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Abstract: The long-distance recognition methods in indoor environments are commonly divided
into two categories, namely face recognition and face and body recognition. Cameras are typically
installed on ceilings for face recognition. Hence, it is difficult to obtain a front image of an individual.
Therefore, in many studies, the face and body information of an individual are combined. However,
the distance between the camera and an individual is closer in indoor environments than that in
outdoor environments. Therefore, face information is distorted due to motion blur. Several studies
have examined deblurring of face images. However, there is a paucity of studies on deblurring of
body images. To tackle the blur problem, a recognition method is proposed wherein the blur of body
and face images is restored using a generative adversarial network (GAN), and the features of face
and body obtained using a deep convolutional neural network (CNN) are used to fuse the matching
score. The database developed by us, Dongguk face and body dataset version 2 (DFB-DB2) and
ChokePoint dataset, which is an open dataset, were used in this study. The equal error rate (EER)
of human recognition in DFB-DB2 and ChokePoint dataset was 7.694% and 5.069%, respectively.
The proposed method exhibited better results than the state-of-art methods.
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1. Introduction

Currently, there are several methods of human recognition, including face, iris, fingerprint,
finger-vein, and body. However, long-distance face recognition in indoor and outdoor environments is
still limited. The human recognition methods can be largely divided into face, body, and iris. However,
there are problems with face and iris recognition methods. In these methods, original images can be
damaged due to motion blur or optical blur, which is generated when the images of human face or iris
are obtained from a long distance. The human recognition performance is significantly degraded due
to these types of damages. To solve this problem, the human body is typically used as for long-distance
recognition in indoor and outdoor environments.

The data can still contain a blur when human body is used for recognition. However, the human
body recognition is less affected than face or iris recognition. There are two methods for human body
recognition: gait recognition of an individual and texture and shape-based body recognition, which is
based on the still image of a human body. Gait recognition does not exhibit a blur problem. However,
the time required for forming the dataset is long because continuous image acquisition is required.
Thus, an experiment was conducted indoors for recognition using still images of a human body.

There are disadvantages to human body recognition in an indoor environment. The color of
clothes significantly affects the recognition performance. Thus, the human body is divided into
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two parts to evaluate the recognition performance. In several studies, the body and face have been
separated. However, blur restoration of the obtained data has never been performed before.

The method proposed in this study involves restoring the images of human body and face with
a blur via a generative adversarial network (GAN). Subsequently, the features of body and face are
extracted using a convolutional neural network (CNN) model. The final recognition performance is
determined based on the weighted sum and weighted product, which is a score-level fusion approach,
using the extracted features.

2. Related Work

Previous studies on long-distance human recognition can be divided into human recognition
with or without blur restoration, and they can be further divided into single modality-based or
multimodal-based methods.

2.1. Without Blur Restoration

Single modality-based methods include face recognition, body recognition based on texture,
and body recognition based on gait. Several extant studies have been conducted on face recognition.
Grgic et al. [1] obtained face data from three designated locations using five cameras. The recognition
performance was determined based on principal component analysis (PCA) of the obtained face data.
Banerjee et al. [2] used three types of datasets, namely FR_SURV, SCface, and ChokePoint, for the
experiment. The recognition was performed through soft-margin learning for multiple feature-kernel
combination (SML-MKFC) with domain adaptation (DA). The drawback of face recognition is that
facial information is vulnerable to noise, such as blur. There are important features in a face, such as
nasal bridge, eyebrow, and skin color, for recognizing an individual. The visibility of facial features is
reduced when important features are combined with noise, such as a blur, thereby interfering with
face recognition.

Most of the body recognition methods are gait-based, while others are texture and shape-based.
For gait-based recognition, Zhou et al. [3] obtained data using two methods of original side-face
image (OSFI) and gait energy image (GEI) fusion, as well as enhanced side-face image (ESFI) and
GEI fusion. Furthermore, they proceeded with recognition based on PCA and multiple discriminant
analysis (MDA). Gait-based recognition is less affected by noise, such a blur, because several images
of an individual’s gait are cropped based on the difference image of the background and object.
The difference image is compressed into a single image. However, an extensive amount of time and
data are required to obtain sufficient gait information. For texture and shape-based body recognition,
Varior et al. [4] used the Siamese CNN (S-CNN) architecture. Nguyen et al. [5] obtained image features
using AlexNet-CNN and then evaluated the recognition using PCA and support vector machine (SVM).
Shi et al. [6] used the S-CNN architecture reported in an extant study [4]. However, they used five
convolution blocks. Furthermore, a discriminative deep metric learning (DDML) was used in the study.
This method is not significantly affected by a blur because the object’s body information is included.
However, the color of clothes worn by the object comprises of a large portion of the body information.
Hence, the recognition performance is drastically reduced if the color of the clothes is similar to that of
the object, which is being recognized.

Multimodal-based methods are categorized into two types, namely face and gait-based body
recognition and face and texture and shape-based body recognition. For face and gait-based body
recognition, Liu et al. [7] measured the performance using the dataset obtained by other researchers
based on hidden Markov model (HMM) and Gabor features-based elastic bunch graph matching
(EBGM). Hofmann et al. [8] used eigenface calculation for face recognition and α-GEI for gait
recognition. This method exhibits the same advantages and disadvantages as gait-based body
recognition. The common advantage is that it is less affected by a blur because a gait feature is used.
The disadvantage is that it requires sufficiently high amount of data with continuous image motion for
obtaining the gait image. In a previous study [9], human body and face were separately experimented
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in indoor environments for face and texture and shape-based body recognition. Visual geometry group
(VGG) face net-16 for face and residual network (ResNet)-50 for body were used to obtain the features,
and the final recognition performance was evaluated based on a score-level fusion approach using the
obtained features. However, the problem with blur still persists when images are obtained in indoor
environment. Therefore, in the study [9], only the images without a blur were used by determining the
presence of a blur as per the threshold based on the method in the study [10].

