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Abstract: In contemporary research on human action recognition, most methods separately consider
the movement features of each joint. However, they ignore that human action is a result of
integrally cooperative movement of each joint. Regarding the problem, this paper proposes an action
feature representation, called Motion Collaborative Spatio-Temporal Vector (MCSTV) and Motion
Spatio-Temporal Map (MSTM). MCSTV comprehensively considers the integral and cooperative
between the motion joints. MCSTV weighted accumulates limbs’ motion vector to form a new vector
to account for the movement features of human action. To describe the action more comprehensively
and accurately, we extract key motion energy by key information extraction based on inter-frame
energy fluctuation, project the energy to three orthogonal axes and stitch them in temporal series to
construct the MSTM. To combine the advantages of MSTM and MCSTV, we propose Multi-Target
Subspace Learning (MTSL). MTSL projects MSTM and MCSTV into a common subspace and makes
them complement each other. The results on MSR-Action3D and UTD-MHAD show that our method
has higher recognition accuracy than most existing human action recognition algorithms.

Keywords: human action recognition; Motion Collaborative Spatio-Temporal Vector; Motion Spatio-Temporal
Map; Multi-Target Subspace Learning; key information extraction based on inter-frame energy fluctuation

1. Introduction

Human action recognition [1] is a research hotspot in the field of artificial intelligence
and pattern recognition. The research achievements have been used in many aspects of life [2],
such as human-computer interaction, biometrics, health monitoring, video surveillance systems,
somatosensory game, robotics, etc. [3].

Due to the development of lower-cost depth sensors, deep cameras have been widely used in
action recognition. Compared with traditional red, green and blue (RGB) cameras, the depth camera
is not sensitive to lighting conditions [4]. It is easy to distinguish the background and foreground,
and provides human depth data. In addition, human skeletal information can also be obtained from
the depth map.

So far, many scholars have used depth sequences for human action recognition research. Li et al. [5]
selected representative 3D points to depict human action. Oreifej et al. [6] proposed histogram of
oriented 4d normals (HON4D) to capture the structural information of action. Yang et al. [7] proposed
depth motion map (DMM) to accumulate the motion energy of neighboring moments.

Since the skeletal information can directly describe the movement of human joints, many scholars
have begun to use skeleton sequences to recognize human action. Xia et al. [8] proposed histograms of
3D joints (HOJ3D) as a compact representation of human action. Vemulapalli et al. [9] represented
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human actions as curves that contain skeletal action sequences. They modeled the 3D geometric
correlations among different body parts by using rotations and translations. Luvizon et al. [10]
proposed a robust method based on vector of locally aggregated descriptors (VLAD) algorithm and
clustering library, which extracts spatiotemporal local feature sets from joint subgroups to represent
human action.

In the field of action recognition, the use of single modal data is one-sided, and it is necessary to
integrate different modals data for comprehensive decision-making. Many fusion methods have
been successfully applied to action recognition, among which feature fusion is most extensive.
Canonical Correlation Analysis (CCA) [11] and Discriminant Correlation Analysis (DCA) [12] are
commonly used feature fusion methods.

Although significant progress has been made in human action recognition, there are still
shortcomings. Currently, many studies only independently perform feature extraction [13] and
recognition of some motive joints. However, they did not consider the comprehensiveness,
integration and collaboration between the joints. For example, in throwing, the main movement part of
the body is right hand. If we only consider the movement features of right hand, this action is likely to
be recognized as a waving. If we combine the movements of the left hand, left and right legs of the body
with those of the right hand, then the possibility of this action being recognized as a throwing is greatly
enhanced. Regarding the problem, this paper proposes an action feature representation algorithm that
considers the integrally cooperative movement features of human action, called Motion Collaborative
Spatio-Temporal Vector (MCSTV) and Motion Spatio-Temporal Map (MSTM). MCSTV reflects
the integrally cooperative of human action through weighted accumulating limbs’ motion vector.
MSTM can accurately describe the spatial structure [14] and temporal information [15] of actions,
we extract key motion energy by key information extraction based on inter-frame energy fluctuation,
and project the key energy of body on three orthogonal axes and stitched according to temporal series
to form three-axis MSTMs. To give full play to the advantages of MSTM and MCSTV, we propose
Multi-Target Subspace Learning (MTSL). MTSL projects MSTM and MCSTV into a common subspace,
alienates the inter-class distance of samples of different categories and reduces the dimension of
projection target area by constructing multiple projection target centers of each sample of the same
category. The workflow illustration of our method is shown in Figure 1.

