adding the VF overhead. Each circle marker stands
for a different partitioning evaluated by exhaustive search. The proposed algorithm closely follows
the minimum energy solution and successfully finds 82% of the optimum solutions by exploring less
than 1% of the partitions. As a result, the execution time of our algorithm is about 34 times lower than
the exhaustive search. Furthermore, the energy consumption of the other partitions is within 3% of
the minimum energy that is achieved by the exhaustive search. The growth in design space for the
exhaustive algorithm and the proposed iterative framework is depicted in Figure 5. As can be seen,
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the design space for exhaustive search grows much more rapidly when compared to the design space
of the proposed algorithm.

Figure 4. Exhaustive search iterations and the minimum curve captured by the proposed algorithm.
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Figure 5. Design space of Exhaustive Search and the Proposed Framework with respect to # of modules.

5. Experimental Results

5.1. Experimental Setup

We evaluate the proposed framework on three application benchmarks. This section introduces
these benchmarks, gives a detailed explanation of the experimental methodology to apply the
framework to each of these applications, and illustrates the energy savings obtained by the
proposed framework.

5.1.1. Driver Applications

We evaluate the proposed framework on two activity monitoring applications [7], and an ECG
application [1]. The activity monitoring applications are developed in-house by implementing them in
the Verilog hardware description language. The designs are validated by performing both behavioral
and gate-level simulations. For the ECG application, we use the parameters that were reported by
the authors.

5.1.2. Experimental Methodology

Experimental flow with design files: When the design files are available, we start by synthesizing
the target design using Synopsys Design Compiler and TSMC 65 nm LP standard cell library,
as depicted in Figure 6. Subsequently, Synopsys PrimeTime is used to extract the design parameters,
such as leakage current, activity factor, capacitance, and the number of active cycles of each module.
We report the parameters of the activity monitoring applications in the upcoming Tables 2 and 3 in
order to enable reproducibility of the results. The TSMC library that we use has standard cells defined
for 1 V and 1.2 V. We characterized the minimum required supply voltage as a linear function of the
frequency as V( f ) = 2× 10−8 f + 0.9 for 0 < f ≤ 30 MHz. The proposed framework uses these
inputs and relation to generate the optimum VF domain partition, voltage-frequency pair of each
domain, and the estimated total energy consumption. Subsequently, we implement the optimum VF
domain partition and find its energy consumption. Finally, we validate our results by comparing
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the actual energy consumption against the estimate that was reported by the proposed framework.
This experimental methodology is used for the two activity monitoring applications.

Figure 6. The steps to apply the framework to a design whose design files are available.

Table 2. Always-on module parameters of the activity monitoring applications.

A1 A2 A3 A4 A5

I (nA) 80 100 1000 10 50
αC (pF) 3.41 11.20 89.30 1.02 3.55

f min (kHz) 3 1 1 3 10

Table 3. Sporadic module parameters of the (a) single-level (b) hierarchical activity monitoring designs.

(a)

S1 S2 S3 S4

I (nA) 71 1000 1000 700
αC (pF) 5 100 43 35
Cycles 109 163 25 252

(b)

S1 S2 S3 S4 S5 S6 S7 S8

I (nA) 722 755 417 182 36 2670 123 866
αC (pF) 58 29 41 7 5 193 9 81
Cycles 252 25 4 5 252 21 109 145

Experimental flow without design files: When design files for an application are not available,
we use system-level characterizations to estimate the activity factors and processing times of the
modules. The proposed optimization framework uses these parameters to determine the optimum VF
partitioning of the application. Finally, we compare it against the baseline measurements and previous
approaches for VF partitioning. We use this methodology for the ECG application.

5.2. Activity Monitoring Application

We start with a detailed analysis of the in-house activity monitoring applications, since we can
obtain fine-grained information about them. The two activity monitoring applications share the
same always-on modules for sampling and filtering but have disparate sporadic modules that are
responsible for the classification of activities. In the following, we provide brief descriptions and
information regarding these designs. Much more detailed explanations about these are available in
our previously published work [7]. For both designs, we use an activity window of one second, which
is representative of human activities [5].

5.2.1. Single-Level Activity Monitoring Design

There are five always-on modules (A1–A5) and four sporadic modules (S1–S4) in this design.
The sporadic modules first compute fast Fourier transform, wavelet transform, and statistical features.
Afterwards, they use a neural network with a single hidden layer to classify the activity. The key
design parameters for always-on and sporadic modules are summarized in Table 2 and Table 3a,
respectively. We also implemented a baseline design with one always-on domain and one sporadic
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domain. This baseline design is manually optimized to meet the sampling and activity window
deadlines. The energy consumption of the always-on and sporadic domains over a one second activity
window is found as 2.6 µJ and 94.5 nJ, respectively, at 10 kHz operating frequency.