2.2. With Blur Restoration

A blur is generated due to two main reasons. Motion blur is generated when an object moves,
and optical blur is generated when a camera films the object. Thus, researchers improved the images
using a deblur method and then proceeded with the evaluation of the recognition performance.
Alaoui et al. [11] performed image blurring by applying point spread function (PSF) with the face
recognition technology (FERET) database. The images were deblurred with fast total variation (TV)-l1
deconvolution, image features were obtained using PCA, and feature matching was performed with
Euclidean distance. Hadid et al. [12] generated a blur using PSF and then proceeded with deblurring
based on deblur local phase quantization (DeblurLPQ) and measured the recognition performance.
Nishiyama et al. [13] used two types of datasets and generated an arbitrary blur using PSF with
the FERET database and face recognition grand challenge (FRGC) 1.0. For blur restoration method,
Wien filters or bilateral total variation (BTV) regularization was used. Mokhtari et al. [14] performed face
restoration using two methods, namely centralized sparse representation (CSR) and adaptive sparse
domain selection with adaptive regularization (ASDS-AR). Face recognition was performed using PCA,
linear discriminant analysis (LDA), kernel principal component analysis (KPCA), and kernel Fisher
analysis (KFA). Heflin et al. [15] used the FERET database wherein the face area was detected in the
blurred image, motion blur and atmospheric blur were measured using a blur point spread function
(PSF), and, finally, face deblurring was performed using a deconvolution filter, such as Wiener filter, to
evaluate the recognition performance. Yasarla et al. [16] proposed uncertainty guided multi-stream
semantic network (UMSN) and performed facial image deblurring. This method involves dividing
the facial image region into four semantic networks and deblurring the blurred image and image
divided into four regions via a base network (BN). Considering the aforementioned issues of previous
researches, we propose a recognition method in which the blur on a body and face is restored using a
GAN, and the features of body and face obtained using a deep CNN are used to fuse the matching score.

Although they are not the researches on long-distance human recognition, Peng et al. studied two
challenges in clustering analysis, that is, how to cluster multi-view data and how to perform clustering
without parameter selection on cluster size. For this purpose, they proposed a novel objective function
to project raw data into one space where the projection embraces the cluster assignment consistency
(CAC) and the geometric consistency (GC) [17]. In addition, Huang et al. proposed a novel multi-view
clustering method called as multi-view spectral clustering network (MvSCN) which could be the
first deep version of multi-view spectral clustering [18]. To deeply cluster multi-view data, MvSCN
incorporates the local invariance within every single view and the consistency across different views
into a novel objective function. They also enforced and reformulated an orthogonal constraint as a
novel layer stacked on an embedding network.

Table 1 shows the summary of this study and previous studies on person recognition using
surveillance camera environment.
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Table 1. Summary of this study and previous studies on person recognition using surveillance camera environment.

Category Method Advantage Disadvantage

Without blur
restoration

Single modality

Face recognition
PCA [1] Low performance degradation due to

lighting changes.
Degraded recognition performance due to
distortion of image features due to a blur.SML-MKFC with DA [2]

Texture and shape-based
body recognition

S-CNN [4]
Low interference of a blur for

recognition.

Different individuals wearing the same
clothes are recognized as the same

individual.
CNN + PCA, SVM [5]

CNN + DDML [6]

Movement-based body
recognition PCA + MDA [3] Less affected directly by a blur. Requires an extensive time for acquiring

data.

Multimodal
Movement-based body

and face recognition

HMM/Gabor features
based EBGM [7] Less affected by a blur because it is

gait-based body recognition.

Sufficient data is required for continuous
images.

Distortion of face image due to noise, such as
lighting changes or blur.

Eigenface calculation and
αGEI [8]

Texture and shape-based
body and face recognition

VGG face net-16 and
ResNet-50 [9]

Easy to acquire data because
continuous images are not required.

Sufficient data is required for finetuning
based on data characteristics.

With blur
restoration

Single modality Face recognition

Fast TV-l1 and
Deconvolution+

PCA [11]

Improved recognition performance,
as blurred face images are restored.

Most studies focused on comparing the
deblurred facial image with the

original image.

DeblurLPQ [12]

Wien filters or BTV
regularization [13]

CSR + ASDS-AR [14]

PSF + Wiener filter [15]

UMSN [16]

Multimodal Texture and shape-based
body and face recognition Proposed method

Improved performance because body
and face were separated for

restoration.

Slow processing time due to restoration is
performed twice for body and face.
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3. Contribution of Our Research

Our research is novel in the following four ways in comparison to previous works:

- This is the first approach for multimodal human recognition by blur restoring the face and body
images using GAN.

- Different from previous work [9], the presence of a blur was determined based on a focus score
method in which blur restoration was applied via GAN for image in case that input image was
determined as blur existence. The error was reduced, when compared to that without proposed
focus score method and GAN.

- The structural complexity was reduced by separating the network for blur restoration and the
CNN for human recognition. In addition, the processing speed is usually faster when one image
of face and body is restored at simultaneously via GAN. However, our blur restoration proceeded
separately through GAN because face images exhibit detailed information, and the generation of
a blur exhibits different tendencies in face and body images.

- We make Dongguk face and body database version 2 (DFB-DB2), trained VGG face net-16
and ResNet-50, and GAN model for deblurring available by other researchers through [19] for
fair comparisons.

