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Abstract: IoT systems differ from traditional Internet systems in that they are different in scale,
footprint, power requirements, cost and security concerns that are often overlooked. IoT systems
inherently present different fail-safe capabilities than traditional computing environments while their
threat landscapes constantly evolve. Further, IoT devices have limited collective security measures
in place. Therefore, there is a need for different approaches in threat assessments to incorporate
the interdependencies between different IoT devices. In this paper, we run through the design
cycle to provide a security-focused approach to the design of IoT systems using a use case, namely,
an intelligent solar-panel project called Daedalus. We utilise STRIDE/DREAD approaches to identify
vulnerabilities using a thin secure element that is an embedded, tamper proof microprocessor chip
that allows the storage and processing of sensitive data. It benefits from low power demand and small
footprint as a crypto processor as well as is compatible with IoT requirements. Subsequently, a key
agreement based on an asymmetric cryptographic scheme, namely B-SPEKE was used to validate and
authenticate the source. We find that end-to-end and independent stand-alone procedures used for
validation and encryption of the source data originating from the solar panel are cost-effective in that
the validation is carried out once and not several times in the chain as is often the case. The threat
model proved useful not so much as a panacea for all threats but provided the framework for the
consideration of known threats, and therefore appropriate mitigation plans to be deployed.
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1. Introduction

Recent developments in sensor networks and the need for smart meters, automated home devices
and smart cities have led to the rise in the development of IoT technology-enabling devices to be
connected and communicating with each other [1]. Communication between the IoT devices and
smart hub is usually wireless and is connected to a network and the Internet via a traditional wireless
router. Given the heterogeneous architecture of IoT devices, an adversary might capture the traffic
among the different components of an IoT based smart home infrastructure, which relates to passive
or active eavesdropping. As another example, an IoT device having insufficient authentication to
ascertain identity as in the case of smartphones allows a threat actor to spoof themselves as the owners
(impersonation). Lack of authentication allows the takeover of devices for malpractices. Refrigerators,
for example, have been shown to send spam emails [2]. It is also easy to launch a Denial of Service
(DoS) and Distributed Denial of Service (DDoS) by flooding the hub or router with numerous requests
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to it by simply knowing and using its IP address. Additionally, these IoT devices come with lightweight
software that needs over the air updates, which makes it more vulnerable to malware which can be
intercepted more readily than over the wire due to the pervasiveness of the media. These threats have
an impact on confidentiality, privacy, data integrity, availability, and access.

Several existing technologies re-deployed in new purpose IoT networks such as Bluetooth,
ZigBee, and Wi-Fi are known to increase security vulnerabilities. This is due to the fact that these
technologies were not designed for IoT cyberinfrastructures or cyber-physical systems in Industrial
IoT deployments [1]. IoT applications and devices make security testing and patching complicated
and often expensive due to the increased interdependencies between these devices and applications.
They have never incorporated security-by-design principles during their development lifecycles,
and security controls are often seen as a top-up. Also, the existing legal and regulatory compliance
space for IoT is somewhat fragmented and scattered in terms of the unified approaches for the design,
development and testing of these devices and the resilience of their software and firmware. There are
significant gaps and overlaps in the existing regulations and standards with regards to appropriate
security descriptors to be used when characterising threat landscapes in these environments [3].

Software-based security systems have proven to be vulnerable to attacks even for high-end
security applications. Trusted and tamper-proof security platforms cannot be implemented adequately
using software-based solutions alone as they have too many entry points that potentially increase the
attack surface. If we resolve the problem using specialised operating systems, the application solution
is inflexible because the restrictions do not allow the exploitation of the full functionalities of a generic
operating system. The issues described above indicate a need to review the way security is holistically
implemented for an IoT system [4–8].

The rest of the Section considers a literature review of IoT security focussing on middleware
solutions that leads on to the general design strategy adopted in this work for modelling system
security using a thin secure element.

1.1. Literaure Review and Proposed System Security Model Using Thin Secure Element

Recently, more hardware-assisted techniques have shown potentials to provide a system-wide
security protection for IoT devices. The current literature review has emphasised the need to develop
and design appropriate security mechanisms with high efficiency and low overhead for lightweight
IoT applications deploying hardware architectures [2,9]. Traditionally, such devices use cryptographic
methods for handling security aspects of authenticity, message integrity, privacy, and non-repudiation.
However, these will only work if these security measures themselves are secure [10]. By using hardware
techniques to implement these security measures, any exposure can be encapsulated at vulnerable entry
points. The capability of these hardware-based security techniques to offer scalable and resourceful
operations under heavy load on microcontrollers, smart cards, and mobile devices is also an area of
scientific enquiry [11,12].

A recent survey (2017) survey of various challenges in IoT security [13] provides a standardised
taxonomy that helps perform an in depth security analysis including middleware based IoT security.
This they achieve by building an abstract model that is composed of interacting elements of the IoT
system including humans. The interactions depict the security concerns. All IoT systems can be
decomposed to an instance of the model. As a result, it can be used to identify a roadmap for research
challenges into IoT security. This roadmap suggests “ . . . much research work is being devoted to
developing efficient, robust and low-consumption cryptography for tiny embedded computing and
secure protocols for low-power lossy networks. It is essential to adapt and/or design related and
equally important sub-systems, such as key management, authentication mechanisms, credential
management, and so on . . . ” which is in line with the proposed work in this paper.

Similar to the approach in [13], Xue et al. [14] propose a mathematical modeling framework that
captures IoT characteristics with random hypergraphs that have nodes encoding the IoT entities and
their interactions at different spatial and temporal dimensionalities. Examples of IoT include RF ID
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tags, sensors/actuators, end users up to clusters or data centers. The nodes and their interactions
are defined by multivalued time-dependent attributes for insights into both its deterministic and
stochastic analysis. Such a model is used to identify a list of fundamental research challenges in sensing,
the computing paradigm, robustness, energy efficiency and hardware security.

A system that considers a middleware architecture for IoT environments that primarily targets
constrained devices such as low RF ID tags and wireless sensor networks is described in [15]. It combines
fog computing and cloud paradigm as the middleware to resolve some of the IoT security challenges with
respect to Confidentiality, Integrity and Availability (CIA) [16]. This approach enables an efficient use of
cloud and server resources by reducing the communication burden on the network and data center on the
cloud. The fog layer acts as a gateway to preprocess data at the edge of the network. The middleware sits
between devices and applications to act as a medium for communication among devices with different
interfaces, architectures and operating systems. The work presents an architectural paradigm that is yet to
be tested on a real-world use case. A key difference between this work and our proposed research is that
this very architecture has been implemented for a real-world use case.

Research work by Pascal et al. [17,18] consider privacy preserving IoT middleware using Intel’s
extended CPU instruction set, Software Guard Extensions (SGX). The SGX allows for the creation of a
protected memory region called an enclave where the private keys are stored, and their cryptographic
operations are executed. The keys never leave the enclave and are not exposed to the application’s
working memory. The increased security of the system comes at the price of reduced performance as
indicated by their simulated experiments. The work was designed for desktop and server platforms.
In our case, it is designed for smart card applications with a small footprint. The performance of our
system meets our requirements as indicated in Section 3.3.

