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Abstract: Traumatic brain injury (TBI) is one of the common injuries when the human head receives
an impact due to an accident or fall and is one of the most frequently submitted insurance claims.
However, it is often always misused when individuals attempt an insurance fraud claim by providing
false medical conditions. Therefore, there is a need for an instant brain condition classification system.
This study presents a novel classification architecture that can classify non-severe TBI patients
and healthy subjects employing resting-state electroencephalogram (EEG) as the input, solving the
immobility issue of the computed tomography (CT) scan and magnetic resonance imaging (MRI).
The proposed architecture makes use of long short term memory (LSTM) and error-correcting output
coding support vector machine (ECOC-SVM) to perform multiclass classification. The pre-processed
EEG time series are supplied to the network by each time step, where important information from
the previous time step will be remembered by the LSTM cell. Activations from the LSTM cell is used
to train an ECOC-SVM. The temporal advantages of the EEG were amplified and able to achieve
a classification accuracy of 100%. The proposed method was compared to existing works in the
literature, and it is shown that the proposed method is superior in terms of classification accuracy,
sensitivity, specificity, and precision.

Keywords: deep-learning; electroencephalogram; error-correcting output coding; long short term
memory network; machine-learning; resting-state; support vector machine; traumatic brain injury

1. Introduction

Health care insurance is a policy that covers a part or all of an individual’s risk of incurring
medical costs when there has been illness, injury, or trauma. Nevertheless, several individuals commit
health care fraud by presenting a false diagnosis of illnesses. Health care fraud, according to the
National Health Care Anti-Fraud Association, is deliberate deceit or false representation rendered
by an individual or organization that can lead to some undue benefit for him or his accomplices [1].
Thus, health care insurance fraud has caused a worldwide loss of tens of billions of dollars annually
and poses a critical problem for the insurance businesses [2]. The identification of fraud in health care
thus plays a crucial role in preventing these scenarios.

Traumatic brain injury (TBI) happens at a high rate, with more than 50 million cases per year
worldwide [3]. In conjunction, TBI occupied a large portion of the health care insurance claims.
Medical images of the brain from the hospital and analysis reports by professionals would be provided
to the insurance companies to evaluate the brain injury claims. The golden standard of medical
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imaging for TBI is the computed tomography (CT) or magnetic resonance imaging (MRI) [4]. Even then,
conducting a CT or MRI scan for any patient who demanded medical claims is restricted due to limited
resources in hospitals [5]. The inquiry also required a considerable workload to verify or deny the
allegations made, which is a time-consuming process for human experts.

TBI can be divided into three levels of severity; severe TBI, moderate TBI, and mild TBI. Insurance
claims for the severe TBI are easier to justify because the severe TBI patients often have a period
of unconsciousness [6]. On the other hand, identifying the mild TBI and moderate TBI patients
without medical imaging analysis posses a challenge. The mild TBI is the least severe among the
trauma, and biomarkers of the mild TBI’s pathophysiologic effects were not established for clinical
use. Neuroimaging technologies are thus required to provide a compelling rationale for mild TBI.
Similarly, post mild TBI patients often experience acute short-term symptoms, for example, loss of
focus, memory loss, headache, sensitivity to light, fatigue, and irritability [7]. Some of those symptoms,
however, healed within two to three weeks. Therefore, neuroimaging, such as a CT scan, needs to be
performed to validate mild TBI insurance claims.

Justification of moderate traumatic brain injury (TBI) remains a problem because its severity
is impermanent. Patients with moderate TBI can experience an acute phase period in which both
intra-cranial and inter-cranial traumas may cause secondary brain injury, increasing the severity
of TBI [8]. Contrary to this, one study has found that patients with moderate TBI did less well.
Patients demonstrate a good recovery at approximately 60% [9]. Therefore, conventional medical
imaging, such as CT or MRI, must be done to assess a moderate TBI patient’s actual health
status. Yet, to promptly perform neuroimaging for each submitted claim of mild and moderate
TBI patients is not feasible due to limited hospital resources. It is also costly to conduct CT or MRI
scanning [10]. Therefore, a high workforce effort is required to support the medical statements made
and neuroimaging findings.

Recent advances have shown that electroencephalogram (EEG) is a prospective modality for
the instant detection of TBI. Studies have shown that biomarkers can be identified by analyzing the
frequency band of quantitative EEG (qEEG), which are the alpha, beta, theta, and gamma bands. It was
found that reduction in the mean value of the alpha frequency band and the increase of the theta band
activities as compared to a healthy person is related to TBI [11–14].

The analysis of qEEG manually is tedious and requires a lot of human resources, as the recorded
EEG is usually long in duration and uses multi-channels. Hence, there is a need for an automated
system to perform the analysis. Multiple surveys and studies have been done, and they provide an
insight for usability and the future of utilizing deep learning in analyzing biomedical data [15–19],
enlightening that deep learning works well to perform prediction and analysis using biomedical data.
Therefore, machine learning approaches were used frequently in the literature to enable automated
identification of TBI. A decent review has been done by Rapp et al. [20] in supporting the usage of
EEG in TBI identification.

Two types of EEG used for TBI identification are active paradigms EEG and task-free paradigms
EEG. During the recording of active paradigms EEG, subjects must perform certain tasks or are exposed
to external stimulants [21,22]. To detect TBI, McBride et al. [23] implemented active paradigms EEG
that required the subject to do memory tasks during EEG recording. They used a support vector
machine (SVM) with features taken from event-related Tsallis entropies. Their experimental results
indicated that EEG is a promising tool for early screening of TBI. Fisher et al. [24] have proposed a
method that can track neural electrophysiological abnormalities following head injury in real-time,
by using cortical somatosensory evoked electroencephalographic potentials (SSEPs) on an animal
model. A significant increment in EEG entropy and alterations in low-frequency components have
been found concerning TBI. Active paradigms EEG are usually recorded to assess the functionality
and responses of the human brain post injured [25].

Another TBI classification study based on animal models can be found in work by
Vishwanath et al. [26]. Their proposed method explored multiple classifiers, including decision trees
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(DT), random forest (RF), neural network (NN), SVM, K-nearest neighbors (KNN), and convolutional
neural network (CNN). These classifiers were analyzed based on their performance in classifying mild
TBI (mTBI) data. Average power in various frequency sub-bands and alpha to theta power ratio in
animal model EEG were extracted as input features for machine learning approaches. Results from
their study suggested similar procedures are applicable to detect TBI in humans in practical scenarios.

In addition to the existing work using active paradigms EEG, Cao et al. proposed an automatic
classification of athletes with a concussion using an EEG-based SVM [27]. Their approach can detect
mild TBI in athletes and determine whether they are suitable to return-to-play (RTP) or not. A Fast
Fourier Transform (FFT) is performed on the pre-processed signal, and the signal was divided into
theta, alpha, beta1, beta2, and beta3. Average powers were calculated for each of the frequency bands.
In addition to the feature set, average powers for individual 1 Hz frequency components between
1 and 30 Hz for all the electrodes were computed. Feature reduction was performed to reduce the
number of features, using heuristic minimal redundancy maximal relevance (MRMR) framework.
The features were ranked based on mutual information. The top 10 features were selected and directed
to an SVM to classify the healthy subject and mild TBI patient.