Figure 1. Workflow illustration of our method.

In this paper, we focus on the challenging problem of action recognition. Our contributions are
as follows:

• Motion Collaborative Spatio-Temporal Vector is proposed, which is a feature representation
method that comprehensively considers the integral and cooperative of human action.

• Motion Spatio-Temporal Map is proposed, which is a feature representation method that fully
preserves the spatial structure and temporal information of human action.

• Key information extraction based on inter-frame energy fluctuation is proposed, which is a
method that extracts key information in motion energy.

• Multi-Target Subspace Learning is proposed, which is used to fuse MCSTV and MSTM.
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This paper is organized as follows. In Section 2, the related work is briefly reviewed. In Section 3,
method is detailly described. The results of experimental and discussions are presented in Section 4.
Finally, Section 5 summarizes the paper.

2. Related Work

2.1. Action Recognition Based on Skeleton Approach

Human action recognition based on skeleton approach is a research hotspot. Lv et al. [16]
decomposed the high dimensional 3D joint space into a set of feature space. Then, the hidden
Markov model (HMM) combined with multi-class AdaBoost (Adabbs.m2) algorithm and dynamic
programming algorithm are used to segment and recognize the actions. Hussein et al. [17] presented
an action recognition algorithm from 3D skeleton sequences extracted from depth data. This method
uses the covariance matrix for skeleton joint locations over time as a discriminative descriptor
for a sequence. Zanfir et al. [18] proposed a non-parametric Moving Pose (MP) framework for
human action recognition. They captured both pose information and the speed and acceleration
of human joints and finally used a modified K-Nearest Neighbor (KNN) classifier in conjunction
with the descriptors to classify human actions. However, these methods did not consider the
comprehensiveness, integration and collaboration between the joints.

2.2. Motion Energy Image and Motion History Image

In the early stage of human action recognition, various methods were used to extract features
from color video collected by RGB cameras to complete recognition. Bobick et al. [19] proposed
Motion Energy Image (MEI) and Motion History Image (MHI). The MEI algorithm needs to extract the
foreground area of movement. Then the foreground region is binarized to obtain the binary image
sequence of the action. Finally, the union of binary image sequences is taken to obtain MEI of the
action. The calculation of MEI is expressed as:

MEIδ(x, y, t) =
δ−1⋃
i=0

B(x, y, t− i) (1)

where MEIδ(x, y, t) represents that MEI is generated by δ images at the t-th frame in the video sequence.
B(x, y, t) represents the t-th frame of the binary image sequence. x and y respectively represent the
height and width of a pixel point on the image. t represents the sequence number of a frame in the
video sequence.

The MEI describes the largest contour of actions. It loses some motion information inside the
contour and cannot express the temporal information of actions.

Unlike MEI, MHI is a grayscale image. The pixel intensity is a function of the temporal history of
motion at that point. A simple replacement and decay operator can be used:

MHIτ(x, y, t) =

{
τ if B(x, y, t) = 1

max (0, MHIτ(x, y, t− 1)− 1) otherwise
(2)

where τ is the initial brightness; MHIτ(x, y, t) is the MHI generated by the t frames of the
video sequence.

Compared with MEI, MHI retains part temporal information of actions through brightness
attenuation. However, MHI also cannot fully express the spatial structure.

2.3. Action Recognition Based on Depth Approach

With the development of depth sensors, scholars began to use depth sequence to study human
action recognition. Numerous scholars [20] use depth motion map (DMM) for action recognition
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research. Each frame in the depth sequence is projected onto three orthogonal cartesian planes to
form three 2D projection maps according to front, side, and top views, denoted mapf, maps, mapt.
The motion energy of two consecutive projection images is respectively accumulated to form the DMM
of three views. The calculation of DMM is expressed as:

DMMv =
N

∑
i=1

(∣∣∣mapi+1
v −mapi

v

∣∣∣ > ε
)

(3)

where v ∈ {f, s, t} represents the projection view, f is front view, s is side view, t is top view. DMMv is
the DMM of view v. mapi+1

v −mapi
v denotes the image difference between the i-th frame and the

i + 1-th frame, namely the motion energy between the i-th frame and the i + 1-th frame. N represents
the number of frames of the depth sequence. ε indicates a difference threshold.

Compared with MEI, DMM fully reflects the depth information of actions. However, DMM also
cannot express the temporal information.