In this paper, we propose the use of a secure cryptoprocessor that some vendors offer as a secure
element (SE) [19–22]. A specific SE used is the Multos™ co-processor P19 to enable the implementation
of the most widely used security algorithms and protocols on low power, IoT devices [10]. The Multos
tamper-proof hardware prevents manipulation of circuitry and access to the secure memory by
physical access [10]. The Multos co-processor is a specially designed chip that has very few avenues
of accessibility. The chip contains a specialised environment, and the underlying operating system
keeps security as a major requirement. This includes the Multos co-processor being based on a
custom-built operating system whose architecture is unknown externally which to a certain extent,
makes architectural weaknesses less readily available. More importantly, it is designed as a seamless
secure entity which encapsulates the operating system and all other components of the platform such
as the bootstrap loader. We exploit this capability of the Multos co-processor as a chip to generate
cryptographic keys that are embedded and thereby secure. We design an IoT device to have a strong
association with the chip. This will provide an identity through a public-private key pair unique
to the chip associated with each IoT device to enable future verification, authorisation, and private
communication (channel authentication is handled independently by microcontrollers) between the
IoT device and its clients. Therefore, it does not permit the use of a generic toolkit to break into the
chip unlike the case of the Linux™ or Windows™ operating systems.

A challenge for IoT security has been remote access. A remote device can be generating its
own key-pairs. When the chip enables an IoT device to create and store its own keys in a remote
location, the question arises as to how the device controller will receive the public key securely.
The traditional way is often to use a third-party trusted authority, which guarantees the origin of a key.
However, this does not solve the issue of a spoofing device pretending to be the genuine owner of
the generated public key. Our proposed answer is the use of a password authenticated key exchange
(B-SPEKE) protocol. B-SPEKE is a variant of a Simple Password Exponential Key Exchange Protocol
(SPEKE). The principle behind the B-SPEKE protocol is that the knowledge of the password can be
proved without revealing the password. Jablon [23–25] describes the method as one that provides
“a zero-knowledge password proof (ZKPP) and authenticate-session keys over an unprotected channel,
with minimal dependency on infrastructure and proper user behaviour”. More generally, it is a
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Diffie-Hellman key-exchange [26] where the generator is the hash of a password. Note the distinction
between a password used to verify the public key and the keys generated for the signing algorithms.
The B-SPEKE password is generated at the time of manufacture whilst the keys are generated on
demand for signing the data.

In the general scheme of things, the applicability of our proposed system resides in
Layer 1(the Edge layer) of the Cisco™ reference model [27] where IoT is modelled as a combination of
wireless sensor networks (WSNs) and cloud services (Figure 1). This is the combination of the first
three layers of the reference model: (a) Physical Devices and (b) Controllers, Connectivity and (c) Edge
Computing. We propose the introduction of a middleware that has a component attached to physical
devices that form a security association with controllers and the servers in the Edge Computing layer.

Figure 1. IoT reference architecture.

Several configurations (Figures 2–4) are possible within the Edge side layer depending upon
whether the chip is used by the device or the controller or both respectively. Figure 2 shows a basic
diagram of how the proposed system interfaces with users of the system. The proposed system along
with the platform client forms a “thin secure element” (in terms of footprint and power requirement)
which interacts with other components of the IoT system as per IoT reference architecture in Figure 1.
The platform client can be built along with the security functions as an assembly. Figure 3 shows a
configuration of the edge layer where the proposed system is used in an edge device or sensor forming
the “thing” of the IoT. The platform client (or API Client) is the device function, which uses the security
API (or interface to the security functions) to effect secure communications (such as encryption and data
signing) with the controller. The controller, in this case, has enough processing resources (in terms of
processing power and memory) to use standard libraries typically provided by off-the-shelf platforms.
The Security API provides an option where key generation can be embedded within the proposed
system with the association of public keys securely embedded in either the controller or the data
processing function or both obviating any vulnerabilities of transit security relationships. The data
processing function corresponds to layer three and above of the Cisco IoT reference architecture.
Internet access allows secure cloud communications [10] as well as connection to peer-to-peer networks.
Figure 4 shows a configuration of the edge layer where the proposed system is used in both an edge
device and a controller. In this case, the controller is also one with a small footprint and power
requirements requiring secure communications with a data processing function. The option exists to
provide separate security associations between the data processing function and the controller as well
as the devices, ensuring full traceability between components generating trusted data.
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Figure 2. The proposed system consists of a smart card operating system platform integrated with an
API to provide security functions whose inputs and outputs are accessible by the transmit and receive
lines respectively of a serial port. (a) denotes physical interface between an IoT device and the proposed
system and (b) Configuration 1: alternative solution with a software (instead of a serial port) interface.

Figure 3. Configuration 2: “Thin secure element” as edge device/sensor. The Controller has enough
processing resources to utilise standard security libraries to provide secure communications to the data
processing server. The API Client is an external implementation (a micro-controller using a serial port)
on the same board as the thin secure element.

Figure 4. Configuration 3: “Thin secure element” is used in both edge devices and controller. In
this case, the controller lacks the processing resources to utilise standard security libraries to provide
secure communications.

Having considered a bottom-up view where we proposed a solution for a fundamental building
block for security, we next approach a holistic view where we consider the framework of design
principles for a system focussing on addressing security issues.
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1.2. Design Model for Security

As previously mentioned, one of the issues with IoT security is that it is often an afterthought.
There is a need to include in the design process, procedures where security can be embedded into the
system design cycles. In the literature, there exists a variety of threat models that previous developers
have used for IT systems [28]. One that was proposed by Microsoft™ [26] was chosen to provide a
design process for methodically identifying threats and vulnerabilities as well as providing metrics for
evaluating improvements from implementing controls for the identified threats. A more detailed look
at what we mean by risk, threats and vulnerabilities and their relationship to each other follows.

A cyber threat refers to an incident that has the potential to harm a system. Intentional
threats include spyware, malware, adware companies or malicious actions of disgruntled employees.
Worms and viruses are automated threats causing potential harm to systems. Vulnerability refers
to a known weakness of an asset that can be exploited successfully by a threat. Examples relate
to those involving permissions of people changed or removed at appropriate times, data back-ups,
cloud storage, network security, updated licenses of anti-virus software, etc. When a threat exploits a
vulnerability, there is a potential for loss or damage defined as the Risk [29]:

Risk = ƒ(Threat, Vulnerability) (1)

Equation (1) is a generalisation that Microsoft refines in its threat model. Microsoft classifies threat
events using the mnemonic STRIDE (Spoofing, Tampering, Repudiation, Information disclosure-privacy
breach or data leak, Denial of service, Elevation of privilege). Each threat in STRIDE is associated with
a series of vulnerabilities. Microsoft defined Risk in terms of DREAD [30] as:

Risk = (Damage + Reproducibility + Exploitability + Affected Users + Discoverability)/5, (2)

where each parameter is normalised between [0, 10]. The parameters are defined as follows: Damage:
measure of the damage to the system, Reproducibility: measure of how reliably the vulnerability can
be exploited, Exploitability: difficulty to exploit the vulnerability, Affected Users: number of users
affected, Discoverability: measure of ease to discover threat.

DREAD can be visualised as the vulnerability measure for each associated threat. The generic
procedure for threat modelling [28] used in this paper is adapted from Microsoft’s security development
cycle for software [27] and is listed in Figure 5. The OpenStack Security Group (OSSG) [30,31] has
suggested the use of DREAD metric for measuring vulnerability impact in a cloud context. It is
acknowledged that scoring techniques using STRIDE for classifying vulnerabilities and DREAD for
measuring vulnerability impact are both subjective. Reasoned judgements are to be made while
maintaining consistency between the ratings of multiple issues. In this paper, the design cycle listed in
Figure 5A has been closely followed. For the following implementation cycle, more importance was
given to steps in Figure 5B(d,e) by employing security experts in threat assessment and re-evaluating
the hardware configurations.
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Figure 5. Threat Modelling as part of Security Development Cycle.