In the work of Thornton et al. [28], qEEG features have proven to be useful in the diagnosis
and rehabilitation of the cognitive problems of the traumatic brain injured (TBI) subject. Their work
extracted relative power, spectral correlation coefficient, and phase different from active paradigms
EEG, where the subjects were required to perform a set of cognitive tasks during the recording.
Subsequently, discriminant analysis was carried out based on the features to differentiate between
mild TBI subjects and healthy controls.

For the recording of task-free paradigms EEG, subjects are not required to perform the task or
being exposed to external stimulants. Task-free paradigms can be divided into eyes close and eyes
open EEG. McNerney et al. [29] developed a mild TBI detection using adaptive boosting (AdaBoost)
with resting-state EEG as its input. The resting-state EEG undergone steps of pre-processing to
eliminate unwanted substances in the signal. A bandpass filter with cutoff frequency from 0.1 Hz
to 100 Hz was first applied to the raw EEG. Next, artifacts and spikes were manually labeled and
removed. Subsequently, power spectral densities (PSD) of the alpha, theta, delta, and gamma bands
were computed from AF8 to FpZ and AF7 to FpZ of the cleaned signal. The mean PSD logarithm
for every channel for respective frequency bands was obtained and concatenated into a feature
vector. The AdaBoost classifier was trained by using the feature vector, and their results achieve high
classification accuracy.

Also, Brink et al. [30] presented a task-free based EEG approach that makes used of the Naive
Bayes classifier to detect severe TBI. A notch filter was applied to the raw EEG to remove the electrical
line noises. A low pass filter was subsequently implemented to the resulting signal with a 0.5 Hz cutoff
frequency. Similarly, the artifacts were removed manually using visual inspection. The cleaned EEG of
each subject was segmented into two-seconds segments. The relation between the log-transformed
orthogonalized amplitude from three frequency bands, which are the theta, delta, and gamma bands,
is determined [30]. Their approach can detect severe TBI and has shown good detection accuracy.

A study has been carried out by O’Neil et al. [31] using resting-state EEG, which generates a TBI
index to classify positive CT scan subjects and negative CT scan subjects. In their work, qEEG features
of absolute and relative power, mean frequency, inter- and intra-hemispheric coherence, and symmetry
computed for the delta, theta, alpha, beta, and gamma frequency bands. A binary discriminant
classification algorithm was developed based on the extracted features to generate the TBI index for
classification purposes.

By developing a sequence of binary classifiers, Prichep el al. [32] developed an approach that can
perform multiclass classification (i.e., classifying normal control, concussed subject, and structural
injured/ CT scan positive subjects). Their method extracted age-regressed quantitative features (linear
and nonlinear) resting-state EEG signals. Extracted features underwent a unique data reduction
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method before directed to the classifiers to maximize confidence of prospective validation and
minimizing over-fitting.

On the other hand, Prichep el al. [33] evaluated three different classifiers (i.e., Ensemble Harmony,
Least Absolute Shrinkage and Selection Operator (LASSO), and Genetic Algorithm (GA)) using
absolute and relative power, mean frequency, inter- and intra-hemispheric coherence and symmetry
computed for the delta, theta, alpha, beta and gamma frequency bands extracted from resting-state
EEG. Their proposed method classified CT scan positive patients from CT scan negative patients.
Hanley et al. [34] proposed a brain structural injury classifier (i.e., classifying CT positive and CT
negative patients) based on a binary discriminant classification algorithm, which was derived using
a Least Absolute Shrinkage and Selection Operator methodology. Power, phase, coherence were
extracted from the resting-state EEG as input features to the classifier. To determine quantitative
resting-state EEG biomarkers for mild TBI, Lewine et al. [35] utilized multiples classifiers to
investigate the useful measures to identify and classify mild TBI. Quantitative metrics included
absolute and relative power in delta, theta, alpha, beta, high beta, and gamma bands, plus a measure
of interhemispheric coherence in each band. Mentioned quantitative metrics were used as an input to
the respective classifiers.

Although active paradigms have shown promising results in detecting TBI, it requires extensive
setup time for the EEG recording. Some of the active paradigms require patients to have higher
cognitive capability and attention. The necessity of active paradigms is to assess the sensory pathways
functionality and responses of the human brain post-injury [25]. Accordingly, task-free paradigms do
not require patients to respond to stimulants’ tasks, making it a better option for the TBI detection
approach. During the acute phase period, moderate TBI patients can be in coma states and cannot
complete a task or react to the stimulant provided. Task-free paradigms have the benefit of not
interrupting the sleep cycle of patients [36,37].

Machine learning approaches to detect TBI require appropriate feature extraction and selection
to achieve better detection accuracy. It can also be highlighted that the state-of-art approaches
do not consider the signal’s temporal dependency, although EEG is high in temporal resolution.
Researchers have been putting efforts and have proposed a long short-term memory (LSTM) networks,
which can address the long term temporal dependence issue. LSTM is a subclass of recurrent neural
networks (RNN) first suggested by Hochreiter and Schmidhuber [38] then modified by Graves [39].

Some researches have explored the use of LSTM on non-medical EEG-based applications.
Most of the EEG-based LSTM applications were used in brain-computer interface (BCI), such as
motor imagery classification [40–46], emotion classification [47–52], depression detection [53–55],
biometrics [56,57], sleep stage classification [58–63], driving behavioral classification [64,65], directional
signal classification [66], machine health monitoring [67] and EEG signal classification [68]. There are
some research works on LSTM for medical applications reported in the literature [69–75], but as far as
our concern, there is still no approach being proposed to identify TBI using LSTM networks.

Although the LSTM network can magnify EEG’s temporal advantages, no attention is given to
the development of non-severe TBI classification from the literature. LSTM is an improved recurrent
neural network (RNN) that overcome the shortage of failing to learn in the presence of time lags larger
than five to 10 discrete time steps between relevant input events and target signals [76]. In contrast
with RNN, LSTM contained cells that select important information to retain and unrelated information
to be released. Therefore, LSTM carries potential that can learn one time step at a time from all 63 EEG
channels, rather than an overall feature extraction. It is believed that retaining important information
from the previous time step stores correlation information from the EEG time series through time and
enables more quality architecture learning.