Yang et al. [7] computed Histograms of Oriented Gradients (HOG) from DMM as the
representation of an action sequence. Chen et al. [20] extracted Local Binary Pattern (LBP) from DMM.
Chen et al. [21] extracted Gradient Local Auto-Correlations (GLAC) from DMM. Zhang et al. [22]
presented 3D histograms of texture (3DHoTs) to extract discriminant features from depth video
sequences. Wang et al. [23] extracted random occupancy pattern (ROP) features from depth video
sequences and use a sparse coding approach to encode these features. Xia et al. [24] built depth cuboid
similarity features (DCSF) around the local spatio-temporal interest points (STIPs) extracted from
depth video sequences to describe local 3D depth cuboids. Vieira et al. [25] presented Space-Time
Occupancy Patterns (STOP) to preserve spatial and temporal information between space-time cells.

2.4. Feature Fusion

Feature fusion can make single features complement each other to improve recognition accuracy.
Many achievements have been made in this field. For example, Hardoon et al. [11] proposed
Canonical Correlation Analysis (CCA) which maximizes the correlation between two different
features. Zhang et al. [26] proposed group sparse canonical correlation analysis to preserve the
group sparse characteristics of data within each set in addition to maximize the global covariance.
Haghighat et al. [12] proposed DCA that performs feature fusion by maximizing the pairwise
correlations across the two feature sets and eliminating the inter-class correlations and restricting
the correlations to be in the classes. Wang et al. [27] proposed Joint Feature Selection and Subspace
Learning (JFSSL) for for cross-modal retrieval, in which multimodal features are projected into a
common subspace by learning projection matrices. However, these methods generally describe the
correlation between different features and do not consider the correlation between the samples of
different categories.

3. Method

As shown in Figure 1, we extract MSCTV from skeleton sequences, and extract MSTM from depth
video sequences. Next, we further extract the Histogram of Oriented Gridient (HOG) feature of MSTM.
Then, we fuse MCSTV and MSTM through MTSL, and use the fusion features to complete human
action recognition research.

3.1. Motion Collaborative Spatio-Temporal Vector

Human action is the fact of integrally cooperative movement of all joints, not the fact of individual
movement of some joints. Therefore, this paper proposes Motion Collaborative Spatio-Temporal Vector
that considers the integrally cooperative movement of limbs’ joints.

Most actions are the result of multiple joints moving integrally. In this paper, the scattered and
separate motion joints’ information is spliced by vector superposition to form a comprehensive vector
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that can comprehensively describe action and highlight the integral and cooperative of movement.
The comprehensive vector is called MCSTV, the basic principle of MCSTV is shown in Figure 2.
Where

−−→
SLH represents the motion vector of left upper limb,

−−→
SRH represents the motion vector of

right upper limb,
−−→
SLF represents the motion vector of left lower limb,

−−→
SRF represents the motion

vector of right lower limb, and
−−−−→
MCSTo =

−−→
SLH +

−−→
SRH +

−−→
SLF +

−−→
SRF,

−−−−→
MCSTo represents the original

MCSTV. Due to MCSTV is stitched by the limbs’ motion vector, MCSTV can reflect the fact of the
comprehensive effect of multiple motion vectors to a certain degree. The human skeleton is shown in
Figure 3a. The skeletal frame of the high wave is shown in Figure 3b.

Figure 2. The basic idea of MCSTV (Contribution degree is not considered).

As shown in Figure 3b, we select the motion vector from the spine to the left hand to represent
the motion of left upper limb, that from the spine to the right hand to represent the motion of right
upper limb, that from the spine to the left foot to represent the motion of left lower limb, and that from
the spine to the right foot to represent the motion of right lower limb, respectively, denoted

−−→
SLH,

−−→
SRH,

−−→
SLF,

−−→
SRF.
For different actions, the contribution degree of each joint is different. As showed in Figure 2,

the motion vector of the limbs are directly accumulated. Due to the degree of limb is different, if limbs’
motion vector are directly accumulated, the action cannot be accurately described. We must obtain the
contribution degree of each limb. However, these motion vectors are all three-dimensional vectors,
and the change of the vector in space is the result of the change of the vector in multi-view. Therefore,
these motion vectors need to be projected onto three orthogonal cartesian planes xoy, yoz and xoz.
The offset of

−−→
SLH on each plane is expressed as:

θSLHxy(i) = arccos

(
−−→
SLHxy(i+1)×−−→SLHxy(i)∣∣∣−−→SLHxy(i+1)

∣∣∣∣∣∣−−→SLHxy(i)
∣∣∣
)

θSLHyz(i) = arccos

(
−−→
SLHyz(i+1)×−−→SLHyz(i)∣∣∣−−→SLHyz(i+1)

∣∣∣∣∣∣−−→SLHyz(i)
∣∣∣
)

θSLHxz(i) = arccos

(
−−→
SLHxz(i+1)×−−→SLHxz(i)∣∣∣−−→SLHxz(i+1)

∣∣∣∣∣∣−−→SLHxz(i)
∣∣∣
) (4)

where
−−→
SLHxy(i),

−−→
SLHyz(i) and

−−→
SLHxz(i) respectively represent the projection of the i-th frame of

−−→
SLH

on xoy, yoz and xoz. θSLHxy(i), θSLHyz(i) and θSLHxz(i) respectively represent the offsets of the i-th

frame of
−−→
SLH on xoy, yoz and xoz.
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Figure 3. Human skeleton. (a) Skeleton; (b) The skeletal frame of the high wave.

The offset of
−−→
SLH of each frame is the sum of offset on three orthogonal planes. The offset of each

frame of
−−→
SLH is expressed as:

θSLH(i) = θSLHxy(i) + θSLHyz(i) + θSLHxz(i) (5)

where θSLH(i) represents the offsets of the i-th frame of
−−→
SLH.

Each action consists of N frames, so the total offset of
−−→
SLH is the sum of the offset of each frame.

The offset of
−−→
SLH is expressed as:

sumSLH =
N

∑
i=1

θSLH(i) (6)

where sumSLH represents the total offset of
−−→
SLH.

Similarly, according to Equations (4)–(6), the total offset of
−−→
SRH is obtained as sumSRH , the total

offset of
−−→
SLF as sumSLF and the total offset of

−−→
SRH as sumSRF.

The contribution degree of each limb is the ratio of the offset of the limb and the total offset of all
limbs. The contribution degree of each limb is expressed as:

WSLH = sumSLH
sumSLH+sumSRH+sumSLF+sumSRF

WSRH = sumSRH
sumSLH+sumSRH+sumSLF+sumSRF

WSLF = sumSLF
sumSLH+sumSRH+sumSLF+sumSRF

WSRF = sumSRF
sumSLH+sumSRH+sumSLF+sumSRF

(7)

where WSLH , WSRH , WSLF and WSRF respectively represent the contribution degree of
−−→
SLH,

−−→
SRH,

−−→
SLF

and
−−→
SRF.
Finally, the contribution degree of each limb was used to constrain motion vector of each frame,

and motion vector of each limb were weighted accumulated to form MCSTV. The calculation of MCSTV
is expressed as:

−−−−→
MCSTw(i) =

−−→
SLH(i)×WSLH +

−−→
SRH(i)×WSRH +

−−→
SLF(i)×WSLF +

−−→
SRH(i)×WSRH (8)

where
−−−−→
MCSTw(i) represents the i-th frame of

−−−−→
MCSTw,

−−−−→
MCSTw represents the MCSTV that motion

vector of each limb were weighted accumulated.
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MCSTV is obtained by weighted accumulation of motion vector of each limb is shown in Figure 4.
As can be seen from the figure, after weighted accumulation, the MCSTV of this action is dominated by
−−→
SRH. Compared with the direct accumulation of motion vector in Figure 2, this method more directly
reflects the major motion joints of the action.

Figure 4. The final MCSTV.

3.2. Motion Spatio-Temporal Map

To describe the action information more comprehensively and accurately, this paper proposes a
feature representation algorithm, called Motion Spatio-Temporal Map (MSTM). MSTM can completely
express the spatial structure and temporal information. This algorithm calculates the difference
between adjacent frames of depth sequence to obtain the motion energy. Next, the key information
is extracted from the motion energy by key information extraction based on inter-frame energy
fluctuation. Then, the key energy is projected to three orthogonal axes to obtain the motion energy list
of the three orthogonal axes. Finally, the motion energy list is spliced in temporal series to form MSTM.
The flow illustration of MSTM is shown in Figure 5.

mapt

mapf

Md

Mh

Mw

MSTMd

MSTMh

MSTMw

Motion 

energy  is 

obtained

Key 

information 

extraction 

based on inter-

frame energy 

fluctuation

Projection

1D motion energy lists are 

obtained  

1D motion energy lists are 

spliced according to  

temporal  order

Figure 5. The flow illustration of MSTM.