1.3. Contributions

We view the entire design of the IoT platform as a holistic measure with a focus on security. On one
hand, we consider the threat modelling of the system, and on the other, the practical improvements
that can be made. We adopt a methodology called DREAD/STRIDE used for uncovering security
flaws in Software Design Life Cycles (SDLC). In terms of practical considerations, we use a thin secure
element and embed the smart circuitry into the device. We apply an on-board asymmetric key-pair
generation so that the principle of freshness can be applied to the keys for signing the data. We also
implement a zero-knowledge-password-proof (ZKPP) procedure called B_SPEKE to provide public
key integrity for users of the public key needed to authenticate the data. Key contributions of this
paper can be summarised as follows:

• Investigation of the state of the art in hardware architectures for developing lightweight IoT
security, the notion of security by design and a holistic approach for such security design.

• We deploy and demonstrate the usefulness of DREAD/STRIDE methodology for uncovering
security flaws in SDLC for a real-world use case.
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• Implementing Daedalus—a real-world energy platform with smart solar panels as a use case.
• Implementing a customized middleware that utilizes a thin secure element for enabling hardware

and software security.
• Designing middleware smart circuitry that is embedded into the IoT device.
• We implement an on-board asymmetric key-pair generation so that the principle of freshness can

be applied to the keys for signing the data.
• The security procedures for key management also have vulnerabilities, and we address this by

implementing a zero-knowledge-password-proof (ZKPP) procedure called B_SPEKE to provide
public key integrity for users of the public key needed to authenticate the data.

• We approach a service architecture by implementing a security API for accessing security functions.
• We implement a secure cloud computing service (REGUS) to hold data from all the IoT devices.

REGUS forms the backbone to the computational process. It establishes a unique security
mechanism through chip identity and timestamps usage, demonstrating anti-tampering and
authentication with REGUS operations.

1.4. Paper Organisation

The remaining paper is organised as follows: In Section 2, we describe a use case called Daedalus,
involving an IoT system that monitors a group of solar panels. In Section 3, we apply a systematic
threat modelling and evaluation to the existing design to highlight security vulnerabilities. Based on
the threat modelling for Daedalus, a recommendation to include a thin secure element is made and
implemented. Section 4 considers enhanced security features, namely the management of crypto keys
extended to mitigate problems caused by the transport and the refreshment of keys. Section 5 provides
the conclusion and future work. We find specific procedures are cost-effective and a model for assessing
threats provides a framework for the discussion of risk and vulnerabilities and their resolutions.

2. Daedalus: Smart Solar Panels—Use Case

In this section, we consider the functional system design of smart solar panels that are linked as
a hierarchy. We consider the process of making a smart solar panel by embedding a Printed Circuit
Board (PCB) on to the solar panel that transmits data between the panel and a server.

Daedalus: Smart Solar Panel System

The focus of Daedalus [32,33] is on renewable energy generated at the point of consumption as
rooftop integrated photovoltaics. The enabler for a solar panel to become smart is the addition of a
custom-made circuit board as a new IoT device. The circuit board is embedded into each panel for
monitoring the power production; this metering data is encoded onboard and then transferred over
Wi-Fi to a management unit of the solar panel array. Sensor data measures power generated that is
processed as metering data and transferred to the management unit. This process is achieved using
ESP8266, which is a low-cost Wi-Fi microchip with full TCP/IP stack and microcontroller capability.

The hardware testbed consists of two distinct modules, the Measurement Module M500 and
Management Module M400, as shown in Figure 6. The M500 is attached to each solar panel and the
M400 acts as a management module for several M500s in the vicinity. Connected as physically close to
each solar panel as possible, the M500 monitors the power production and transfers this metering data.
The module contains wireless capabilities along with circuits and components for power measurement.
For this application, M500s and M400s both form an internet-enabled system, the M500 being a
lightweight edge device and the M400 a more powerful intermediate gateway device. Both modules
are embedded in a weatherproof containment. The basis of M500 is illustrated in Figure 7. The voltage
and current produced by the panel are monitored and measured with the sensors and the data are then
sent to an analog-digital converter (ADC). The converted analog data is sent as digital streams to the
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ESP8266 micro-controller. The ESP8266 formats the data into MQTT protocol units and forwards that
to the Management unit (M400) wirelessly.

Figure 6. Daedalus: Distributed energy resource asset management system.

Figure 7. M500 component level architecture.

3. Phase I: System Design for Security

There are several aspects of system design, including function, maintenance, performance,
and security. In this section, we focus on the security design aspects. Making changes in one aspect
will have an impact on others. This often requires a trade-off between design aspects, which is mostly
influenced by business cost. For example, the system architecture for Daedalus can be made extremely
secure by fully embedding the control panel shown in Figure 8 excluding the Management Module
(M400). However, that would make maintenance almost impossible if we do not have access to the
panel or its components.

We start with system design for Daedalus as described in the previous section. We apply a threat
model as outlined in Section 1.2 to identify vulnerabilities in detail, provide risk factors associated
with each process, and recommend essential security measures. An objective measure for risk is
obtained for the entire system using the individual processes that make up the system. Based on
such recommendations, the system was re-designed to incorporate strong, on-chip, cryptography
that can combat information disclosure, spoofing and tampering as described in Section 1.1 where
a ‘secure element’, the Multos P19 chip, was used for this purpose. The design focussed on low
and straightforward power protocols such as MQTT with end-to-end cryptography sitting on top,
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removing complexity, and reducing the attack surface. This was then subjected to the second iteration
of threat analysis to ensure lowered system risk. We provided a working prototype of the second
iteration and continued with a third iteration (project enhancement) after more funding to improve on
the security. Enhancement is typical of commercial projects that have a long-term shelf-life, and the
decision to improve on function, maintenance, performance, or security is a business decision based
on market demands.

The next subsection describes in detail how we applied the threat model to the Daedalus use-case.

Figure 8. System level architecture showing the communication process.

3.1. Threat Modelling for Daedalus

In this paper, the assets in Daedalus that we want to secure are (a) data from the solar panels as
processed by M500, (b) the transferred data to M400, and (c) data transfer to a central server called
REGUS. We identify these assets using a technique introduced in software engineering for highlighting
data flow through processes using data flow diagrams (DFDs) [34]. Instead of applying DFD for the
maintenance of data from a software engineering perspective, we apply it for the design of security.
To this respect, we split threats at vulnerable points of the data into classes using STRIDE. STRIDE
provides a basis or checklist for classes of potential types of threats to consider at each vulnerable point.
The majority are well known in existing literature [1,35,36](bearing in mind that these tend to grow
fast with time). Others may be visualised as part of the procedure. From this respect, the attacker is
role-played to generate the threat list. The attacker is assumed to have knowledge and full access to the
system and is aware of the vulnerabilities present. Each threat identified is then provided with a risk
value, which is calculated in a procedure referred to as DREAD [30]. DREAD provides a categorisation
of vulnerabilities to assign risk values based on the threat and the aggregation of those risk values to a
single numerical value. In the next subsection, we examine the first step in developing the DFDs.