This paper presents an EEG-based LSTM with error-correcting output coding SVM (LSTM
ECOC-SVM) architecture that can classify non-severe (i.e., mild and moderate TBI) from healthy
subjects. From the literature, analysis and prediction of TBI from EEG using conventional
computational intelligence approaches are tedious as they usually involve complicated feature
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extraction or feature selection of the signal. This study contributes to the body of knowledge by
presenting an architecture that does not require extensive feature extraction and feature selection from
the EEG signal compared to existing literature works, yet provides high classification performance.
This paper consists of four main sections. Section 1 is an introduction to this study, including some
background and literature reviews. The subsequent section (i.e., Section 2) presents the dataset and an
overview of the proposed architecture. The later part of the section discussed the training procedure
and performance measures used in this study. In Section 3, experiments that are conducted to design
the proposed architecture are presented. Further, in this section, the results are also presented together
with detailed discussion and analysis. The final section (i.e., Section 4) summarizes the output from
the conducted experiments, proposed architecture, and its performance.

2. Materials and Methods

2.1. Data Acquisition

All 36 resting-state eyes-closed EEG recordings utilized in this research were obtained from the
Hospital Universiti Sains Malaysia, Kelantan, Malaysia, under ethical clearance USM/JEPeM/15110486.
These EEG recordings were contributed by 36 volunteers, with whom 12 of them suffered from mild
TBI, another 12 of them suffered from moderate TBI, and the remaining 12 persons are healthy
individuals. The age range of all of the subjects is between 18 to 65 years old. All TBI patients sustained
nonsurgical mild TBI (i.e., GCS score between 9 to 12) or moderate TBI (i.e., GCS score between
14 to 15). They endured the initial hit involving the left frontal-temporal-parietal lobe, which was
confirmed by a CT scan. Every volunteer is asked to close his/her eyes during data acquisition to get
the eyes-closed resting-state EEG records. There are no tasks or activities performed during the data
acquisition (i.e., task-free EEG recording).

The EEG signals were acquired by utilizing 64 electrodes, arranged using the international 10-10
EEG electrode practice to record the brain’s electrical signals from 64-sites on the scalp. WaveGuard
EEG cap is used to mount these electrodes. In this research, CPz channel is excluded because it is taken
as the Electrooculography (EOG) channel. Thus, there are only 63 EEG functional channels used for
the input data in our classification approach. The electrodes’ impedance is set to be below 5kOhm with
the connected earlobes serving as the reference, and the ground electrode is positioned 10% anterior to
Fz. A programmable DC-coupled broadband SynAmps amplifier (accuracy of 0.033/bit, and gain of
2500) is employed to record the EEG signals. The recording range is set to ±55 mV at the frequency
range from DC to 70-Hz. The digital EEG signals are obtained by utilizing a sampling frequency Fs of
1000 Hz and using 16-bit analog-to-digital converters. The digital EEG signal d of channel i at discrete
data point n, which is di[n], is obtained from the analog EEG signal a at the corresponding channel.
This digital signal can be defined as [77]:

di[n] = ai(nT) = ai

(
n
Fs

)
. (1)

The conversion of the analog EEG signal to the coresponding digital EEG signal took place by taking
samples (i.e., sampling) at each sampling time interval, T, of the analog EEG signal [77]. In this work,
the value of T (i.e., 1/Fs) is one millisecond.

2.2. Data Preparation and Pre-Processing

The recorded EEG signals were pre-processed to eliminate unwanted elements, which will affect
the training of the proposed architecture (i.e., artifacts and electrical line noises). Firstly, the EEG is
filtered with a 50 Hz notch filter to remove electrical lines from the EEG as the electrical line frequency
in Malaysia is 50 Hz. Next, the resultant signal has to undergo a bandpass filter of 0.1 Hz and 100 Hz.
It was suggested that the frequency analysis of TBI is limited to a frequency band between 0.1 Hz
and 100 Hz, which is then further divided into several sub-bands (i.e., delta, theta, beta, alpha, and
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gamma bands) [20]. From the literature, it can also found that a bandpass filter of 0.1 Hz and 100 Hz
is commonly used in work related to TBI [29]. As physiology is best understood for these frequency
bands, using a bandpass filter of 0.1 Hz and 100 Hz enables the analysis of TBI to be carried out
focusing on the delta, theta, beta, alpha, and gamma bands.

Subsequently, the signal is downsampled from 1000 Hz to 100 Hz (i.e., using a downsampling
integer factor D of 10). Downsampling is commonly used in the EEG processing task as it can reduce
the data time points and save up computational power [30,33,78]. Also, downsampling can free
up memories due to lesser time points, making this method portable and less costly to implement.
The downsampled signal, xi[n], which is obtained from di[n] in Section 2.1, is defined as [79]:

xi[n] = di[Dn] = di[10n], (2)

where D is the downsampling factor. The downsampling works by decimating the signal by D; that is,
keeping only every D-th sample and discard the rest.

The resultant signal next has undergone a visual inspection of artifacts. Segments that contained
artifacts were removed from the recording. Then, the first 60 s of data are eliminated since they are
frequently corrupted by artifacts. Also, at the initial phase of recording, subjects are generally not
comfortable yet. From the literature, most of the study used 60 s of recordings, indicating that 60 s of
recording is enough to give reliable diagnosis outcomes using qEEG features [29,80]. Furthermore,
the establishment of more discriminating characteristics of EEG appears at the beginning part of the
recording [81]. Therefore, the next 60 s of the recording is extracted from the recording. Input to the
proposed LSTM ECOC-SVM architecture is a 63 × 6000 matrix, representing 60 s of pre-processed EEG
recording (i.e., one second of recording is equal to 100 data points). For each time step (i.e., one second),
100 data points are passed to the LSTM. The LSTM is trained using the input EEG for 60-time steps
(i.e., 60 s of recording).

2.3. Overview of Proposed LSTM ECOC-SVM Architecture

The proposed LSTM ECOC-SVM architecture inherited the name from both LSTM and
ECOC-SVM. The architecture is divided into two parts. LSTM is used to perform feature extraction,
while the activations from the LSTM cell (i.e., learnable parameters) are used as features to train an
ECOC-SVM to perform classification of non-severe TBI and healthy subject. The overall architecture is
presented in Figure 1.

Figure 1. Proposed long short term memory (LSTM) error-correcting output coding support vector
machine (ECOC-SVM) architecture.

Input to the proposed LSTM ECOC-SVM architecture is a 63 × 6000 matrix, which represents 60 s
of pre-processed EEG recording (i.e., one second of recording is equal to 100 data points). The raw
EEG signal was pre-processed using the procedure explained in Section 2.2. For each time step
(i.e., one second), 100 data points were passed to the LSTM. The LSTM was trained using the input
EEG for 60-time steps (i.e., 60 s of recording). The LSTM is set to have 256 hidden units, which will
output a feature vectors with 256 values. The output from the LSTM cell is used as features to train an
ECOC-SVM to perform classification. Error-correcting output coding (ECOC) is often used together
with SVM to perform multiclass classification, as SVM alone can only perform binary classification.
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ECOC classification needs a coding system to regulate the learners’ training categories (i.e., SVM),
and a decoding method that regulates the aggregation of the final prediction for all the binary classifiers.
The coding design used in this study is a one-versus-one scheme, also known as an exhaustive matrix
scheme. The coding design is shown in Table 1. Value 1 is the notation for positive class, value –1 is
for negative class, and value 0 is for ignoring the class. For example, SVM 1 treats the healthy subject
as the positive class, mild TBI subject as the negative class, whereas moderate TBI class is omitted.
The other SVMs are trained similarly.