5.2.2. Hierarchical Activity Monitoring Design

The proposed framework is also applied to a larger design with eight sporadic modules. Unlike
the earlier single-level design, this hierarchical design invokes a different classifier that is based
on the complexity of the input activity; it first categorizes the input activity as simple or complex.
Subsequently, it employs a decision tree for simple activities and a neural network for complex
activities. This architecture allows for more power gating opportunities. The parameters of this design
are summarized in Table 3b. Similar to the first design, we implemented a baseline with one always-on
domain and one sporadic domain, both running at 10 kHz. The energy consumption of always-on and
sporadic domains over one activity window is found as 2.6 µJ and 91.7 nJ, respectively.

5.3. Optimization Results

5.3.1. Energy Overhead of VF Domains

New voltage domains introduce level shifters, sleep transistors, isolation cells, retention cells,
and changes in voltage regulators, which lead to area, delay, and energy consumption overhead.
Precise number and placement of these components, hence the amount of overhead, is a function of
the target design. For our designs, the area overhead is less than 10%, while the delay overhead is
negligible. We account for two types of energy consumption overheads, which is more critical for
our target applications. First, we consider the energy overhead that is proportional to the number
of VF domains [20]. This covers the energy consumption of additional level shifters, isolation and
retention cells. The energy consumption overhead of a single level shifter is in the order of fJ [21].
Using the worst-case values, the overhead of additional logic per new domain is estimated as 0.2% in
our designs. Second, we consider the total energy consumed by the power gating logic as 5% following
the guidelines in [22]. The energy consumption overhead due to voltage regulators is estimated to be
less than 1% [23]. Using these values, we estimate the energy consumption overhead of each additional
always-on domain as 2.6 µJ × 6% = 0.15 µJ. Similarly, each new sporadic domain incurs 5.67 nJ and
5.50 nJ energy for the single-level and hierarchical designs, respectively.

5.3.2. Single-Level Activity Monitoring Design

The minimum energy configuration for the single-level design has three always-on VF domains
with the following partition: |A2,A3|A1,A4|A5|. The proposed framework finds the energy-optimal
frequencies of these domains as |1|3|10| kHz. The analysis presented in Section 4.1 suggests grouping
the always-on modules with the same minimum frequency would yield the minimum energy.
These results show that this is indeed the case. As a result, the energy consumption of the always-on
modules (EA) reduces by 45% from 2.60 µJ to 1.45 µJ.

Figure 7a illustrates the energy savings achieved by the proposed framework in the sporadic
domain. With one sporadic domain, the framework finds the energy optimal frequency as 4.35 MHz,
and reduces the energy consumption of the sporadic modules by 16%, from 94.5 nJ to 80 nJ.
The minimum energy is achieved when there are three sporadic domains. The optimum partitioning
of modules into three domains is found as: |S2|S1,S4|S3| with frequencies |3.96|4.48|4.90| MHz.
This configuration reduces the energy consumption of sporadic domains (ES) by 58%, from 94.5 nJ to
40.0 nJ. Furthermore, we achieve 12% savings when compared to the VF partitioning approach in [8].
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Figure 7. ES vs. # of sporadic domains for designs in (a) Section 5.2.1 (b) Section 5.2.2.

5.3.3. Hierarchical Activity Monitoring Design

The results for always-on modules are the same as the previous design, since the modules
are common. The minimum energy consumption of the sporadic domains is plotted as a function
of number of VF domains in Figure 7b. With one sporadic domain, the energy consumption of
the sporadic modules is found as 150 nJ @ 4.11 MHz, which is higher than the 91.7 nJ @ 10 kHz
figure reported in Section 5.2.2. This is because 91.7 nJ is the post placement & route value from
a testbench that covers both simple and complex type of activities, whereas the 150 nJ reported by
our algorithm in Figure 7b only considers complex activities, i.e., only neural network as the classifier.
Therefore, the results presented in Figure 7b are pessimistic yet correct. Furthermore, this figure shows
that the optimum number of sporadic domains is three. The framework yields the optimum VF
domain partitioning and frequencies as: |S1,S5,S7|S3,S4,S6|S2,S8| and 4.01|4.10|4.18 MHz. The energy
consumption of sporadic domains with this configuration becomes 49.6 nJ. As a result, the proposed
framework achieves approximately 45% and 48% energy savings when compared to the baseline for
always-on and sporadic domains, respectively. Similarly, we achieve 16% savings when compared to
the state-of-the-art approach in [8].

5.3.4. ECG Application Validation

The baseline energy consumption values for the ECG application are extracted from [1].
According to these, always-on energy consumption is 17.3 µJ, while sporadic energy consumption
is 2.6 µJ. Similar to activity monitoring applications, we estimate the energy overhead per domain
from these values as 1.07 µJ and 0.16 µJ, respectively. The proposed framework reduces the energy
consumption of the design to 11.3 µJ and 1.72 µJ, resulting in 35% and 33% savings for always-on and
sporadic energy consumption, respectively. These values are optimal when compared to the exhaustive
solution. Additionally, our proposed solution and the solution in [8] achieve the same savings.