3.1.1. System Data Composition Based on Communications Diagram (Data Flow Diagrams—DFDs)

We first consider all aspects of Confidentiality, Integrity and Availability (CIA) [16], which are
essential for the communication between M400/M500 and between ESP8266 through the A/D converter.
The threat analysis is based on communication diagrams only and it focuses on four communicating
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processes as trust domains extracted from the Daedalus system decomposition shown in Figure 9.
Each of these domains is characterised by communication interfaces as follows:

• TD1—Communication between A/D converter and ESP8266.
• TD2—Traffic from the Wi-Fi module to the database. The management module, M400 may

maintain this.
• TD4—Communication-related to software update related to ESP8266.
• TD5—Communication between ESP8266 and management module, M400.
• TD3—Communication between the ESP8266 and secure element. This is the result of the threat

model inclusion and its corresponding DFD is as shown in the Trust Domain and Data Flow
Diagram in Section 3.3. This is covered separately in Section 3.2 where the introduction of the thin
secure element is proposed.

Figure 9. Daedalus Trust Domains without the thin secure element.

The data flow decomposition process of Daedalus is modelled using a visual representation of
communication paths (VC) within the system and provided in Figure 9. The data flow decomposition
diagram (or DFD) shown in Figure 10 consists of data flows (DF), processes (P), data stores (DS) and
external entities (EE) as a functional map of the system. The DFD also includes trust domains (TD)
which partition the system processes from a security aspect. This enables us to include processes that
focus on security concerns rather than software functional flows. The DFD is an important element
during the threat identification process that encapsulates the potential threats, if any, to each component
of the system. Simplifications have been made in the diagram for this paper, and it chooses to make
only four logical functions central to the discussion as the communicating processes (trust domains)
for analysis. This will provide an in-depth review of threats in and around these trust domains with a
clear taxonomy of those in high priority. The assumption here is that all components within the trust
boundaries (attack surfaces) are potential targets and goals for the adversaries. Table 1 provides a
detailed list of data flow processes, labels, associated trust domains and attack vectors. As this is a
design exercise, which is relatively inexpensive, system components that may not exist are included to
have a view on future exposures and impacts to the system. For instance, TD4, which relates to Over
the Air (OTA) software updates, was intended as a possible future enhancement.

Having considered where the attack could take place, namely in the four trust domains, the next
subsection after a description of the central server (REGUS) considers the type of attacks that can
take place.
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Figure 10. Daedalus Data Flow Diagram for the system without the thin security element.

Table 1. Process data flow and threat entries for Daedalus system.

DF ID Data Process DF Label DF Description Trust Domain Threat Entry/Exit

1 Database
Access VC2 Data transmission

(input) TD2 & TD5 Wi-fi Module

2 VC5a Data processing
(input) TD5 SQL Database

3 VC5b Data processing
(output) TD5 SQL Database

4 ESP 8266
Processor VC1 Data from

A/D converter TD1 ESP 8266 Processor

5 VC4a Local software
update reception TD4 ESP 8266 Processor

6 VC4b Local software
update probe TD4 ESP 8266 Processor & Local

ESP8266 Software updates

7 VC0a Output to
security module TD4 & TD3

ESP 8266 Processor & Security
Module & Local ESP8266

Software updates

8 VC0b Input from
security module TD4 & TD3 ESP 8266 Processor &

Security Module

10 VC3b Input to Multos
software update TD3 Security module & local Multos

software update

3.1.2. Renewable Energy Generation Unit Server (REGUS) Server Architecture

The REGUS architecture shown in Figure 11 is composed of a server that provides a service
to all the solar panels in the system. The server has access to a relational database via a database
management system (SQL 2014) [37]. REGUS is hosted by a web-server (IIS) [38] providing web-based
clients access to the REGUS application. This introduces a hierarchy that puts REGUS at the top,
followed by M400s and finally the M500s embedded onto the solar panels. There is a concentration
factor of M500s to a single M400 and M400s to REGUS. The maximum configuration is determined by
the processing performance and memory capacity of each level in the hierarchy. The ESP8266 is not
powerful enough to run cryptographic algorithms and lacks secure storage. However, it reads the
sensor data and establishes a wireless connection. REGUS was developed as a simple, expandable
“Cloud” server with a back-end database to store and process data generated by the solar panels.
Communication between the clients and REGUS uses Simple Object Access Protocol (SOAP) [39].
All components use off-the-shelf Microsoft packages. Proprietary software is written in C# using the
Windows Communication Foundation (WCF) framework [40,41] to affect communication using SOAP.

Daedalus started with some key requirements including the implementation of smart solar panels,
the establishment of trusted data sources with a good measure of security, the investigation of the
potential use of block-chains to provide trust, and support of a free-market approach to trading.
To support those features, an architecture with a central server was required, which, although could
possibly be achieved with an M400, may require resources that were beyond that of the module.
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M400s are restrained by size and position, but REGUS is not. REGUS can be provisioned with
resources that are only limited by cost. In addition, REGUS is not restricted to a physical manifestation.
REGUS was conceived very quickly to fulfil the role of that central server. As Daedalus becomes
commercialised, the architecture could be re-designed with features moved back to M400 if desired.
REGUS can also be realised by cloud computing architectures [42].

The preceding description outlined a typical functional design that had no focus on security
aspects. A product based on this design could be delivered, but if security were a concern, the design
needs to change. This design process follows incremental design patterns common in many system
design life cycles [43] in that appropriate sub-sections of work are put through completion first to
de-risk big projects. As the following section shows, an analysis based on security concerns is applied
to the existing design to highlight security vulnerabilities.

Figure 11. Simple Object Access Protocol (SOAP) was used in Daedalus for client—server communication.

3.1.3. STRIDE

For Daedalus, the main vulnerability lies between the device and the database. As an example,
we focus on threats to the security of the data flowing between the device and the database. This covers
trust domains 2 and 5. All the elements of the DFD in the trust domain are systematically examined.
All the threats identified are then classified with the STRIDE category. Table 2 shows the threats under
the STRIDE category for data received from the Wi-Fi module and data between the Wi-Fi module
and the Database. The number of threats identified for each STRIDE category (STRIDE count) for the
Wi-Fi module interface (TD2) is respectively; Spoofing(S)—2, Tampering(T)—2, Repudiation(R)—0,
Information disclosure(I)—3, Denial of service(D)—1, Elevation of privilege(E)—0. We note that this
assessment is based on local expert knowledge of the area and subject to new threat developments.
Although there are three counts of Information Disclosure, this is not a major concern within the
context of the project because an assumption was made that disclosure of meter-reading data was
inconsequential. The analysis so far is an agnostic one, which disregards the consequences of the
threats. Once the STRIDE analysis has been completed for all trust domains, we use the DREAD
procedure to determine the seriousness of each attack.
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Table 2. Identification of STRIDE threats for Database access in Daedalus.

DF ID Trust
Domain

DF
Label

Threat
Entry/Exit

STRIDE
Count

Threat
ID Threat Event

1 TD2 & TD5 VC2 Wi-fi Module

S = 1 1

Attempting 802.11 Shared Key
Authentication with guessed,

vendor default or cracked
WEP keys

S = 2 2 Application login theft
T = 1 3 802.11 frame injection
T = 2 4 802.11 data replay
I = 1 5 Krack WPA2 attack
I = 2 6 TLS logjam attack

I = 3 7 MITM in wireless
communication

D = 1 8 Wi-fi jamming

2&3 TD5 VC5a
&VC5b

SQL
Database

S = 1 9 Unauthorised access through
replay attack(s)

S = 2 10 Network Eavesdropping
T = 1 11 SQL Injection
T = 2 12 Unauthorised access
I = 1 13 Unauthorised access
I = 2 14 Network Eavesdropping
I = 3 15 Timing analysis
I = 4 16 Error analysis
I = 5 17 Malicious data mining
D = 1 18 D-DoS, DoS, E-DoS attack(s)
E = 1 19 SQL Injection
E = 2 20 Unauthorised access
E = 3 21 Network Eavesdropping

3.1.4. DREAD

DREAD is a technique used to establish a ranking for the threats identified. Values are assigned to
each DREAD category and an average taken to establish a single risk value for the threat. The assigned
values are not predefined and are assigned by informed parties who will assign a value based on
the relative weight and priority of the threat. The values should not be treated as absolute measures
but rather as guides for improvement. For Daedalus, a security architect evaluated the system and
provided the values [44]. Table 3 shows our assignment of Damage, Reproducibility, Exploitability,
Affected Users, Discoverability values and the calculation for the average to each database access threat
for Daedalus. It is helpful to have a concise description of the threat impact to help with the assignment
of the values for the DREAD categories. Once the average is calculated for the trust domain, the view
may be further simplified by regarding groups which are colour coded with similar averages when
considering priorities for resolution of the risks.