4. Proposed Method

4.1. System Overview

Figure 1 shows the overall configuration of the system proposed in this study. A face image is
obtained from the original image acquired in an indoor environment (step (1) in Figure 1). A body
image is obtained from the original image excluding the face image (step (2) in Figure 1). The focus
score of the face image is calculated (step (3) in Figure 1). An image exhibiting a focus score value of less
than the threshold (step (4) in Figure 1) undergoes restoration using DeblurGAN (step (5) in Figure 1)
and is combined with images exhibiting a focus score value that is greater than or equal to the threshold.
The restoration of body image via DeblurGAN is conducted in the same manner. Image features of face
and body are extracted by applying a CNN model to the image combined from the restored face and
body images and the image with a focus score greater than or equal to the threshold (step (6) and (7) in
Figure 1). The authentic/imposter matching distance is calculated using the feature vectors obtained
above (step (8) and (9) in Figure 1). The score-level fusion is conducted using the matching distance
(step (10) in Figure 1). The weighted sum and weighted product methods were for the score-level fusion
in this study. The final recognition rate was measured using score-level fusion (step (11) in Figure 1).
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4.2. Structure of GAN

A general description of a GAN is provided in this section. GAN consists of two networks,
namely generator and discriminator. Generator aims to generate a fake image similar to a real image
by considering Gaussian random noise as an input, whereas discriminator aims to find the fake
image by discriminating the real image from the fake image generated by the generator. Therefore,
a discriminator is trained to easily discriminate real and fake images, while a generator is trained to
ensure that a fake image is close to the real image to the maximum possible extent. However, it is
difficult to control the desired output for vanilla GAN because the input corresponds to Gaussian
random noise.

First, cycle-consistent adversarial networks (CycleGAN) [20] were used. Unlike the existing
GAN models, a CycleGAN does not distinguish between an input image and a target image. It uses
a reference image as an input that is expected to be the result of input image and output image.
There are two types of generators in CycleGAN, namely U-Net [21] architecture and residual blocks.
The generator used in this study exhibits a residual block architecture [20]. One of the characteristics of
a CycleGAN is the cycle-consistency loss. For example, if an input image X has generated an output Y
through a generator, the output Y goes through the generator again to generate X’. The cycle-consistency
loss refers to calculating the difference between X and X’.

Second, Pix2pix [22] was used. Pix2pix is a GAN applied with the concept of a conditional GAN
(CGAN) mode. The generator of Pix2pix is similar to that of U-Net [21]. Unlike U-Net, skip-connection
is applied between the encoder and decoder because a blur problem occurs due to the loss of image
details when the size of the image is enlarged and then reduced. Furthermore, DeblurGAN [23] uses the
input image and target image of a CGAN as an input. However, it exhibits a very different architecture.
The architecture of the generator in DeblurGAN consists of two convolutional blocks, 9 residual blocks,
and two transposed convolution blocks. Each convolution block contains instance normalization
layer [24] and rectified linear units (ReLU) layer, as shown in Table 2. Instance normalization [24] is
also referred as contrast normalization. ReLU layer serves as an activation function in residual blocks.
The loss function of DeblurGAN uses adversarial loss and content loss. The total loss of the two loss
functions can be calculated using Equation (1) as follows:

Ltotal = LAdv + λLCont. (1)

First, adversarial loss (LAdv) can be explained as follows. The adversarial loss discerns the blurred
image restored via a generator by using a discriminator. In this case, the loss is considered as optimal
when the difference between the loss discerned by the discriminator and the threshold value 1 is close
to 0. Thus, LAdv used in DeblurGAN is represented in Equation (2) as follows:

LAdv =
N∑

k=1

−Dθ(Gθ(IB)). (2)

In Equation (2), N denotes the number of images, Dθ denotes the discriminator network, Gθ denotes
the generator network, and IB denotes a blurred image. As specified in DeblurGAN [23], Wasserstein
GAN-gradient penalty (WGAN-GP) [25] was used for the adversarial loss. Next, LCont is explained in
Equation (3).

LCont =
1

Xn,mYn,m

Xn,m∑
k=1

Yn,m∑
j=1

(∅n,m(IS)n,m −∅n,m(Gθ(IB))n,m)
2. (3)

With respect to content loss, either L1 or mean absolute error (MAE) loss or L2 or mean squared
error (MSE) loss can be selected. However, perceptual loss was selected for the content loss of
DeblurGAN. The perceptual loss of DeblurGAN can be distinguished by the difference between the
restored image and target image obtained through conv3.3 features maps of VGG-19 pretrained with
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ImageNet. In Equation (3), Xn,m and Yn,m are the size of a feature map, and ∅n,m is the feature map
obtained from the mth convolutional layer. Furthermore, IS is the target image for restoring the blurred
image [23]. Tables 2 and 3 summarize the architecture of the generator and discriminator in DeblurGAN.
Figure 2a,b denote the architecture of a generator and discriminator in DeblurGAN, respectively.

Table 2. Generator of DeblurGAN. GAN = generative adversarial network.

Layer Type Size of Feature
Map

Number
of Filters

Size of
Filters

Number
of Strides

Number of
Iterations

Image input layer
256 (height) × 256

(width) × 3
(channel)

Convolution layer 256 × 256 × 64 64 7 × 7 1

Instance normalization layer

ReLU

Convolution
block 1

Convolution layer 128 × 128 × 128 128 3 × 3 2

Instance normalization layer

ReLU

Convolution
block 2

Convolution layer 64 × 64 × 256 256 3 × 3 2

Instance normalization layer

ReLU

Resblocks

Convolution layer 64 × 64 × 256 256 3 × 3 1

9

Instance normalization layer

ReLU

Convolution layer 64 × 64 × 256 256 3 × 3 1

Instance normalization layer

Transposed
blocks 1

Contraposed layer 128 × 128 × 128 128 4 × 4 2

2Instance normalization layer

ReLU

Transposed
blocks 2

Contraposed layer 256 × 256 × 64 64 4 × 4 2

Instance normalization layer

ReLU

Convolution layer (Output layer) 256 × 256 × 3 3 7 × 7 1

Table 3. Discriminator of DeblurGAN (All convolution layers 1–5 * indicate that they have two paddings.).