Table 1. Error-correcting output coding (ECOC) SVM coding design.

SVM 1 SVM 2 SVM 3

Healthy 1 1 0

Mild –1 0 1

Moderate 3 0 –1 –1

When making a prediction, each classifier outputs a “0” or “1”, creating an output code vector.
This output vector is compared to each codeword in the matrix, and the class whose codeword has
the nearest distance to the output vector is chosen as the predicted class. The process of merging the
outputs of individual binary classifiers is known called decoding. Hamming distance is used as the
decoding method in this study to look for the minimum distance between the prediction vector and
code words, which counts the number of bits that differ. Therefore, the LSTM cell acts as a feature
extraction mechanism for the proposed LSTM ECOC-SVM architecture, where the ECOC-SVM acts as
the classification mechanism.

Five parameters are fixed for the proposed LSTM ECOC-SVM architecture. Table 2 presents the
parameters and their respective value. A learning rate of 0.001 was obtained by conducting extensive
experiments, followed by a mini-batch size of 4. L2 regularization is set to 0.0005 to prevent overfitting.
Overfitting occurs when the learnable weights in the network grow too large to handle the specificity of
the examples seen in the training data. Regularization reduces overfitting by penalizing large weights,
encouraging smaller weights for the model. In a way, regularization tune the learning of architecture to
encourage small weights usage. For the learning of the LSTM via back-propagation, ADAM is selected
as the optimizer. The training repetitions per epoch is set to 30 iterations. The training iteration is
selected at a moderate value. The reason is to prevent overfitting the network with a higher iteration
of training. On the other hand, an iteration that is too less can underfit the network with training data
due to insufficient training repetitions.

Table 2. Parameters and values.

Parameter Setting

Learning rate 0.001
Mini-batch size 4
L2 regularization 0.0005
Optimizer ADAM
Training repetitions per epoch 30

2.4. Training Procedure and Performance Measure

A small dataset usually becomes a challenge in bioinformatics researches due to unexpected
constraints, such as the restricted number of patients. One of the common solutions for
small dataset issues is utilizing data augmentation as used in image classification research.
Unfortunately, this approach is not suitable for mild or moderate TBI patient’s EEG because
modifications introduced by the augmentation process, such as the addition of the random noise,
can amplify the classification error.
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In assessing the designed architecture, the bootstrap approach [82] has been selected to be applied
in this research as a solution to overcome the small dataset issues. This resampling method creates
bootstrap sample sets in three steps. In the first step, the method will randomly choose the data from
the original dataset. Then, the random sample will be combined with the new dataset. In the third step,
this combined data will be returned to the original dataset. The first two steps will be reiterated until
the generated bootstrap sample set achieves the predefined numbers of samples. It is worth noting
that the bootstrap sample set created for the machine learning algorithm will be the amounts of data
on the original dataset [83]. A few samples are indeed represented repeatedly, while others are not
evaluated at all [83]. Bootstrapping is a helpful tool because the prediction outcomes from the model
of trained machine learning utilizing sample sets of bootstrap always present a Gaussian distribution.
Besides, 95% confidence interval (CI) can be analyzed to determine the accuracy and stability of the
machine learning algorithm from the predictive results.

Efron [82] suggested that 250 iterations can give useful percentile intervals. Therefore, for the
proposed architecture design, 250 iterations of the resampled bootstrap sample set are used. To achieve
an even ambitious measure of confidence intervals, Efron suggested a minimum of 1000 iterations of
resampled bootstrap sample set [82]. Thus, 2000 iterations of bootstrap resampling are performed in
the assessment of the final developed architecture. On every bootstrap sample, 3-fold cross-validation
is conducted. From the cross-validation, four quantitative evaluations are recorded for each generated
bootstrap sample set (i.e., accuracy, sensitivity, specificity, and precision). Ninety-five% CI, mean and
standard deviation (SD) are then determined from the documented evaluations.

3. Results

Investigations have been done using a simple hill-climbing approach to determine the ideal
architecture and setting for the proposed architecture. The search stopped when the performance
shows a downtrend, and the parameter with the best performance is selected. Five experiments were
conducted to design the proposed LSTM ECOC-SVM architecture. The dataset used in the experiments
was discussed in Section 2.1. Furthermore, the training procedures and performance measures used
were presented in Section 2.4.

Each of the experiments is explained in six sections. Section 3.1 presents the experiments in
determining the best learning rate for the proposed architecture. Subsequently, Section 3.2 discussed
the experiments to choose the optimum mini-batch size and analysis of the results. In the next
section (i.e., Section 3.3), experiments are conducted to determine the optimum number of hidden
units for the LSTM cell. This is followed by Section 3.4, which presenting the experiments to
determine the best optimizer for the learning of LSTM. The next section (i.e., Section 3.5) presents
the evaluation and final touch up for the proposed LSTM ECOC-SVM architecture. The effects
of pre-processing on the proposed architecture are also explored in the latter part of this section.
Finally, in Section 3.6, the proposed architecture was compared to similar works in the literature,
as well as our previous studies.

3.1. Selection of Optimum Learning Rate

LSTM is a machine learning approach that learn via backpropagation to determine the learnable
weight and bias for respective gates in the LSTM cell (i.e., forget gate (f ), input gate (i), cell candidate
gate (s) and output gate (o). Therefore, the learning rate is one important parameter to determine the
learnable parameter update of the architecture in conjunction with the gradient descent. If the learning
rate value is set too high, although it can cause the architecture to converge rapidly, the architecture
may be reached to a sub-optimal point, which may not give the maximum potential to the architecture.
Besides, the loss function will overshoot the minimum error point, causing oscillation between the
gradient descent.

Conversely, applying an extremely small learning rate will mostly result in longer training time to
converge. Besides, it can also cause the training to be stuck at a point after all the training repetitions
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are done. Therefore, a good learning rate has to be determined to ensure effective learning of the
architecture. The present research suggests that an effective learning rate can be approximated by
starting with a larger value and decreasing it at every repetition, with a learning rate of 0.1 being
a good starting point [84]. An initial LSTM (i.e., with the setting of one LSTM cell with 64 hidden
units, one FC layer with three neurons, mini-batch size of eight, and ADAM optimizer) was used
to conduct the experiments. The learning rates explored are 0.1, 0.01, 0.001, and 0.0001 respectively.
Table 3 presents the performance of each learning rate.

Table 3. Accuracy, Sensitivity, Specificity and Precision for Various Learning Rate Using LSTM.
(The Numbers in Bold Indicate the Best Value Obtained for Each Quality Measure).