The next stage is to consider the required countermeasures and resolutions for the security
risks identified.

3.1.5. Countermeasures: Recommendations for Addressing Risk

This stage is a pivotal stage in the design process because the decision to do additional work rests
here. Many of the threats that have been identified in the previous sections would be well documented
in the literature, as will their countermeasures. In general, the countermeasures address the security
properties of confidentiality, integrity, availability (CIA), freshness and authorisation [45]. Hence,
the table that identifies the threat risks for each threat in Table 3 is extended with two columns, namely
for recommendations and resolutions, as shown in Table 4.
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Table 3. Generation of DREAD values for threats of Database access in Daedalus.

STRIDE Count Threat ID Threat Event Impact DREAD: 1 = Low, 5 = High

D R E A D Avg Score

DFID = 1

S = 1 1

Attempting 802.11
Shared Key

Authentication with
guessed, vendor

default or cracked
WEP keys

Unauthorised access
and/or impersonating a

legitimate account
1 2 3 4 4 2.8

S = 2 2 Application login theft Capturing user credentials 1 3 3 4 5 3.2
T = 1 3 802.11 frame Injection Crafting packets 1 3 2 4 3 2.6

T = 2 4 802.11 data Replay
Capturing 802.11 data

frames for later (modified)
replay

2 2 4 4 3 3

I = 1 5 Krack WPA2 attack
3rd party eavesdrop

confidential information
transmitted

4 1 5 5 5 4

I = 2 6 TLS logjam attack
3rd party eavesdrop

confidential information
transmitted

3 4 3 4 3 3.4

I = 3 7 MITM in wireless
communication

Running traditional
man-in-the-middle attack
tools on an evil twin AP to

intercept TCP sessions

2 4 4 3 4 3.4

D = 1 8 Wi-fi jamming

An adversary interrupts
communication (data

flow) Transmission can be
interrupted or blocked

3 2 4 4 4 3.4

DFID = 2&3

S = 1 9
Unauthorized access

through replay
attack(s)

Falsification of data 2 3 4 3 3 3

S = 2 10 Network
Eavesdropping

Impersonating user
accounts, stolen

credentials
1 2 3 3 3 2.4

T = 1 11 SQL Injection
Run arbitrary commands

in the database,
manipulate, erase data

2 5 4 4 4 3.8

T = 2 12 Unauthorized access Alteration of tables,
modification of data 2 3 4 3 4 3.2

I = 1 13 Unauthorized access Stolen records 1 3 4 4 5 3.4

I = 2 14 Network
Eavesdropping

Unauthorized interception
of information 1 2 3 3 3 2.4

I = 3 15 Timing analysis Recovering private entries
from private columns 1 2 3 3 3 2.4

I = 4 16 Error analysis

Exception
conditionsTarget

non-validated user
inputWeak dynamic SQL

queries

1 4 3 3 3 2.8

I = 5 17 Malicious data mining Information gatheringSQL
injection 1 2 2 3 2 2

D = 1 18 D-DoS, DoS,
E-DoS attack(s)

Limit or prohibit access to
legitimate usersExecuting
non-optimized codeBad
resource allocation and

management policy

3 4 1 3 4 3

E = 1 19 SQL Injection Run system commands 2 5 4 4 4 3.8

E = 2 20 Unauthorized access
Unauthorized command
execution, table creation,

deletion
1 3 4 4 5 3.4

E = 3 21 Network
Eavesdropping

Execute arbitrary
commandsDatabase
alteration, deletion

2 4 3 3 4 3.2
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Table 4. Recommendations and resolutions for threats of database access.

STRIDE Count Threat ID Threat Event Impact DREAD Recommended Action Resolution ID

DFID = 1

S = 1 1

Attempting 802.11 Shared Key
Authentication with guessed,

vendor default or cracked
WEP keys

Unauthorised access and or
impersonating a

legitimate account
2.8 Disable WEP/WPA.

Provide 802.11X and investigate options 5, 13

S = 2 2 Application login theft Capturing user credentials 3.2 Strong encryption, strong passwords,
adequate password policy 5, 2, 16

T = 1 3 802.11 frame Injection Crafting packets 2.6 Consider a Robust Secure Network
implementation 5, 13, 18

T = 2 4 802.11 data Replay Capturing 802.11 data frames
for later (modified) replay 3 Use of Kerberos for authentication

within IEEE 802.1X 5, 13, 18

I = 1 5 Krack WPA2 attack
3rd party eavesdrop

confidential information
transmitted

4 Use available counter-measure patches 5, 3, 18

I = 2 6 TLS logjam attack
3rd party eavesdrop

confidential information
transmitted

3.4
Disable support for export- grade cipher

suites, Use ECDHE instead of DHE,
Reduce TLS handshake timeout

5, 3, 10

I = 3 7 Man-In-The-Middle in wireless
communication

Running traditional
man-in-the-middle attack tools

on an evil twin Access Point
(AP) to intercept TCP sessions

3.4
TLS encryption, RADIUS authentication
server, consider mTesla protocol in the

given architecture
5, 3

D = 1 8 Wi-fi jamming

An adversary interrupts
communication (data flow)

Transmission can be
interrupted or blocked

3.4 Explore anti-jamming features, difficult
to block 13

DFID = 2&3

S = 1 9 Unauthorised access through
replay attack(s) Falsification of data 3

Strong authentication, identity
management, key freshness.

Use of Windows authentication
5, 2, 1, 15

S = 2 10 Network Eavesdropping Impersonating user accounts,
stolen credentials 2.4

Use authentication based on
key exchange.

Discovery scanners.
Use an access control list.

Reject packets originating from outside
your local network that claim to

originate from within

5
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Table 4. Cont.

STRIDE Count Threat ID Threat Event Impact DREAD Recommended Action Resolution ID

T = 1 11 SQL Injection
Run arbitrary commands in the

database, manipulate,
erase data

3.8 Input sanitisation 13, 8, 17

T = 2 12 Unauthorised access Alteration of tables,
modification of data 3.2

Strong hashing for tampering detection
purposes, timestamps, salting.