Layer Type Size of Feature Map Number of Filters Size of Filters Number of Strides

Input image 256 × 256 × 3

Target image 256 × 256 × 3

Concatenator 256 × 256 × 6

Convolution layer1 * 129 × 129 × 64 64 4 × 4 × 6 2

Convolution layer2 * 65 × 65 × 128 128 4 × 4 × 64 2

Convolution layer3 * 33 × 33 × 256 256 4 × 4 × 128 2

Convolution layer4 * 34 × 34 × 512 512 4 × 4 × 256 1

Convolution layer5 *
(Output layer) 35 × 35 × 1 1 4 × 4 × 512 1
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4.3. Structure of Deep Learning (VGG Face Net-16 and ResNet-50)

The face and body images restored with DeblurGAN used VGG face net-16 and ResNet-50. In our
previous research [9], we compared the recognition accuracies by VGG face net-16 and ResNet-50 with
those by other CNN architectures on the custom-made Dongguk face and body database (DFB-DB1)
whose acquisition environments including scenario and cameras were same to those of DFB-DB2 used
in our research. According to the experimental results, VGG face net-16 and ResNet-50 outperform
other CNN architectures, and we adopt these CNN models in our research. A pretrained model was
used for two types of CNN models, which were fine-tuned based on the characteristics of the dataset
used in this study.

The VGG face net-16, which was used for face images, consists of convolution filters and neural
network. Specifically, it consists of 13 convolutional layers, five pooling layers, and three fully
connected layers. The CNN pretrained model used in this study was trained with Labeled faces in
the wild [26] and YouTube faces [27]. The size of the image restored with GAN corresponded to
256 × 256, and it was resized to 224 × 224 for using VGG face net-16 for fine-tuning. The resized image
undergoes convolution calculation through the convolutional layer. The calculation is as follows:
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output = (W − K + 2P)/S + 1. Here, W denotes the width and height of an input, K denotes the size of
a convolutional layer filter, P denotes padding, and S denotes stride. For example, if a 224 × 224 image
has convolution filter with K = 3, P = 0, and S = 1, then the output is (224 − 3 + 0)/1 + 1, i.e., 222.

There are many types of ResNet based on the number of convolutional layers. As the number of
layers increase, the feature map of body images becomes smaller, and thereby causing a vanishing
or exploding gradient problem. Thus, a shortcut is used for the ResNet architecture to avoid such a
problem. In the shortcut, the input X goes through three convolutional layers and performs convolution
calculation three times. If input X that has completed the convolution calculation is termed as F(x),
then the shortcut is the sum of the features, or F(x) + X, which is then used as an input for the next
convolutional layer. To reduce the convolution calculation time, 1 × 1, 3 × 3, and 1 × 1 convolutional
layers were used as opposed to two 3 × 3 convolutional layers. This is termed as the bottleneck
architecture wherein 1 × 1 in the front reduces the dimension of the input image, while the 1 × 1 in the
back enlarges the dimensions.

5. Experimental Results and Analysis

5.1. Experiments for Database and Environment

Two types of cameras were used in this study to acquire the DFB-DB2. The cameras were Logitech
BCC950 [28] and Logitech C920 [29]. The cameras were also used for Dongguk face and body dataset
version 1 (DFB-DB1). There was no difference in the scenario used for DFB-DB2 and DFB-DB1 in
the study [9]. Furthermore, the DFB-DB1 only consists of images above the threshold based on the
method of an extant study [10]. However, the DFB-DB2 used in this study included images below the
threshold that were restored with DeblurGAN. Figure 3 shows the scenario of the images with respect
to DFB-DB2. In the figure, (a) shows the images acquired via the Logitech BCC950 camera, whereas (b)
shows those acquired via the Logitech C920 camera.

Table 4 summarizes the details of face and body images of two databases, namely DFB-DB2 and
ChokePoint dataset [30], used in this study. Two-fold cross validation was applied to both databases
and each dataset was divided into sub-dataset 1 and 2. For example, if sub-dataset 1 is used for
training, then sub-dataset 2 is used for testing. Furthermore, if sub-dataset 2 is used for training, then
sub-dataset 1 is used for testing to evaluate the performance.

Table 4. Total images of DFB-DB2 and ChokePoint dataset.

DFB-DB2 Chokepoint Dataset

Number of
Classes in
Each Fold

Number of
Augmented Images

(For Training)

Number of
Images (For

Testing)

Number of
Classes in
Each Fold

Number of
Augmented Images

(For Training)

Number of
Images (For

Testing)

Face
Sub-Dataset1 11 200,134 827 14 519,050 10,381

Sub-Dataset2 11 239,338 989 14 513,450 10,269

Body Sub-Dataset1 11 200,134 827 14 519,050 10,381

Sub-Dataset2 11 239,338 989 14 513,450 10,269
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Figure 3. Representative Dongguk face and body dataset version 2 (DFB-DB2) images captured by
(a) Logitech BCC950 camera and (b) Logitech C920 camera.

The ChokePoint dataset is provided at no cost by National ICT Australia Ltd. (NICTA) and
consists of Portal 1 and 2. Portal 1 contains 25 individuals (19 males and 6 females), and Portal 2
contains 29 individuals (23 males and 6 females). A total of three cameras were used from six locations
to constitute the dataset. The dataset of the study [9] was maintained. Furthermore, the images
considered exhibit a blur, based on the threshold value in an extant study [10], were restored with
DeblurGAN and included for evaluating the recognition performance. Figure 4 shows the examples of
the ChokePoint dataset.
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Figure 4. Example images for ChokePoint dataset.