Learning Accuracy ± SD Sensitivity ± SD Specificity ± SD Precision ± SD
Rate [CI] [CI] [CI] [CI]

0.1 64.97 ± 9.49 62.67 ± 15.18 83.38 ± 8.17 69.00 ± 18.12
[63.79 66.15] [60.78 64.56] [83.37 85.40] [66.74 71.26]

0.01 69.07 ± 9.11 66.37 ± 15.51 87.05 ± 7.37 73.75 ± 18.68
[67.93 70.20] [64.43 68.30] [86.13 87.97] [71.42 76.08]

0.001 71.13 ± 8.65 70.30 ± 14.13 85.87 ± 7.05 73.84 ± 15.63
[70.06 72.21] [68.54 72.06] [84.99 86.75] [71.89 75.79]

0.0001 67.11 ± 8.90 64.30 ± 15.02 84.85 ± 7.76 71.09 ± 14.50
[66.00 68.22] [62.43 66.17] [83.88 85.82] [69.29 72.90]

By decreasing the learning rate from 0.1 to 0.001, there is an improvement of 6.16% of classification
accuracy (i.e., improves from 64.97% to 71.13%). Further decrements of the learning rate do not
improve the architecture’s performance but worsened it (i.e., degraded from 71.13% to 67.11% in
terms of classification). Referring to Table 3, a learning rate of 0.001 gives the highest outcome
in all performance measures, with the classification accuracy of 71.13%, the sensitivity of 70.30%,
the specificity of 85.87% and the precision of 73.84%. At this learning rate, the step is optimum to
search for the best learnable parameters of the architecture, compared to other learning rate values.

Also, the result indicated a high learning rate of 0.1 caused overstepping of the learnable
parameters update, thus missing out on the optimum local minimal. The step taken to update the
parameters over-shoot and the training may neither converge nor diverge. Weight and bias changes
can be too big, causing the optimizer to miss out on the local minimal and worsen the training loss.

Reducing the learning rate to 0.01 can improve the performance, whereas 0.001 is the threshold
point. Learning rates that are smaller than 0.001 do not further improve the performance of the
architecture. By using a lower learning rate can cause the architecture to take a longer time to optimize
because the steps taken towards the minimum of the loss function are small. Hence, more epoch
repetitions are needed to reach the local optimum, resulting in longer training time. By tolerating some
learning time, a learning rate of 0.001 is selected as the optimum value for the proposed architecture.

3.2. Selection of Optimum Mini Batch Size

Deep learning such as CNN uses backpropagation for learnable parameters update. LSTM cell
learns the same way through backpropagation. The entire training dataset was divided into a smaller
subset (i.e., known as mini-batch) and supplied to the LSTM to update the learnable parameters.
Therefore, the optimum mini-batch size must be obtained as it affects the quality of the learning of
the architecture.

A large mini-batch size causes a higher computational power. Besides, an overly large mini-batch
size will result in performance deterioration of the architecture as it will result in a huge step of
learnable parameter update, resulting in converging to a sharp local-minimum [85]. On the other
hand, small mini-batch sizes result in a noisier update as more changes are done for the learnable
parameters. Hence, smaller mini-batch size offers a regularization effect and lower generalization
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error. It is also worth to mention that a smaller mini-batch size requires a lower computational power.
Thus, it is important to determine an optimum mini-batch size to allow the LSTM to converge better
and more stable.

A 32 mini-batch size was the recommended default value by several studies [84,86]. In this
study, the epoch size of the input EEG time series is 36 (i.e., there are a total of 36 EEG recordings).
Therefore, each mini-batch size represents the number of EEG recordings supplied to the architecture
each pass. Experiments are conducted using the mini-batch size of 1, 2, 4, 8, 16, 32, 64 on the architecture
of one LSTM cell with 64 hidden units, one FC layer with three neurons, ADAM optimizer, and a
learning rate of 0.001 determined via experiments conducted in Section 3.1. Performance of each
mini-batch size is tabulated in Table 4.

Table 4. Accuracy, Sensitivity, Specificity and Precision for Various Mini Batch Size Using LSTM.
(The Numbers in Bold Indicate the Best Value Obtained for Each Quality Measure).

Mini Accuracy ± SD Sensitivity ± SD Specificity ± SD Precision ± SD
Batch Size [CI] [CI] [CI] [CI]

1 69.84 ± 8.76 67.27 ± 15.24 85.57 ± 8.17 72.37 ± 17.47
[68.75 70.94] [65.37 69.16] [84.55 86.58] [70.19 74.54]

2 71.59 ± 8.75 69.40 ± 15.55 86.53 ± 7.26 73.71 ± 17.69
[70.50 72.68] [67.46 71.34] [85.63 87.44] [71.50 75.91]

4 71.99 ± 8.68 70.03 ± 13.99 86.25 ± 8.12 73.12 ± 19.12
[70.91 73.07] [68.29 71.78] [85.24 87.26] [70.74 75.50]

8 71.13 ± 8.65 70.30 ± 14.13 85.87 ± 7.05 73.84 ± 15.63
[70.06 72.21] [68.54 72.06] [84.99 86.75] [71.89 75.79]

16 61.34 ± 8.36 61.57 ± 15.37 80.17 ± 10.12 62.16 ± 20.75
[60.30 62.39] [59.65 63.48] [78.91 81.43] [59.57 64.74]

32 70.28 ± 8.14 68.17 ± 14.57 85.62 ± 8.29 72.77 ± 17.14
[69.26 71.29] [66.35 69.98] [84.58 86.65] [70.64 74.91]

64 70.93 ± 8.61 69.87 ± 15.50 85.63 ± 7.27 72.71 ± 17.42
[69.86 72.01] [67.94 71.80] [84.73 86.54] [70.54 74.88]

From Table 4, it can be seen that when the mini-batch size increases from 1 to 4 (i.e., the number
of EEG recording in one pass increases), the performance of the architecture improves gradually in all
performance measures. LSTM architecture tends to learn more effectively when there are more EEG
time series supplied to it. However, the performance of the architecture worsens when mini-batch sizes
of 8 and 16 were used (i.e., classification decreased from 71.99% to 61.34%). Nevertheless, mini-batch
sizes of 32 and 64 present a small bounce back in performance, archiving the classification accuracy of
70.28% and 70.93%, respectively.

From the trend of the results, it was shown that a mini-batch size of 4 gives the best performance,
achieving the classification accuracy of 71.99%, the sensitivity of 70.03%, the specificity of 86.25% and
the precision of 73.12%. The mini-batch size of 4 can efficiently generalize the EEG time series and
converge to a flat minimal, giving the architecture a better generalization of trained data.