Use of Windows authentication
1, 6, 17

I = 1 13 Unauthorized access Stolen records 3.4
Encrypted database systems

including transactions.
Use of Windows authentication

5, 1, 3, 16

I = 2 14 Network Eavesdropping Unauthorized interception
of information 2.4 SSL, IPSEC 5, 3

I = 3 15 Timing analysis Recovering private entries
from private columns 2.4 5, 3

I = 4 16 Error analysis
Exception conditions

Target non-validated user input
Weak dynamic SQL queries

2.8
Effective filtering.

Trusted connections to the database.
Exception handling

5, 3

I = 5 17 Malicious data mining Information gathering
SQL injection 2 5, 3

D = 1 18 D-DoS, DoS, E-DoS attack(s)

Limit or prohibit access to
legitimate users

Executing non-optimized code
Bad resource allocation and

management policy

3 No effective countermeasure at the
database level 13

E = 1 19 SQL Injection Run system commands 3.8 Restricted accounts 14, 13

E = 2 20 Unauthorized access
Unauthorized command

execution, table
creation, deletion

3.4 9, 13

E = 3 21 Network Eavesdropping Execute arbitrary commands
Database alteration, deletion 3.2 Use an access control list 5, 3
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At this stage, some prototyping (where necessary) can be carried out to help determine the cost
and viability of the resolution. It is therefore usual to find that some resolutions may be deferred to a
“to-do” list or not regarded as the cost outweigh the perceived risks. Many of the threats will fall into
a common category of resolutions. Hence, a table of resolutions (Table 5) is provided, which can be
referenced by each threat. Of interest would be design solutions that can address many of the threats.
The important point to note is that the process reveals some potential solutions that are beneficial but
is not regarded as suitable for immediate implementation and can be recorded for later use.

Table 5. Resolutions for the threat events in DREAD determined during the first phase of Daedalus.

ID Resolution

1 Windows authentication used on SQL DB (Regus).
2 The broker and clients authenticate their secured IDs.
3 In Daedalus, confidentiality was not a major concern as it related to meter reading.
4 Disable Over the Air firmware updates
5 End-to-end cryptography (signatures) deployed
6 Salting not implemented (out of scope)
7 Clock security has not been dealt with
8 Sanitisation to be considered (out of scope)
9 Standard administrative privileges (ACL) set

10 Not applicable in the present version
11 Considered as a low probability threat based on complexity and cost implications
12 The ‘embedded’ systems approach does not permit external access to memory
13 Not mitigated in this version
14 Account restriction to be considered (out of scope)
15 Integrity of public key to be considered (out of scope)
16 End-to-end Encryption to be considered (out of scope)

17 Means to independently validate data assets considered, possibly blockchain
(out of scope)

18 Proposed solution. Part of the end-to-end key management in Section 4

The recommendations considered are meant for generic desktop systems, which are not compatible
with IoT devices dictated by power consumption, footprints, processing capacity, and the like.
The equivalent solution suggests the optimisation of the crypto algorithms to fit into an environment
suitable for IoT. In the next section, the resolutions for security threats are described. The implementation
is an extension to the Daedalus project.

3.2. Security Implementation

In this work, we propose a general-purpose cryptographic middleware for the Internet of
Things (IoT) devices by extending the Multos P19/P20 processor into a more fully featured, generic
security platform. IoT devices are characterised by low power, small footprint of specify dimensions,
and low computing capability with the ability to generate and transmit sensitive data. To reduce
the computational overheads associated with security aspects, the Multos platform is utilised due
to its small footprint in terms of cryptographic overheads. In its original form, the Multos platform
allows for a singular planned purpose and custom code written to fulfil that need. This is both a
resource-consuming and complicated process, especially as the requirements increase. This work
seeks to articulate novel additions to the Multos processor functionalities to make it suitable for
IoT. We achieve this by implementing higher-level algorithms, thereby abstracting general security
functions. Our proposed system is not restricted to edge devices but also applicable to small factor
controllers resulting in a lightweight IoT cryptographic system capable of being integrated to all layers
of an IoT network architecture. We provide a mechanism for tamper-proof communication between an
IoT device and its controller.
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3.2.1. Daedalus Thin Secure Element

The use of a Secure Element (SE) such as the Multos co-processor enables the implementation of
the most widely used security algorithms and protocols on low power, IoT like devices. However,
the Multos chip cannot be used off the shelf. Multos utilises the same principle as the cards and mobile
payment environment. Multos operates in a similar manner. The current Multos platform is sold as a
blank chip with low-level cryptographic functions. A developer will typically need to know how to
use these functions in security algorithms and protocols to provide the needed security mechanisms
for an IoT application. Using an API, we can remove the need to customise the code and the use
of the hardcoded option. This reduces significant development time, cost and increases flexibility
during updates.

Other companies also offer secure element products similar to Multos meeting the needs of our
application [19–22]. Further, not all products from other companies were fully functional at the time of
our implementation. As mentioned in Section 1.1 there are a few configurations for using the Secure
Element. Daedalus uses the API client in a controller to interface with the security functions in Figure 4.

3.2.2. On-Boarding Protocols for Multos Functionalities and API

We implement an API to provide access to a set of general-purpose security library functions.
Because of the threat analysis carried out in Section 3.1, and based on a survey of popular security
functions applicable for IoT devices [36,46,47], we have identified a set of suitable security functions as
outlined in Table 6. Based on the threat analysis carried out for Daedalus, a subset of these functions is
incorporated as a means of essential and enhanced security.

Table 6. General software security functions.

Security Feature Example
Algorithms/Protocols Remarks

Asymmetric (public)
Key Encryption

RSA Allow the simple generation of key pairs, encryption & decryption operations, and
provide secure on chip storage of private keysECC

Symmetric
Encryption

AES Allow the simple generation or input of secret keys, encryption & decryption
operations, and provide secure on chip storage for secret keysDES

Cryptographic Hash SHA/1/2/3 Allow simple generation of hash digests from data
Keyed Cryptographic

Hash HMAC-SHA1/2/3 Allow simple generation of HMAC digests from data and a secret key. Provide
secure storage for secret keys

Asymmetric Key
Signature

RSA-SSA Allow the simple generation of key pairs, signing & verification operations, and
provide secure on chip storage of private keysECDSA

DSA

Key Exchange PAKE Built in PAKE protocol for bootstrapping/on-boarding using unique ID & secret for
each secure chip. Allow simple use of DH protocol, securely store session keys.DH/ECDH

Certification CA root certificates Have common CA root certificates built into the system. Allow simple verification
of certificates signed by different CA’s

With the configuration used by Daedalus, communication with the security functions must be
affected through a serial port. A communication protocol using Application Protocol Data Units
(APDUs) is used as shown in Table 7. The data and commands are sent as request APDUs to the SE,
which will then execute the commands and provide a response APDU required by the communication
protocol [48]. The design takes the form of two independent entities; one related to the IoT application,
the other to the security element communicating via the above said APDUs. The design tailored for the
IoT environment in that it uses a primitive form of remote invocation. The security functions are briefly
described in Table 8. In the case of Daedalus, to verify the authenticity and integrity of energy-related
data from the solar panels, the Hash function using HMAC (Key Hashed Message Authentication
Code) [49] was implemented.
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Table 7. Application Data Protocol definitions for invoking Daedalus security API.

Command APDU

Field Name Length (Bytes) Description

CLA 1 Instruction class - indicates the type of command, e.g., interindustry
or proprietary

INS 1 Instruction code - indicates the specific command, e.g., “write data”
P1 1 Instruction parameter for the command
P2 1 Instruction parameter for the command

Lc 0,1 or 3

Encodes the number of bytes of command data as follows:
0 bytes denotes 0

1 byte with a value from 1 to 255 denotes the same value
3 bytes, the first of which must be 0, denote in the range 1 to 65 535

(all three bytes may not be zero)
Data 0 to 65535 Command data

Le 0,1, 2 or 3

Encodes the maximum number of response bytes expected.
0 bytes denotes 0

1 byte in the range 1 to 255 denotes that value, or 0 denotes 256
2 bytes (if 3 byte Lc was present in the command) in the range 1 to

65 535 denotes that value, or two zero bytes denotes 65 536
3 bytes (if Lc was not present in the command), the first of which

must be 0, denote the same way as two-byte Le
Response APDU

Data 0 to 65536 Response data

SW1-SW2 2 Command processing status, e.g., 90 00 (hexadecimal)
indicates success

Table 8. Overview of available commands in the security API.