5.2. Training DeblurGAN and CNN Models

5.2.1. DeblurGAN Model Training Process and Results

Blur image and clear image were distinguished for training DeblurGAN based on the focus
score threshold value [9]. The values below the threshold were set as test images for DeblurGAN;
the focused image exhibiting a value greater than or equal to the threshold was used as a reference
image. Pytorch version of DeblurGAN [31] was used for the program. All the images for training and
testing DeblurGAN were resized to 256 × 256. The learning rate was 0.0001, and the batch size was 1
for training DeblurGAN.

5.2.2. CNN Model Training Process and Results

After performing image deblurring with DeblurGAN, face images were trained with VGG face
net-16 [32] and body images were trained with ResNet-50 [33]. The number of data points for training
each deep CNN model was insufficient, thus the number of data points was increased via data
augmentation for training.

As shown in Table 4, data augmentation was performed only in the training data, whereas the
original non-augmented data were used as test data. The number of test data points for the DFB-DB2 is
less than that of the ChokePoint dataset, which is an open dataset, and therefore center image crop was
performed during augmentation. The cropped image was applied with image translation and cropping
for five pixels in top, bottom, left, and right directions. Furthermore, the image was horizontally
flipped (mirroring). The training data that was processed accordingly included 440,000 augmented
images from sub-datasets 1 and 2. For the ChokePoint dataset, after performing center image crop,
image translation and cropping were applied for two pixels in top, bottom, left, and right directions.
Furthermore, horizontal flipping was applied to obtain images that were magnified by 50 times.
The sub-datasets 1 and 2 in Table 4 include a total of 1.03 million augmented images. Figure 5 shows
the data augmentation method used in this study.
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Figure 5. Data augmentation method involving (a) image translation and cropping and (b)
horizontal flipping.

Given that VGG face net-16 is pretrained with Oxford face database, it was appropriately fine-tuned
for the characteristics of the images in DFB-DB2. Furthermore, ResNet-50 also uses the pretrained
model, and thus was appropriately fine-tuned for the characteristics of the image database used in this
study. The learning rate was 0.0001, and the batch size was 20 for the training of VGG face net-16 and
15 for the training of ResNet-50.

Figure 6 illustrates the plots of the loss-accuracy of the training CNN model for trained face and
body images. The specifications of the computer used for the experiment are as follows: CPU Intel(R)
Core(TM) i7-6700 CPU @ 3.40 GHz, 16 GB RAM, NVIDIA GeForce GTX 1070 graphic card, and CUDA
version 8.0.
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Figure 6. Plots depicting training loss and accuracy of DFB-DB2 ((a)–(d)) and ChokePoint dataset
((e)–(h)). Visual geometry group (VGG) face net-16 was used in the case of (a,e), the 1st fold was used
for (b,f), the 2nd fold ResNet-50 was used in the case of (c), 1st fold in the case of (g), and the 2nd fold
in the case of (d,h).
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5.3. Testing Results from DeblurGAN and CNN Model

For comparing the original image and deblurred image during the deblurring process,
signal-to-noise ratio (SNR) [34], peak signal-to-noise ratio (PSNR) [35], and structural similarity
(SSIM) [36] can be used. However, the aforementioned methods, such as SNR, PSNR, and SSIM, cannot
be compared with the proposed method because the blur or noise in the blurring images used in this
study was naturally generated during the acquisition of the data as opposed to artificial generation of
blur or noise in the original image.

5.3.1. Testing with CNN Model for DFB-DB2

Two-fold cross validation was performed to test the training CNN model. For a face image,
4096 features were obtained from the 7th fully connected layer of VGG face net-16. For a body image,
2048 features were obtained from the average pooling layer of ResNet-50. Given the features obtained
from the CNN model, the image feature geometric center was calculated by using the Euclidean
distance to determine the gallery image. The authentic and imposter distance was calculated by finding
the normalized Euclidean distance between the gallery image and other probe images. The distance
was used to calculate the equal error rate (EER).

Ablation Study

The performance of DFB-DB2 was compared with or without DeblurGAN. Here, “without
DeblurGAN” means that both the procedures of focus score checking and DeblurGAN were not
operated, whereas “with DeblurGAN” represents that both the procedures of focus score checking and
DeblurGAN were adopted. The same DFB-DB2 and ChokePoint dataset were used for the experiment,
while VGG face net-16 and ResNet-50 were used for the CNN model. The values in Tables 5 and 6
show that the recognition performance was improved after using DeblurGAN because there was a
reduction in the number of changes in pixels between the original image and image generated after
using DeblurGAN.

Table 5. Comparison of equal error rate (EER) for face recognition and body recognition on DFB-DB2
without or with DeblurGAN (unit: %).

Method Face Body

Without DeblurGAN
(without focus score checking)

1st fold 45.29 33.68

2nd fold 41.85 28.7

Average 43.52 31.19

With DeblurGAN
(with focus score checking)

1st fold 12.44 21

2nd fold 7.94 16.48

Average 10.19 18.74

Table 6. Comparison of EER for score-level fusion on DFB-DB2 without or with DeblurGAN (unit: %).

Method
Score-Level Fusion

Weighted Sum Weighted Product

Without DeblurGAN
(without focus score checking)

1st fold 32.44 32.57

2nd fold 27.94 27.93

Average 30.19 30.25

With DeblurGAN
(with focus score checking)

1st fold 9.835 9.901

2nd fold 5.552 5.557

Average 7.694 7.729
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As shown in Figure 7, the performance of ‘with DeblurGAN (Face)’ and ‘with DeblurGAN
(Body)’ was improved. Face and body refer to face images and body images, respectively. Based on
the score-level fusion approach, the weighted sum method exhibited a better performance than the
weighted product method.
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Comparison between Previous Method and Proposed Methods

First, blur restoration is performed using other GAN methods besides DeblurGAN, which was
proposed in this study for comparison. Specifically, CycleGAN [20], Pix2pix [22], attention-guided
GAN (AGGAN) [37,38], and DeblurGAN version 2 (DeblurGANv2) [39] were used for GAN models.
Table 7 and Figure 8 show the comparison results of GAN for DFB-DB2, and our method outperforms
the state-of-the-art methods. As shown in Table 7, the recognition performance of CycleGAN,
which restored the body image in DFB-DB2, was outstanding because DeblurGAN is a CGAN type
method wherein the input image and target image are paired. However, when the target image
is composed in this study, only the image that is similar to the input image is used for restoration.
Therefore, the background, texture of clothes, and the individual’s gait can be different, and this makes
the restoration more difficult.