On the other hand, the result also provides an insight that a mini-batch size larger than 4 caused
inefficient training of the LSTM. This results in a sharp local-minimum convergence, which is not
ideal in backpropagation. Moreover, mini-batch sizes of 32 and 64 passed the whole dataset at once
to the LSTM. They require a high computation power, and at the same time, the full batch gradient
trajectory can result in non-quality learnable parameters update (i.e., bad optimum point landing).
Optimum mini-batch size has to be obtained, so the backpropagation injects enough noise to each
gradient update while achieving an effective and speedy convergence to the local-minimum.

The results show that a relatively smaller mini-batch size carries better generalization ability.
Using fewer examples can result in a less accurate estimate of the error gradient that is highly dependent
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on the training samples. Hence, it results in a noisy estimate, and in return, caused noisy updates
to the model weights (i.e., updates with estimates of the error gradient that varies from each other).
Nevertheless, these noisy updates can result in faster learning and developed a more robust model.

3.3. Selection of Optimum Hidden Units

The hidden units in an LSTM correspond to the dimension of information learned from previous
time steps, regardless of the sequence length of the supplied time series. It is also known as the hidden
size, which carries the same definition of the number of hidden nodes for ANN. The number of hidden
units has to be selected carefully. Overfitting of the training data will take place if the number of the
hidden unit is too large.

Experiments were conducted using 8, 16, 32, 64, 128, and 256 hidden units. There are no clear
guidelines on determining the suitable number of the hidden unit; hence it has to be determined
empirically. These experiments were conducted using an LSTM architecture of one LSTM cell, one FC
layer with three neurons, an ADAM optimizer, a learning rate of 0.001, and a mini-batch size of 4,
where the learning rate and mini-batch size are determined from previous experiments (i.e., Sections 3.1
and 3.2). The results from the experiments were shown in Table 5.

From the results, eight hidden units present the lowest performance, with the classification
accuracy of 69.34%, the sensitivity of 66.60%, the specificity of 82.25%, and the precision of 71.96%.
A smaller number of hidden units of the LSTM cell cause the gates to have low learning ability and
results in underfitting, as there are fewer hidden units to fit in the features. The lower number of
hidden units has failed to detect and learn from the activations of the LSTM cell.

Subsequently, the classification accuracy of the LSTM architecture improves when the number of
the hidden units is increased to 64 (i.e., improves from 69.34% to 71.99%). There is a small degradation
of performance in the architecture with 128 hidden units but bounced to 72.09% of classification
accuracy when 256 hidden units are used. The experiments are not further conducted for 512 hidden
units due to computational power restrictions. Thus, 256 hidden units are the peak performance among
all variations. In this case, 256 hidden units have sufficient capacity to fit in the amount of information
supplied by the EEG time series, avoiding the risk of underfitting and overfitting. Optimally, a balance
is met where there is an equal capacity of hidden units to learn from all the information from the input
time series.

Table 5. Accuracy, Sensitivity, Specificity and Precision for Various Number of Hidden Unit Using
LSTM. (The Numbers in Bold Indicate the Best Value Obtained for Each Quality Measure).

No. of Accuracy ± SD Sensitivity ± SD Specificity ± SD Precision ± SD
Hidden Unit [CI] [CI] [CI] [CI]

8 69.34 ± 8.35 66.60 ± 14.77 82.25 ± 7.29 71.96 ± 16.41
[68.30 70.38] [64.76 68.44] [84.34 86.16] [69.92 74.00]

16 69.91 ± 8.55 68.67 ± 15.14 84.77 ± 7.85 71.87 ± 16.02
[68.85 70.98] [66.78 70.55] [83.79 85.74] [69.88 73.87]

32 70.57 ± 8.88 69.50 ± 15.51 85.23 ± 7.64 72.08 ± 16.68
[69.46 71.67] [67.57 71.43] [84.28 86.19] [70.00 74.15]

64 71.99 ± 8.68 70.03 ± 13.99 86.25 ± 8.12 73.12 ± 19.12
[70.91 73.07] [68.29 71.78] [85.24 87.26] [70.74 75.50]

128 71.81 ± 8.13 70.17 ± 14.30 86.28 ± 7.97 74.63 ± 16.00
[70.80 72.82] [68.39 71.95] [85.29 87.28] [72.64 76.63]

256 72.09 ± 8.71 70.07 ± 15.07 86.70 ± 7.94 74.93 ± 17.06
[71.00 73.17] [58.19 71.94] [85.71 87.69] [72.80 77.05]
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3.4. Selection of Optimizer for Backpropagation

LSTM carries learnable parameters (i.e., weight and bias) that updates via backpropagation.
The goal of the backpropagation learning is to minimize the difference between the predicted output
and the actual result (i.e., the error). For the update of LSTM’s learnable parameters, the time series of
EEG was forward passed per time step. The cross-entropy loss function is used to compute the error
(i.e., the difference between predicted result and actual result). In this study, the loss function that is
used computed the error is cross-entropy. A study has been done, and it is shown that cross-entropy
performs better than the usual mean squared error (MSE) loss function [87]. In the initial forward
pass of a CNN architecture, weights in the hidden layers are arbitrary. The optimum weights have to
be calculated by an optimizer based on the output of the loss function. An optimizer improves the
performance of the architecture by minimizing the error. As the learnable parameters were updated at
every time steps, the learning process was known as backpropagation-through-time (BPTT).

In the initial forward pass, the learnable parameters are arbitrary. An optimizer has to be used to
calculate the optimum learnable parameters based on the output of the loss function. The quality of the
LSTM corresponds to the ability of the optimizer to minimize the error. Two optimizers were evaluated
in this study (i.e., SGD and ADAM). The architecture used to evaluate the optimizers is made up of
one FC layer with three neurons, a learning rate of 0.001, 256 hidden units, and a mini-batch size of 4,
where the learning rate, mini-batch size, and the number of hidden units are determined from previous
experiments (i.e., Sections 3.1–3.3).

The performance for each of the optimizer is presented in Table 6. The results showed that
architecture using ADAM performs better than SGD. Also, both of the optimizers shown stable
performance by presenting a low standard deviation (i.e., below 9). SGD with momentum presents
a comparable performance (i.e., the classification accuracy of 70.87%, the sensitivity of 71.27%,
the specificity of 85.87%, and the precision 74.50%).

Table 6. Accuracy, Sensitivity, Specificity and Precision for Different Optimizer Using LSTM.
(The Numbers in Bold Indicate the Best Value Obtained for Each Quality Measure).

Type of Optimizer SGD ADAM

Accuracy ± SD [CI] 70.87 ± 8.33 [69.83 71.90] 72.09 ± 8.71 [71.00 73.17]

Sensitivity ± SD [CI] 71.27 ± 13.67 [69.56 72.97] 70.07 ± 15.07 [58.19 71.94]

Specificity ± SD [CI] 85.87 ± 7.12 [84.98 86.75] 86.70 ± 7.94 [85.71 87.69]

Precision ± SD [CI] 74.50 ± 13.88 [72.77 76.23] 74.93 ± 17.06 [72.80 77.05]

It shows that SGD with momentum is a good option as it provides momentum towards the correct
direction of gradient descent for the local-minimum. The original SGD without momentum oscillate
along the path of steepest descent towards the optimum, making the architecture harder to final the
local minima. Adding a momentum term to the weights update can overcome this issue by adding
momentum in the direction of consistent gradients and discard the momentum if gradients are in
opposite directions [88]. SGD with momentum shows comparable performance and converges faster
than the original SGD as bigger steps are taken towards the same direction following the momentum.