As shown in Figure 5, the motion energy of the action is obtained through the difference operation
between two adjacent frames of the depth sequence. The motion energy is expressed as:

Ek(x, y, z) = |Ik+1(x, y, z)− Ik(x, y, z)| (9)
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where Ik(x, y, z) and Ik+1(x, y, z) respectively represent the body energy of the k-th and k+1-th moment,
i.e., the k-th and k+1-th frame of depth video sequence. Ek(x, y, z) represents the motion energy of the
k-th moment.

Due to the habitual sloshing of some joints, there is a lot of redundancy in the motion energy
obtained by Equation (9). Regarding the problem, we propose an energy selection algorithm,
i.e., key information extraction based on inter-frame energy fluctuation. We use this algorithm to
remove the redundant of the motion energy at each moment. The main idea of this algorithm is to
divide the human body into four areas according to the height range and width range at the initial
moment of actions. Then, we calculate the proportion of the motion energy of each region in the whole
body, and select a certain amount of motion energy as the main energy. The remaining energy is taken
as redundancy and removed. The detailed steps of this algorithm are as follows:

Firstly, we calculate the height range [hmin, hmax] and width range [wmin, wmax] of human activity
area at the initial moment of actions. The body is divided into upper body and lower body according
to the hip center of the body. The body is divided into left body and right body according to the
symmetry. Finally, the body is divided into four regions: left upper body (LU), right upper body (RU),
left lower body (LL), and right lower body (RL). The motion energy of the body is the sum of the
motion energy of four regions. The division of human activity areas is shown in Figure 6.

left 

upper 

body

left 

lower 

body

right 

upper 

body

right 

lower 

body

(a)

left 

upper 

body

left 

lower 

body

right 

upper 

body

right 

lower 

body

(b)

Figure 6. The division of human activity areas. (a) The division of human activity areas at the beginning
of the action; (b) The division of human activity areas when the wave.

Next, we calculate the motion energy proportion of each region in the whole body, the energy
proportion can be expressed as:

ηψ =
∑

Hψ

x=1 ∑
Wψ

y=1 Ek(x, y, z)

∑H
x=1 ∑W

y=1 Ek(x, y, z)
(10)

where ψ ∈ {LU, RU, LL, RL}, ηψ represent the motion energy proportion of each region.
H, W respectively represent the height and width of the whole body. Hψ, Wψ respectively represent
the height and width of each region.

Then, we rank the motion energy proportions of each region from the largest to the smallest.
The maximum value is denoted as η1, the minimum value is denoted as η4, and η1 > η2 > η3 > η4.
In this paper, we select ξ of the whole body energy as the key energy. The remaining energy is
considered to be redundant and removed from the original motion energy. The value of ξ is determined
by the experimental results and recognition accuracies in Section 4.2.1. The selection of key energy
follows the following criteria.

If η1 > ξ, then the motion energy of the corresponding region of η1 is retained as the key energy,
and the motion energy of the other three regions is considered to be redundant. If η1 < ξ and
η1 + η2 > ξ, then the motion energy of the corresponding region of η1 and η2 is retained as the key
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energy, and the motion energy of the other two regions is considered to be redundant. If η1 + η2 < ξ

and η1 + η2 + η3 > ξ, then the motion energy of the corresponding region of η1, η2 and η3 is retained
as the key energy, and the motion energy of η4 is considered to be redundant. If none of the above
conditions are met, the whole body motion energy is considered to be the key energy and retained.

The key energy is projected onto three orthogonal cartesian planes to form three 2D projection
maps according to front view, side view, and top view, denoted mapf, maps, mapt. The 2D projection
maps are expressed as:

mapf(x, y) = E(x, y)

maps(x, z) = E(x, z)

mapt(y, z) = E(y, z)

(11)

where mapf(x, y), maps(x, z) and mapt(y, z) respectively represent the coordinate of a pixel point on
the mapf, maps and mapt. E(x, y), E(x, z), and E(y, z) respectively represent the value of a pixel point
on the mapf, maps and mapt.