Table 7. Comparisons of EER for recognition by proposed method with those by other GAN-based
methods in DFB-DB2 (unit: %).

Method Average

Face

Proposed method 10.19

CycleGAN [20] 13.255

Pix2pix [22] 13.315

AGGAN [37,38] 23.01

DeblurGANv2 [39] 15.64

Body

Proposed method 18.74

CycleGAN [20] 15.745

Pix2pix [22] 23.195

AGGAN [37,38] 22.52

DeblurGANv2 [39] 22.71

Weighted sum

Proposed method 7.694

CycleGAN [20] 8.29

Pix2pix [22] 11.49

AGGAN [37,38] 14.649

DeblurGANv2 [39] 11.801

Weighted product

Proposed method 7.729

CycleGAN [20] 8.41

Pix2pix [22] 11.5605

AGGAN [37,38] 14.342

DeblurGANv2 [39] 11.869
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Figure 8. ROC curves via proposed and other GAN methods in DFB-DB2 (a,b) face and body image
recognition results and (c) score-level fusion result.

Second, the experiment was conducted to compare face and face and body recognition.
The experiment to compare face recognition was conducted with VGG face net-16 [40] and
ResNet-50 [41,42]. Multi-level local binary pattern (MLBP) + PCA [43,44], histogram of gradient
(HOG) [45], local maximal occurrence (LOMO) [46] and ensemble of localized features (ELF) [47] were
used for the experiment to compare face and face and body recognition. Table 8 summarizes the
comparison results of face recognition, and Table 9 summarizes the comparison results of face and face
and body recognition. Figure 9 shows the receiver operating characteristic (ROC) curve of the results
in Tables 8 and 9.

Table 8. Comparison of EER for the results of the proposed method and previous face recognition
methods (unit: %).

Method 1st Fold 2nd Fold Average

Proposed method 9.835 5.552 7.694

VGG face net-16 [40] 17.44 16.71 17.075

ResNet-50 [41,42] 13.96 14.06 14.01
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Table 9. Comparison of EER for the results of the proposed and previous face and body recognition
methods (unit: %).

Method 1st Fold 2nd Fold Average

Proposed method 9.835 5.552 7.694

MLBP + PCA [43,44] 29.38 27.84 28.61

HOG [45] 38.09 44.14 41.12

LOMO [46] 21.98 23.4 22.69

ELF [47] 20.91 23.87 22.39
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Figure 9. ROC curves obtained via comparing proposed and the state-of-art-methods. (a) Face image
recognition results and (b) face and body image recognition results.

Third, the accuracy of recognition was evaluated via the cumulative match characteristic (CMC)
curve. Figure 10 shows the comparison results of the proposed method and methods in Tables 8 and 9.
The horizontal axis corresponds to the rank, and the vertical axis corresponds to the genetic acceptance
rate (GAR) accuracy for each rank. Table 4 shows that the DFB-DB2 consists of 11 individuals, as
shown in Figure 10.
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Figure 10. Cumulative match characteristic (CMC) curves of the proposed and previous methods on
DFB-DB2. (a) Face image recognition results by the proposed and previous methods and (b) face and
body image recognition results via the proposed and previous methods.

Figure 11 shows the difference in the performance by measuring the Cohen’s d-value and t-test
results of face recognition and face and body recognition and comparisons with the proposed method.
With respect to face recognition, the difference in the Cohen’s d-value between the proposed method
and ResNet-50 [41,42] was 2.95. This significantly exceeds the effect size of 0.8 and is thus high.
The p-value of the t-test is approximately 0.098, which differs from the proposed method by 99.902%.
With respect to face and body recognition, the Cohen’s d-value and t-test results were measured for the
ELF [47] that exhibited the second-best performance when compared to that of the proposed method
with a Cohen’s d-value of 5.65. This exhibited a large effect size, and the t-test exhibited a difference
of 99.97%.
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on the left corresponds to the enrolled image, and the image on the right corresponds to the probe 
image. The portion in the red box of the image on the right is restored via DeblurGAN. 
  

Figure 11. T-test performance of our proposed method and the second-best model in terms of average
accuracy. (a) Comparison of the proposed method and ResNet-50 and (b) comparison of the proposed
method and ensemble of localized features (ELF).

The false acceptance ratio (FAR), false rejection ratio (FRR), and correct case of the previous
experimental results are analyzed in the plots. Figure 12 illustrates different cases, in which the image
on the left corresponds to the enrolled image, and the image on the right corresponds to the probe
image. The portion in the red box of the image on the right is restored via DeblurGAN.
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Figure 12. Cases of false acceptance (FA), false rejection (FR), and correction recognition (a)–(c) in 
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Figure 12. Cases of false acceptance (FA), false rejection (FR), and correction recognition (a)–(c) in
DFB-DB2. (a) FA cases, (b) FR cases, and (c) cases of correct recognition.
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5.3.2. Class Activation Map

Subsequently, we analyzed the class activation feature map of VGG face net-16 and ResNet-50
that were used for the DFB-DB2 to evaluate the recognition performance for face and body images.
Figure 13 shows the class activation feature map from a specific layer using Grad-CAM method [48].
Furthermore, the important features shown through the distribution. Figure 13a,d,g,j correspond to
the input face and body images of the CNN model, and Figure 13b,c,e,f,h,i,k,l show the class activation
feature map results of face and body images.
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Figure 13. Results on class activation feature map on DFB-DB2. (a,d) Input face images, (b,c,e,f) results
via VGG face net-16 in rectified linear units (ReLU) layer, (b,e) images from 7th ReLU layer, (c,f) images
from 13th ReLU layer, (g,j) input body images, (h,i,k,l) results via ResNet-50 in batch normalized
layer, (h,i) images from last batch normalized layer on conv5 2nd block, (k,l) images from last batch
normalized layer on conv5 3rd block.