However, this experiment is targeted to look for the best-performed optimizer. Using the
same architecture, ADAM can provide higher performance, hitting classification accuracy of 72.09%.
ADAM is an optimizer that is a combination of SGD with momentum and root mean square
propagation (RMSProp). Therefore, ADAM carries the advantage of momentum, which solves the
problem of random oscillation and also the strong side of RMSProp that changes the step size by
adapting to the gradient.

There is always an on-going argument in the comparison between SGD with momentum and
ADAM, in which some studies stated SGD with momentum is a better optimizer [89]. Despite that,
this experiment shows that ADAM is a better optimizer compared to SGD in classifying non-severe
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TBI and healthy subjects. Therefore, it can be presumed that the option of optimizer varies for different
problem-solving.

Based on the result in Table 6, ADAM is well performed by computing a unique learning rate for
each of the learnable parameters, which is more compatible with the classification objective of this
study. The different learning rate is assigned to the update of each weight, and bias enhanced the
learning of the architecture by avoiding inappropriate steps that deviate away from the local optimum.

By solving random oscillation of the local-minimum search, ADAM converges well to
the local-minimum and present a high performance with the classification accuracy of 72.09%,
the sensitivity of 70.07%, the specificity of 86.70%, and the precision of 74.93%. In conclusion, ADAM
is selected as the optimizer for the proposed LSTM architecture.

3.5. Construction of Proposed Architecture

From all the experiments conducted in previous sections, the LSTM architecture with the
optimized parameters was obtained (i.e., one LSTM cell with 256 hidden units, 0.001 learning
rate, mini-batch size of 4, and ADAM as optimizer). The architecture can present a comparable
performance with the classification accuracy of 72.09%, the sensitivity of 70.07%, the specificity
of 86.70%, and the precision of 74.93%. However, the architecture has to be improved for better
performance. The performance suggested that the SoftMax classifier at the output of the last FC layer
did not perform well enough in classification. Hence, it becomes a motivation to propose architectures
to replace the SoftMax.

In this study, a multiclass classification has to be performed. Thus, the error-correcting output
coding (ECOC) algorithm is introduced to combined with SVM. SVM is a robust and powerful
binary classifier due to its ability to perform class separation and the facilities of the kernel space.
Combining SVM with the ECOC algorithm can handle the multiclass problem efficiently by utilizing
the binary set of ECOC with suitable coding rules to achieve a non-linear classification while reducing
the bias and variance of the trained models. There are other choices of machine learning methods that
can perform multiclass classification by itself without any coding rules. However, a study has been
conducted to show ECOC-SVM outperforms them [90]. Hence, it became our choice to evaluate its
potential to replace SoftMax. In this section, experiments are conducted by using the obtained LSTM
architecture, and Softmax is replaced by ECOC-SVM. Activations from the hidden units of the LSTM
cell are used as features to train an ECOC-SVM. The performance of the LSTM ECOC-SVM is tabulated
in Table 7 together with the LSTM that uses Softmax as the classifier.

Table 7. Accuracy, Sensitivity, Specificity and Precision for Different Classifier Using LSTM.
(The Numbers in Bold Indicate the Best Value Obtained for Each Quality Measure).

Classifier SoftMax ECOC-SVM

Accuracy ± SD [CI] 72.09 ± 8.71 [71.00 73.17] 98.09 ± 2.10 [97.83 98.35]

Sensitivity ± SD [CI] 70.07 ± 15.07 [58.19 71.94] 98.50 ± 3.29 [98.09 98.91]

Specificity ± SD [CI] 86.70 ± 7.94 [85.71 87.69] 98.87 ± 2.00 [98.62 99.12]

Precision ± SD [CI] 74.93 ± 17.06 [72.80 77.05] 97.86 ± 3.74 [97.40 98.33]

From Table 7, it is shown that ECOC-SVM that are trained by the activations from the LSTM
cells outperformed the LSTM with SoftMax classifier, presenting the classification accuracy of 98.09%,
the sensitivity of 98.50%, the specificity of 98.87% and the precision of 97.86%. There was a drastic
improvement of 26% in terms of the classification accuracy. Compared to SoftMax, ECOC-SVM is more
powerful and robust in performing class separation. To perform multiclass classification, ECOC utilizes
the coding rules and binary SVM, creating a well-performed architecture. SVM can give a prediction
towards the local objective, providing distinct scores for the predicted EEG, where the detail of
individual scores does not take a count on the final prediction. On the other hand, SoftMax computes
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probabilities for each of the classes. Non-related components (i.e., noise and artifacts) can cause
the decision boundaries to vary as it will recalculate and include the influence of the non-related
components. This becomes a disadvantage in architecture that solve classification problems involving
EEG signal as noise and artifacts in the signals were unavoidable. Therefore, ECOC-SVM is a better
option than SoftMax.

Upon this stage of study, the EEG time series supplied to the previous experiments
(i.e., Sections 3.1–3.4) did not undergo any pre-processing. LSTM is a time-dependency architecture
where the correlation of each time step is stored in the hidden units (i.e., LSTM cells).
Therefore, any noises and artifacts can directly impact the quality of the architecture training as
noises and artifacts can be remembered from the previous time step. To evaluate the effect of the
pre-processing, in this section, the EEG time series have undergone a pre-processing procedure
described in Section 2.2 and used to train the proposed LSTM ECOC-SVM architecture. Its performance
was presented in Table 8 together with the same architecture trained using raw EEG.

From Table 8, using pre-processed EEG improved the proposed LSTM ECOC-SVM architecture
from 98.04% to 100% in term of the classification accuracy. Besides, the proposed LSTM ECOC-SVM
presents the best performance by achieving 100% in all the performance measures. Also, the standard
deviation of 0 indicates that the proposed LSTM ECOC-SVM architecture has a very stable performance
throughout the 250 bootstrap resampling run and cross-validation. The pre-processing procedure
used is efficient in removing noises and artifacts in the EEG time series, providing precise information
throughout the training and BPTT without being confused by unwanted elements (i.e., noises and
artifacts). This results in an effective learnable parameter update through time, where each cell is well
trained with the ability to remember important information from the previous time step and avoided
overfitting by discarding unrelated information.

Table 8. Accuracy, Sensitivity, Specificity and Precision for Raw and Pre-processed electroencephalogram
(EEG) using LSTM ECOC-SVM. (The Numbers in Bold Indicate the Best Value Obtained for Each
Quality Measure).