To obtain the energy distribution of the width axis, height axis and depth axis, we select mapf
and mapt to continue to project to the corresponding orthogonal axis to obtain the row sum or column
sum of the 2D energy projection maps. According to width axis, height axis and depth axis, three 1D
motion energy lists are generated, which are expressed as Mw, Mh and Md respectively. The 1D motion
energy list is expressed as:

Mw(j) = ∑Hm
x=1 mapf(x, j)

Mh(j) = ∑Wm
y=1 mapf(j, y)

Md(j) = ∑Wm
y=1 mapt(j, y)

(12)

Where Mw(j), Mh(j), and Md(j) respectively represent the j-th element of the energy list on the width
axis, height axis, and depth axis. Wm and Hm respectively represent the width and height of the 2D
energy projection map.

According to the temporal order, Mu are spliced to form MSTM of three axes, which are
respectively represented as MSTMw, MSTMh and MSTMd. For the depth sequence of N frames,
the calculation of MSTM is expressed as:

MSTMu(k) = Mk
u (13)

where u ∈ {w, h, d} , w is width axis, h is height axis and d is depth axis, Mk
u represents the 1D motion

energy list of the k-th frame of the action sequence on the u axis. MSTMu represents the MSTM on the
u axis. MSTMu(k) represents the k-th row of MSTMu.

With the maximum width Wmax, minimum width Wmin, maximum height Hmax and minimum
height Hmax of the body’s activity area as the bounds, MSTM is processed with the region of
interest (ROI) [28], i.e., the image is cropped and normalized.

The actions in the original depth sequence are defined as positive order actions. The positive
order high throw is shown in Figure 7a. The actions that the order is contrary to the original depth
sequence are defined as reverse order actions. The reverse order high throw is shown in Figure 7b.
The various feature maps of the positive and reverse order high throw are shown in Figure 8.
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(a)

(b)

Figure 7. High throw. (a) The positive order of high throw; (b) The reverse order of high throw.

Figure 8a,b are the MSTM of positive order and reverse order high throw respectively. From left to
right are the MSTM of height axis, width axis and depth axis respectively. Owing to MSTM reflects the
change of the energy information on the three orthogonal axes, it preserves the spatial and temporal
information completely. Positive order and reverse order actions have the same motion trajectories and
opposite temporal orders, the final MSTM is symmetric along the time axis and easy to be distinguish.
In contrast, Figure 8e,f respectively represent the MHI of positive order and reverse order high throw.
MHI retains part of temporal information of the actions and has the ability to distinguish between
positive order and reverse order actions. However, due to the coverage of the trajectory and the
absence of the depth information, MHI cannot fully express the spatial information. Figure 8c,d are the
MEI of positive order and reverse order high throw, respectively. Figure 8g,h are the DMM of positive
order and reverse order high throw, respectively. MEI and DMM do not involve temporal information,
so they cannot be distinguish. MEI does not involve the depth information, which means the spatial
information is incomplete. DMM contains depth information and expresses spatial information fully.

(a) (b)

(c) (d) (e) (f) (g) (h)

Figure 8. The various feature maps of the positive and reverse order high throw. (a) MSTM of positive
order high throw; (b) MSTM of reverse order high throw; (c) MEI of positive order high throw; (d) MEI
of reverse order high throw; (e) MHI of positive order high throw; (f) MHI of reverse order high throw;
(g) DMM of positive order high throw; (h) DMM of reverse order high throw.

3.3. Feature Fusion

To ensure that the description of action information more accurate, fuse features are usually used
in human action recognition research. Therefore, this paper fuses skeleton feature MCSTV and image
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feature MSTM. It cannot only reflect the integrity and cooperativity of the action, but also express the
spatial structure and temporal information more completely.

Let Γ =
{

x1
i , x2

i , · · · , xM
i
}N

i=1 denote N action samples, and the i-th sample Γi =
{

x1
i , x2

i , · · · , xM
i
}

contains features from M different modalities, but they correspond to the same representation in a
common space, denoted by yi. Where xi is the sample of the i-th category, yi is the target projection
center of the i-th category, modality M represents M types data.

In this paper, we propose Multi-Target Subspace Learning (MTSL) to study the common subspace
of different features. The minimization problem is followed as:

min
U1,··· ,UM

M

∑
p=1

∥∥∥XT
p Up − Y

∥∥∥2

F
+ λ1

M

∑
p=1

∥∥Up
∥∥

21 + λ2

M

∑
p=1

L−1

∑
c=1

∥∥∥XT
p Up − Gc

∥∥∥2

F
(14)

where Up, p = 1, 2, . . . , M is the projection matrix of the p-th modality. Xp is the sample features of
the p-th modality before the projection. XT

p Up is the sample features of the p-th modality after the

projection. Y is the primary target projection matrix in the subspace, Y = {y1, y2, · · · , yN}T . L is the
number of categories. λ1 and λ2 are weighting parameters. Gc is the c-th auxiliary projection target
center matrix for samples of each category. The auxiliary projection target center is the symmetric
target center of the projection target center of other categories with respect to the projection target
center of the current category. The selections of Gc are shown in Algorithm 1.