Specifically, when the input (a) is processed through VGG face net-16, (b) corresponds to the class
activation feature map of the 7th ReLU layer, and (c) corresponds to the class activation feature map of
the 13th ReLU layer. The image in (c) shows the distribution focused around the face area where the
red color represents the main feature, while the blue color represents less important features. The black
color indicates that no features were detected. When the process goes from (b) to (c), the features
are more focused around the face region. Additionally, body images were extracted from the batch
normalized layer. In contrast to the face image results, the main features were observed around the
body region because the trained part of the ResNet-50 model considers information with respect to the
individual’s body and clothes as important features.

5.3.3. Testing with CNN Model for ChokePoint Dataset

Ablation Study

The images restored with DeblurGAN and images with a score exceeding the threshold value
were combined in the experiment, as proposed in the study. Based on the results in Tables 10 and 11,
the weighted sum method, among the score-level fusion methods, exhibited better results. Figure 14
shows the results in Tables 10 and 11 in the form of plots. As shown in the plots in Figure 14,
the recognition performance improves when DeblurGAN is applied. Furthermore, the weighted
product method exhibited better results among score-level fusion methods.

Table 10. Comparison of EER for face recognition and body recognition on ChokePoint dataset without
or with DeblurGAN (unit: %).

Method Face Body

Without DeblurGAN
(without focus score checking)

1st fold 11.76 18.50

2nd fold 8.09 18.46

Average 9.925 18.48

With DeblurGAN
(with focus score checking)

1st fold 7.05 15.97

2nd fold 6.39 15.2

Average 6.72 15.585
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Table 11. Comparison of EER for score-level fusion on ChokePoint dataset without or with DeblurGAN
(unit: %).

Method
Score-Level Fusion

Weighted Sum Weighted Product

Without DeblurGAN
(without focus score checking)

1st fold 9.84 9.79

2nd fold 6.55 6.43

Average 8.195 8.11

With DeblurGAN
(with focus score checking)

1st fold 5.162 5.163

2nd fold 4.99 4.975

Average 5.076 5.069
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Comparison between Previous Methods and Proposed Method

With respect to the GAN models for blur image restoration, the performance of CycleGAN and
DeblurGAN was compared. Table 12 and Figure 15 show the results and plots, respectively. The results
indicated that DeblurGAN exhibited better recognition performance than CycleGAN.
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Table 12. Comparisons of EER for recognition by proposed method with that by CycleGAN (unit: %).

Method 1st Fold 2nd Fold Average

Face
Proposed method 7.05 6.39 6.72

CycleGAN [20] 9.05 6.43 7.74

Body
Proposed method 15.97 15.2 15.585

CycleGAN [20] 18.41 20.41 19.41

Weighted sum
Proposed method 5.162 4.99 5.076

CycleGAN [20] 7.05 5.331 6.1905

Weighted product
Proposed method 5.163 4.975 5.069

CycleGAN [20] 7.023 5.362 6.1925

Second, the existing face recognition and face and face and body recognition methods were
compared with the proposed method. Tables 13 and 14 show the experimental results, and Figure 16
illustrates the results in the plots.

Table 13. Comparison of EER for recognition results via the proposed method and previous face
recognition methods (unit: %).

Method 1st Fold 2nd Fold Average

Proposed method 5.163 4.975 5.069

VGG face net-16 [40] 49.29 48.25 48.77

ResNet-50 [41,42] 12.93 16.97 14.95

Table 14. Comparison of EER for recognition results via the proposed and previous face and body
recognition methods (unit: %).

Method 1st Fold 2nd Fold Average

Proposed method 5.163 4.975 5.069

MLBP + PCA [43,44] 37.75 42.38 40.07

HOG [45] 41.84 41.47 41.66

LOMO [46] 29.7 21.57 25.635

ELF [47] 31.93 23.94 27.935
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Figure 16. ROC curves for proposed and the state-of-art-method on ChokePoint dataset. (a) Face image
results and (b) face and body image results.

Figure 17 shows the comparison of the CMC curve of the proposed method and previous methods
for face and face and body recognition. As shown in Figure 17a,b, the performance of the proposed
method exceeded that of other methods.
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Figure 18. Cases corresponding to false acceptance (FA), false rejection (FR), and correction recognition
(a)–(c) Cases from ChokePoint dataset (a) FA cases, (b) FR cases, and (c) cases of correct recognition.

Figure 19 shows the difference in the performance by measuring the Cohen’s d-value and
t-test results of face recognition and face and body recognition and comparison with the proposed
method. With respect to face recognition, the Cohen’s d-value between the proposed method and
ResNet-50 [41,42] is 4.89, and this significantly exceeds the effect size of 0.8, thus its being high.
The p-value of the t-test is approximately 0.03941, which differs from the proposed method by 99.961%.
With respect to face and body recognition, Cohen’s d-value and t-test results were measured for the
ELF [47] that exhibited the second-best performance when compared to that of the proposed method.
The Cohen’s d-value is 5.06, thereby exhibiting a large effect size, and the t-test exhibited a difference
of 99.963%.
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Figure 19. T-test performance of the proposed method and second-best model in terms of average
accuracy. (a) Comparison of the proposed method and ResNet-50 and (b) comparison of the proposed
method and local maximal occurrence (LOMO).