Command Description Input Output

HASH Creates a hash digest of data
using the desired algorithm

Desired hash algorithm &
Data to hash Hash digest

RSASSA-GENKEYPAIR Generates a key pair for use
with the RSA-SSA algorithm

Required key size &
public exponent

Index to key pair in
secure storage

RSASSA-GETPUBKEY
Returns the public key

information from an RSA-SSA
key pair

Key pair index Public key data

RSASSA-SIGN Signs data using the private
key from an RSA-SSA key pair

Key pair index, desired hash
algorithm, desired encoding

scheme & data to sign
Signature

RSASSA-VERIFY Verifies an RSA-SSA signature

Hash algorithm used,
encoding scheme used, Public
key information of signer, data

signed & signature

True or false indicating if
signature is valid

ECDSA-GENKEYPAIR Generates a key pair for use
with the ECDSA algorithm Desired curve Index to key pair in

secure storage

ECDSA-GETPUBKEY
Returns the public key

information from an ECDSA
key pair

Key pair index Public key data

ECDSA-SIGN Signs data using the private
key from an ECDSA key pair

Key pair index, desired hash
algorithm & data to sign Signature

ECDSA-VERIFY Verifies an ECDSA signature

Curve used, hash algorithm
used, public key information

of signer, data signed &
signature

True or false indicating if
signature is valid

BSPEKE-INIT Performs initial steps of the
B-SPEKE protocol None ID & calculated client

data (A)

BSPEKE-CALC Calculates the shared secret Calculated server data (B) Client secret verification
message (M1)

BSPEKE-VERIFY
Verifies the shared secret is
correct & derives the secret
key from the shared secret

Server secret verification
message (M2), desired key

length & desired key
derivation function

True or false indicating if
M2 is valid

BSPEKE-GETKEY
Returns any stored public key
signed with a HMAC digest

using the generated secret key.

Key pair index, desired
HMAC algorithm

Public key data &
HMAC digest
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3.2.3. REGUS and System Security

REGUS (Section 3.1.2) is used to support the setup of systems providing resources that are not
available by the other components (M400 and M500, for instance) of the system. Additional computing
resources are used to store and transform the data into information that provide transparency to the
users. The support of a more open market approach requires more transparency and accessibility.
REGUS provides trustable information to a higher resolution to support transparency. REGUS can
provide a more refined control of energy supply, but the infrastructure associated with distribution
(e.g., a micro-grid) affects the level of accessibility. Daedalus was conceived to include open market
trading. Hence, REGUS was seen to implement this functionality. To achieve an open-market trading
model data must be trusted. Some of the properties to provide trusted data are to ensure that relevant
data is kept secret and is tamper-proof. In addition, REGUS needs to be protected against malware
attacks that cascade impact on different components of the system. In general, such problems already
have vast exposure in terms of analyses to provide a secure Information Technology (IT) infrastructure
based on the CIA principles [50].

On the client-side of REGUS (Figure 11), a security association is set up between REGUS and M500
which is associated with a solar panel. REGUS holds the HMAC private key for M500, which allows
REGUS to authenticate the solar energy readings of the panel collected by M500. In addition, the use
of the WCF framework by both M400 and REGUS allows for the configuration of standard security
functions for communication made available in the framework [41]. This is reflected in the architectural
configuration shown in Figure 12. The M500 employs the services of the security API to provide the
HMAC function, but REGUS uses standard libraries.

Figure 12. REGUS use of WCF platform for service communication and ADO.NET for database access.

3.3. Phase I: Results and Discussions

This section consists of results obtained by a Client-side test stub that accesses the REGUS
application software during development of the REGUS code. REGUS stores time-stamped energy
readings from the solar panel in the database shown in Figure 13 using the Chip identity and the
Timestamp as primary keys. The data can be retrieved at any time to provide transparency. The Chip
identity and Timestamp form a unique pair to access the data. The chip identity (Chip) and the private
key are embedded in the chip and can be associated with an owner’s identity. The Timestamp uses
a format, which provides a 100 ns count since year 1 [51]. When the data is received from the solar
panel, it first must be validated. For the Daedalus project, the data packet is signed using a private key
unique to the solar panel. REGUS also must know the key to validate the data. This can be obviated
using a public key process as proposed. In addition, the data could be chained as in a blockchain
process by transmitting a signature of the previous data and its previous key to provide a stronger
form of tamper-proofing.
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Figure 13. REGUS validating data from the solar panel for a specific data packet.

The result in Figure 14 shows the validation for data (Data) with a transmitted signature (SIGN)
and the signature (GEN-SIGN) generated by REGUS from implicit knowledge of the private key.
The result is TRUE when both signatures match and FALSE when they do not. Note that if the previous
signature were to be used, any error of the data due to transmission, loss, or source problems would
cause an unexpected data packet to be validated and the check will fail. Unless there are mechanisms
to deal with such failures, there is no way to distinguish between tampering and legitimate reliability
issues. The proposal, in this case, is that REGUS can reconstitute the chain after being satisfied that the
problem has not been caused by tampering. If REGUS were used to reconstitute the chain, it would
introduce REGUS as another point of trust, which may be inevitable anyway as more have to be done
to the data to provide usable transactions.

Figure 14. REGUS validating the human readable data is the same as the compressed data received
from the solar panel.

The data that was sent to REGUS is usually compressed as a data packet which is not human
readable. Validation is hence not only that the data comes from a source, but the decompressed data
itself matches the stored data. Figure 14 shows the interpreted data from compressed data (DATA).
Notice that the amps, watts, and energy readings are negative. They should be zero but are the result
of imprecision between analogue and digital conversion. This audit trail acts as a useful measure of
trust relating to the data at the point of source.

In terms of the thin secure element, a footprint of less than 25 square mm is expected, MULTOS
operated between 1.62 V to 5.5 V and at most was using 10 mA to give an idea of power consumption.
In terms of computational complexity, we were able to demonstrate a throughput of 180 bytes/s using
a cryptographic function such as RSA (Table 8) for digital signatures.
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Using the threat modeling outlined in Section 3.1, we propose an end-to-end security design with
the following features:

i. the use of asymmetric keys for independent validation,
ii. unpredictable raw data patterns that add to the quality of freshness,
iii. and validation artefacts such as hashed pointers for the data assets using blockchain principles.

The secure chaining of the data assets such as the energy readings, suggests independent
protection of data which can be stored in the database, replicated for backups, or distributed for
reliability. The chain indicates data can be independently validated from public keys wherever a copy
exists provided the public key is trusted. Recent literature suggests the necessity for trustable data
assets required for peer-to-peer (P2P) energy trading. The secure chaining of data assets we proposed
here provide the trustable assets, also referred to as blockchain oracles [52].

Based on the threat modelling for Daedalus, a recommendation for addressing risk involved the
inclusion of the thin secure element. As a result, the Data Flow Diagram (DFD) needed to be updated
to allow for a re-evaluation of the risks. The update (See Section 3.1.1) consists of Trust Domain
3 (TD3) as shown in Figures 15 and 16. Furthermore, after the introduction of the secure element,
the network functionality of the IoT system in terms of interoperability, resource constraints, scalability
and the like must be re-validated. Given the size and complexity of Daedalus, identifying the critical
mission components requires a rigorous analytical approach. We defined the concepts of operation
(CONOPS) [53] based on the end-to-end flows to establish critical system processes but equally identify
critical mission systems in Daedalus related to these processes. We treat this process as a repetitive
one as part of building a certain level of protection within Daedalus. We argue that advanced threat
actors seek to establish a persistent connection in both hardware and software of our system with
full access to the platform and unbounded computational complexity. In this work, we use a rather
static approach in the threat modelling process without incorporating elements such as the predicted
impact of cyber asset failures. This would typically require a dependency map and a more rigorous
Cyber mission impact assessment to introduce resilience [54]. Given the scope of this security analysis
and the limited components examined as part of the deliverables, we refrain this analysis in future
publications where the maturity level of Daedalus is further established.