5.4. Validation of the Framework

We implemented the optimal VF domain partitions reported by the proposed framework in order
to validate the energy consumption results. Subsequently, we used Synopsys PrimeTime to obtain the
energy consumption of these designs.

Single-Level Activity Monitoring Design: After implementing the optimal configuration,
the energy consumption of always-on and sporadic domains is found as 1.47 µJ and 36.0 nJ, respectively.
By contrast, the proposed framework estimated these values as 1.45 µJ and 40.0 nJ, respectively.
This shows that the estimated always-on energy by the framework is within 2%, and the estimated
sporadic energy is within 10% of their corresponding actual post-synthesis values. Hence, we indeed
achieve close to 45% and 58% reduction in always-on and sporadic energy, respectively, as reported by
the proposed framework.

Hierarchical Activity Monitoring Design: Always-on energy for this design is the same as the
first design (1.47 µJ), as expected, while the sporadic energy consumption is 49.0 nJ. The framework
outputs (1.45 µJ and 49.60 nJ) again agree with these results. The estimated sporadic energy is within
2% of the actual post-synthesis value. Therefore, for the given design, we obtain close to 45% and 48%
reduction in always-on and sporadic energy, respectively.
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5.5. Discussion of the Results

We showed that the minimum energy consumption that was reported by the proposed framework
matches closely with the energy consumption of the actual design. Our framework is able to predict
the energy consumption of different VF domain partitions accurately. Consequently, it accelerates
design space exploration immensely by reducing the number of implementations and re-synthesis
of the design. The execution times of the three algorithms are shown in Table 4. In addition to these,
exhaustive search and our iterative algorithm take 46.8 s and 1.3 s respectively, for the arbitrary design
with M = 9 modules used in Figure 4. When considering these results and the exponential growth of
the design space with number of modules, an exhaustive search for a design with M = 15 modules
takes in the order of days to execute. Our proposed framework reduces this execution time to hours.
Furthermore, the optimum VF domain partitions found by the proposed framework resulted in a total
energy consumption of 1.5 µJ. This energy budget is within the energy harvested by a 1 cm2 solar
cell over one second when operating indoors, which suggests that energy-neutrality can be achieved.
Finally, we provided numerical values for the parameters of two activity monitoring application
implementations. These can be used by other researchers to develop and evaluate other low power
optimization techniques.

Table 4. Execution time of the three algorithms on three benchmark designs. The numbers in
parentheses show the number of modules in that design.

ECG
(2)

Single-Level Design
(4)

Hierarchical Design
(8)

Exhaustive Search 15 ms 54 ms 7.70 s
[8] 0.20 ms 10 ms 0.05 s
This Work 0.01 ms 8 ms 0.20 s

5.5.1. Wider Applicability of the Proposed Framework

Separation of Modules: We argue that every module in a given design can be considered as either
an always-on or a sporadic module, and can therefore be included in the framework. For example,
the modules that control a colored display may fall under sporadic domain, whereas the display itself
may be considered an always-on module. Similarly, depending on the application, we believe it is
possible to identify any sensor as always-on or sporadic. For example, a camera may be always-on for
a video based application, but can be sporadically accessed for an image based application. We consider
sampling modules as always-on modules in this study.

The energy consumption of the benchmark applications in the manuscript are dominated by
always-on modules. However, this is not always the case for all applications. Some applications may
contain high-power modules in the sporadic domain, such as more complicated classifiers, like CNNs,
or communication modules. In such cases, the optimization of sporadic modules is not negligible.
The proposed framework will in fact yield higher energy savings when always-on and sporadic
domain consumptions are comparable.

Different Designs: For each different design, the proposed algorithm needs to rerun. For example,
the two activity monitoring examples in the manuscript share the same always-on modules,
but different sporadic modules. Therefore, for the always-on domain partitioning, the optimal solution
is shared between the two. However, for sporadic domain partitioning, the proposed algorithm needs
to be run for each design separately.

User Profile: We did not consider the effect of user activity profile in the current manuscript.
However, in a system with always-on and sporadic modules, the energy consumption of
always-on modules will be independent of whether there is user access or not. On the other
hand, sporadic modules turn on only when the user is active. Therefore, if the user is not active,
the energy consumption approaches the consumption of the always-on modules, which are needed
for monitoring.
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6. Conclusions

Wearable devices have great potential to reshape healthcare and doctor-patient interaction.
The ubiquity of wearable devices is hindered by their higher power consumption than the capacity
of energy harvesting solutions. In regards to this, this paper presented a system-level framework in
order to leverage application-specific knowledge into low-power design techniques to explore the
voltage-frequency domain design space. This exploration is enabled by a novel efficient iterative
algorithm. We applied the proposed framework to three designs, and provided experimental results to
show the energy savings enabled by the proposed methodology. We obtain a 33–58% improvement in
energy savings over a manually optimized baseline design.
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