5.3.4. Class Activation Map

In the subsequent experiment, the class activation feature map of the ChokePoint dataset was
examined. Figure 20 shows the class activation feature map results. The face image signifies the
class activation feature map obtained from the ReLU layer of VGG face net-16. Figure 20h,i,k,l of
Figure 20b,c,e,f body image represent the class activation feature map of the image that passed through
the batch normalized layer. In the result of the images, the red color represents the main feature,
and the blue color represents less important features. Similar results to the experiment using DFB-DB2
are obtained in Figure 20.
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Figure 20. Result on class activation feature map on ChokePoint dataset. (a,d) Input face images, 
(b,c,e,f) results for the VGG face net-16 in ReLU layer, (b,e) images from 7th ReLU layer, (c,f) images 
from 13th ReLU layer, (g,j) input body images, (h,I,k,l) results for the ResNet-50 in batch normalized 
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Figure 20. Result on class activation feature map on ChokePoint dataset. (a,d) Input face images,
(b,c,e,f) results for the VGG face net-16 in ReLU layer, (b,e) images from 7th ReLU layer, (c,f) images
from 13th ReLU layer, (g,j) input body images, (h,i,k,l) results for the ResNet-50 in batch normalized
layer, (h,i) images from the last batch normalized layer on conv5 2nd block, and (k,l) images from the
last batch normalized layer on conv5 3rd block.
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5.3.5. Comparisons of Processing Time on Jetson TX2 and Desktop Computer

In the next experiment, the computing speed of the proposed method was compared using Jetson
TX2 board [49] as shown in Figure 21 and a desktop computer including NVIDIA GeForce GTX 1070
graphic processing unit (GPU) card. Jetson TX2 board is an embedded system equipped with NVIDIA
Pascal™GPU architecture with 256 NVIDIA CUDA cores, 8 GB 128-bit LPDDR4 memory, and dual-core
NVIDIA Denver 2 64-Bit CPU. The power consumption is less than 7.5 watts. The proposed method
was ported with Keras [50] and TensorFlow [51] in Ubuntu 16.04 OS. The versions of the installed
framework and library include Python 3.5 and TensorFlow 1.12; NVIDIA CUDA® toolkit [52] and
NVIDIA CUDA® deep neural network library (CUDNN) [53] versions are 9.0 and 7.3, respectively.
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As shown in Tables 15 and 16, our method requires the time cost of a total of 75.72 ms and 481.7 ms
on desktop computer and Jetson TX2 embedded system, respectively, which means that our method
can be operates at the speed of 13.2 frames/s (1000/75.72) and 2.08 frames/s (1000/481.7) on desktop
computer and Jetson TX2 embedded system, respectively. The Jetson TX2 embedded system has less
computing resource and GPU of lower speed compared to those in the desktop computer. Therefore,
the processing speed on Jetson TX2 is slower than that on desktop computer. However, more advanced
and cheaper GPU card and embedded GPU system have been fast commercialized, and our method
can be operated at faster speed on those systems.

Table 15. Comparison of processing time on Jetson TX2 and desktop computer by DeblurGAN (unit: ms).

Platform DeblurGAN

Desktop computer 32

Jetson TX2 349

Table 16. Comparison of processing time on Jetson TX2 and desktop computer by VGG face net-16 and
ResNet-50 (unit: ms).

Platform VGG Face Net-16 ResNet-50 Total

Desktop computer 24.8 18.92 43.72

Jetson TX2 91.9 40.8 132.7
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6. Conclusions

There were lots of works that use GAN for deblur [38,39,54–56]. However, most previous works
aimed at the visibility enhancement of general scene images, whereas the main purpose of our research
is to enhance the recognition accuracy of face and body images. In the previous works, GAN tried
to generate the image of high visibility and distinctiveness although limited amount of noise is
additionally included in the generated image. However, GAN in our research tries to generate the
face and body images with which the higher recognition accuracies can be obtained. It means that
the maximization of intra-class consistency (from matching between same people) and inter-class
variation (from matching between different people) in the generated image is more important than
the visibility enhancement in our GAN. Therefore, we compared the recognition accuracies of face
and body images by our GAN with those by other GANs, as shown in Tables 7 and 12 and Figures 8
and 15, instead of the metrics showing the image visibility, such as peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM), like previous works [38,39,54–56]. Consequently, it is not appropriate
to use our method to handle the natural images.

The study proposed a deep CNN-based recognition method involving a score-level fusion
approach for face and body images in which a GAN is applied to restore the blur problem that is
generated when body recognition data is obtained in indoor environments from a long distance.
Previous studies focused on minimizing a blur if discovered in face images although deblurring is
typically omitted for body images because detailed information is considered as absent in body images
when compared to the face images. However, the blur problem in body images affects recognition
performance. To solve the problem, face images and body images were separated, and a blur was
then restored using a GAN model in the study. Higher processing time is obtained if restoration is
performed independently for face and body images using a GAN model. However, better restoration
of distinctive features of face and body is observed. For impartial comparison experiments, the GAN
model was used for restoration, VGG face net-16 and ResNet-50 were used for training in the study,
and the DFB-DB2 built by the researchers was disclosed.

In future work, we would research about the advanced GAN model which can process the face
and body images simultaneously. For that, we also consider the scheme of pre-classification of input
image into face and body image, as well as adopting different loss functions according to input image.
In addition, we would study the combined structure of GAN and recognition CNN models for the
reduction of training time, and the measures to increase the processing speed of an embedded system
would be explored via examining a lighter GAN for deblurring. Furthermore, our deblur-based
recognition method would be applied to various biometric systems, including iris and finger-vein to
evaluate recognition performance.
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