Figure 15. Daedalus Trust Domains with the thin secure element.
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Figure 16. Daedalus Data Flow Diagram with security module.

4. Phase II: Enhancement of Security Measures

The introduction of security measures on the Daedalus project brought the realisation that
the additional data generated by the security procedures are themselves prone to vulnerabilities.
In particular, the management of crypto keys became prominent in IoT systems that have a small
footprint. The life cycle of an IoT system [27] consists of phases such as the manufacturing phase
followed by the installation and commissioning phase, and the operational and maintenance phases.
An essential part of the management of crypto keys takes part either in the manufacturing or installation
phase where the crypto keys are transferred and stored in the required nodes. In the case of Daedalus,
a manual offline key distribution mechanism was used with a view to the cost-effective measures that
would be important for cheap high-volume systems. The other phase when keys must be managed
is during the operation or maintenance phase where keys may be changed for freshness, a concept
borrowed from the authentication space [55] or during a breach. As an enhancement of security
measures, the API was extended to implement the B-SPEKE protocol to mitigate problems caused by
the transport of keys and the refreshment of keys.

4.1. Enhanced API

Based on the recommendations for addressing the risks identified by the DREAD analysis,
we focused on three security mechanisms with which to enhance the API, namely, secure hashing
(SHA256), public key asymmetric signatures (RSA-SSA, [56], ECDSA, [57]) and secure key management
(SPEKE, [58]). These mechanisms are supported by encoding functions, key derivation functions
(KDF, [59]) and HMAC.

4.2. Transport of Keys

One of the problems for the HMAC signatures used in Daedalus was the use of shared keys which
meant that the secret keys had to be transported to the source and the destination using a path that is
assume secured. The use of asymmetric key procedures obviated the need for that. Consequently,
the asymmetric signature algorithms RSA-SSA and ECDSA were implemented in the API. The API
simplifies the entire process down to four commands (Table 9) as follows:
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Table 9. API commands to support the generation of asymmetric signature algorithms.

Commands Input-Output Parameters

1. Generate key pair a. Input desired parameters such as key size.
b. The output is an index to the key pair.

2. Retrieve public key a. Input is an index to a key pair.
b. The output is the public key relating to the index.

3. Sign data a. Input is an index to a key pair and the data to be signed as
well as any encoding schemes.

b. The output is the signature.

4. Verify signature a. Input would be the parameters from the originator such as
their public key, the signature and the data being signed.

b. The output would be true or false depending on if it is valid.

The input parameters for RSA and ECDSA differ slightly due to their inherent properties.
The choice of the algorithm is developer dependent, and there are specific trade-offs that will need to
be considered [60,61].

4.3. The Integrity of Public Keys

To keep the design flexible and provide ease of use, the keys are generated on-demand on the
secure element, independent of the manufacturer’s intervention, and the secret keys never leave the
device’s secure memory. The on-demand nature of the implementation includes a request of key-pair
change using the security API (Section 4.2) or automatic key-pair regeneration periodically. When the
chip enables an IoT device to generate and stores its own keys in a remote location, the question arises
as to how the ecosystem in which the device resides will receive them securely. Sending plain key
data is not an option, even though public keys do not need to be hidden, the owner of the key does
need to be assured; an un-signed key could have originated from a malicious actor. This is a challenge
for IoT security. The traditional way is often to use a third-party trusted authority, which guarantees
the origin of a key. However, this does not solve the issue of a remote device generating a key in
the wild. Generally, the keys and certificates are generated before deployment. A solution is the
use of a password authenticated key exchange (PAKE) protocol [62–64]. The principle behind PAKE
protocol is that the knowledge of the password can be proved without revealing the password. There is
a distinction between a password burnt on the chip at the time of manufacture that is used in the
PAKE protocol and the keys generated for the signing algorithms. The PAKE password is generated at
the time of manufacture whilst the keys are generated on demand for signing the data. Some of the
available algorithms for the PAKE protocol are provided in Table 10 We chose B-SPEKE due to smaller
exponential and simple algorithm.

Table 10. Choice of algorithms for PAKE protocol.

Algorithm Remarks

Secure Remote Password
(SRP) [65]

A patent free augmented PAKE algorithm made at a time when
algorithms such as SPEKE (and variants, below) were under patent. SRP
requires a large exponentiation, the Multos platform does not support
the use of an exponent of the size required.

Simple Password Exponential
Key Exchange (SPEKE) [24].

A Simpler algorithm to SRP. Uses smaller exponentiations. SPEKE is a
balanced PAKE algorithm, so the secret key must be stored on the server.
The server being compromised would allow an attacker to masquerade
as a client.

B-SPEKE [23,25]
An augmented version of SPEKE. The server stores a verifier, Loss of the
verifier would not allow an attacker to masquerade as a client, unless
the discrete logarithm problem was solved.

W-SPEKE IEEE P1363 [36] Another augmented version of SPEKE. Uses a larger exponentiation
like SRP.
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5. Conclusions and Further Work

IoT security was lacking even as recently as 2017 and progress has been made but not enough.
Key to IoT security is the identity of the device. We show procedures for a system design process
focused on security in the way of a threat modelling procedure. In following the process, we found the
need to establish security functions compatible with the requirements of IoT devices and arrived at
the idea of a thin secure element. With the thin secure element, we provided functions that enable
the independent generation of secure identity by themselves. Results show that the threat modelling
process is not all-encompassing being that it is not a “silver bullet” solution but provides a process
for a holistic, systematic review of threats. To this respect, we do not purport a system that is secure
under all circumstances but rather one that satisfies a business and engineering objective in terms of
development cost and a reviewed quality target. Our implementation strategy rests on the provision
of transparent, auditable data to the IoT devices, and we demonstrated an end-to-end solution.

Every project is exposed to the constraints of a cost-time-scope project management triangle
where any one of those three parameters determine the bounds of the project. The implementation
of a security system can appear boundless and in conjunction with reliability require an engineering
bound to be established. We have noted the limitations of cost and time balance required in the
implementation of any security system which puts a limit on the scope of the system but were satisfied
that a systematic procedure allows outstanding flaws to be recognised. Vigilance needs to be kept when
following the procedure as it is easy to overlook layers of complexity. For instance, the maintenance
of the system required a clock-server for time-stamped data assets and the process missed out the
identification of clock-server vulnerabilities in the flow. Each data flow hid the several layers that were
presented for each flow.

The thin secure element demonstrates a tamper-proof hardware encapsulation. The boundaries
of its protection only encompass security functions. Further work would include extending the
boundaries to include other functions.

Other areas of further work include key management. Although our enhancement to the system
focused on key management, we realised that for large-scaled volume devices, it remains to be an issue.
The problem of damage due to Denial of Service (DoS) is certainly beyond the scope of this paper.
DoS causes depletion of sensory battery power and reduces efficiency. We also started to develop an
interest in general identity theft where machines could be made vulnerable to exploitation. To that
respect, we started work on having data that could be independently validated using distributed
ledger methods.
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