EEG Raw Pre-Processed

Accuracy ± SD [CI] 98.04 ± 2.19 [97.77 98.32] 100 ± 0 [100 100]

Sensitivity ± SD [CI] 98.40 ± 3.61 [97.95 98.85] 100 ± 0 [100 100]

Specificity ± SD [CI] 98.85 ± 2.27 [98.57 99.13] 100 ± 0 [100 100]

Precision ± SD [CI] 97.86 ± 4.11 [97.35 98.38] 100 ± 0 [100 100]

The experiment is repeated using 2000 bootstrap resampling to ensure the high performance of
the proposed LSTM ECOC-SVM architecture using the pre-processed EEG signal. Its performance was
tabulated in Table 9, together with the experiment done using 250 bootstrap resampling. It was shown
that the experiment done with 2000 bootstrap resampling performed the same with the one done using
250. Again, the result assured that the proposed LSTM ECOC-SVM could classify non-severe TBI and
healthy subjects accurately and precisely with 100% of classification accuracy, sensitivity, specificity,
and precision.
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Table 9. Accuracy, Sensitivity, Specificity and Precision for the Performance of 250 and 2000 Bootstrap
Resampling Using LSTM ECOC-SVM with Pre-processed EEG. (The Numbers in Bold Indicate the Best
Value Obtained for Each Quality Measure).

EEG 2000 250

Accuracy ± SD [CI] 100 ± 0 [100 100] 100 ± 0 [100 100]

Sensitivity ± SD [CI] 100 ± 0 [100 100] 100 ± 0 [100 100]

Specificity ± SD [CI] 100 ± 0 [100 100] 100 ± 0 [100 100]

Precision ± SD [CI] 100 ± 0 [100 100] 100 ± 0 [100 100]

3.6. Assessment of the Proposed Method with Existing Works

Currently, there is no available work which classifies non-severe TBI and healthy group.
Thus, the performance of the proposed method is only assessed with four similar methods. The first
comparison method is the work by Brink et al. [30] that utilized Naive Bayes to classify TBI from
task-free EEG. The second method for comparison classifies the EEG signal by employing the AdaBoost
classifier and is developed by McNerney et al. [29]. The third and fourth methods were our previously
developed methods based on SVM [91,92]. In our previous work, the same pre-processing procedure
presented in Section 2.2 was used to pre-process the data. Alpha band power and theta power spectral
density (PSD) were extracted to train two SVM classifiers, respectively. For a reasonable assessment,
the same dataset and training process is utilized. The performance of each method and the proposed
LSTM ECOC-SVM is shown in Table 10.

Asserting that the extracted features from the frequency bands can provide valuable data to
the classifier, the four comparison methods [29,30,91,92] used the frequency band-based features.
In contrast, the proposed approach in this research does not require any extraction of the features.
The EEG is passed into the proposed architecture per time step, where important information from
each time step is remembered by the gates of the LSTM cell. In a way, the correlation between each
time step is extracted using BPTT and stored as activations. The proposed architecture fully utilized
the temporal advantage of the EEG time series. By avoiding extensive feature extraction, the proposed
architecture can directly learn effectively from the pre-processed EEG signal.

Table 10. Accuracy, Sensitivity, Specificity and Precision for the Performance existing works
and proposed convolutional neural network (CNN) ECOC-SVM Voting Ensembles Architecture.
(The Numbers in Bold Indicate the Best Value Obtained for Each Quality Measure).

Method Accuracy ± SD Sensitivity ± SD Specificity ± SD Precision ± SD
[CI] [CI] [CI] [CI]

Naive Bayes [30] 97.01 ± 0.05 99.81 ± 0.23 95.74 ± 0.74 92.15 ± 1.25
[96.99 97.03] [99.80 99.82] [95.70 95.77] [92.09 92.20]

Adaboost [29] 62.68 ± 9.34 67.67 ± 16.62 82.28 ± 9.62 67.00 ± 13.48
[62.27 63.09] [66.94 68.40] [81.85 82.70] [66.41 67.59]

SVM(PSD) [91] 63.64 ± 8.42 76.91 ± 13.52 83.11 ± 8.09 70.41 ± 11.53
[63.27 64.01] [76.32 77.50] [82.75 83.46] [69.91 70.92]

SVM(power) [92] 52.22 ± 8.65 76.24 ± 15.26 66.71 ± 9.93 53.86 ± 9.75
[51.84 52.60] [75.57 76.91] [66.27 67.14] [53.43 54.29]

LSTM ECOC-SVM 100 ± 0 100 ± 0 100 ± 0 100 ± 0
[100 100] [100 100] [100 100] [100 100]

Results have shown the proposed architecture outperformed the other two methods with high
performance with the classification accuracy of 100%, the sensitivity of 100%, the specificity of 100%,
and the precision of 100%. Naive Bayes presented a comparable performance (i.e., the classification
accuracy of 97.01%). However, to ensure such high performance, pre-processing and feature extraction
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has to be performed in care to ensure high quality and discriminative features can be extracted. On the
other hand, the AdaBoost classifier is only able to present a classification accuracy of 62.68%.

Naive Bayes ignored the dependence of the EEG channels and assumed that each feature does
not correlate to each other. This may cause a loss in information during the classifier training process
because correlations of the channels have been neglected. As such, the proposed approach which uses
LSTM should resolve the limitation of Naive Bayes by taking into account the correlation between
time steps and also between channels. On the other hand, although the AdaBoost classifier needs less
parameter tuning and is simple to use, it is prone to outliers and noise, which is inevitable in EEG
signals. Thus, more effort must be taken to ensure the noise and artifacts are fully eliminated for the
successful training of classifiers. The proposed method only has to undergo simple bandpass filtering
and to remove segments containing artifacts yet with a performance of 100% in all measures.

Alpha band power and theta band spectral density (PSD) were extracted from the EEG to become
the SVM training features for our previous works [91,92]. As expected, they have a lower classification
performance as compared with the proposed method (i.e., LSTM ECOC-SVM). This is because the
information from alpha band power and theta PSD are not adequate to classify non-severe TBI
resting-state EEG signals. More information is needed to sufficiently train an SVM, such as correlation
coefficient, phase difference, and others.

4. Conclusions

In this paper, experiments were conducted to obtain the optimum learning rate, mini-batch size,
number of hidden units, and optimizer. Optimum parameters determined included the learning rate
of 0.001, the mini-batch size of 4, 256 hidden units, and the ADAM optimizer. The proposed LSTM
ECOC-SVM architecture is made up of one LSTM cell with 256 hidden units and an ECOC-SVM
classifier. It was shown that the pre-processed EEG signal could supply quality information to the
proposed architecture, improving its performance compared to the one trained using raw EEG signal.
By fully utilizing the temporal advantage of EEG, the proposed architecture present a 100% high
performance of classification accuracy, sensitivity, specificity, and precision. The proposed method has
substantially outperformed similar works in the literature, as well as in our previous studies.
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