Algorithm 1 The selection of Gc.

Input: The target projection matrix of subspace: Y = {y1, y2, · · · , yN}T ; The number of categories: L.
Output: The auxiliary projection target center matrix: Gc

A = Y
for all c = 1 to L− 1 do

for all j = 1 to L do

if c == 0 then

B0 = Aj−1

else

Bj = Aj−1

end if
end for
A = B
Gc = 2Yj − A

end for

Note: Bj is the j-th column of B.

In Equation (14), the first term is used to learn the projection matrix, the second term is used for
feature selection. The third item is used to expand the inter-class distance between different categories
of samples and reduce the dimension of the projection target area.

According to the analysis of l21-norm by He et al. [29], the second term is optimized.
∥∥Up

∥∥
21

is deduced to Tr
(

UT
p RpUp

)
, where Rp = Diag

(
rp
)
, rp is an auxiliary vector of l21-norm. The i-th

parameter of rp is ri
p = 1

2‖ui
p‖2

, ui
p is the i-th row vector of Up. To keep the denominator from being 0,

an infinite decimal α is introduced, and α is not 0. ri
p is rewritten as:

ri
p =

1

2

√∥∥∥ui
p

∥∥∥2

2
+ α

(15)
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Equation (14) is derived and the computational formula of the projection matrix is obtained as:

Up =
(

XpXT
p + λ1Rp + λ2XpXT

p

)−1
(

XpY + λ2

L

∑
c=1

XpGc

)
(16)

The projection matrix of different modalities is obtained through Equation (16), and the test sample
of each modality are sent into the common subspace to acquire fusion features XT

p Up. The fusion
features are used to research human action recognition.

4. Experiment

In this paper, the experiment runs on a desktop.The hardware is as follows: the main board is
X370 Taichi, the CPU is 3.4 GHz R7 1700X, the graphics card is GTX 1660, and the memory is 16 GB.
The software is Python 3.7 and Matlab 2018b. For each sequence, the average computing time of
MCSTV is about 0.046 s, MSTM is about 1.239 s, and MSTM-HOG is about 0.043 s.

The experiments of proposed method were tested on Microsoft Research Action3D
(MSR-Action3D) [5] and University of Texas at Dallas Multimodal Human Action Dataset
(UTD-MHAD) [30]. Support vector machine (SVM) is used as a classifier to classify samples and obtain
the final recognition accuracy. The dimension of skeleton feature MCSTV is related to the number
of frames N, so we use Fisher Vector (FV) [31] to normalize MCSTV to make it linearly separable.
After processing, the size of MCSTV is changed into 2pK × 1. Where p is the number of rows of
MCSTV, K is the clustering center of FV. In this paper, p = 3, K = 128, the size of MCSTV is 768× 1.

4.1. Datasets and Experimental Settings

4.1.1. MSR-Action3D

There are 557 depth sequences in this MSR-Action3D. The dataset includes 20 actions performed
by 10 subjects, and each subject performs each action 2 to 3 times. The 20 actions are high wave,
horizontal wave, hammer, hand catch, forward punch, high throw, draw x, draw tick, draw circle,
hand clap, two hand wave, side boxing, bend, forward kick, side kick, jogging, tennis swing,
tennis serve, golf swing, and pick up throw. The positive order actions of the dataset are denoted as D1.
The positive order actions and reverse order actions of the dataset are denoted as D2. In this paper,
two different settings are employed to this dataset.

Setting 1. Similar to Li et al. [5], D1 and D2 are divided into 3 groups (AS1, AS2, AS3). In addition,
the MSR-Action3D subset dataset is shown in Table 1. The actions with high similarity are divided into
the same group, in order to evaluate the model performance traits according to the training dataset
size changes, each group of samples is tested to three experiments. In Test1, 1/3 samples are used
as training data, and the remaining samples are used as test data. In Test2, 2/3 samples are used as
training data, and the remaining samples are used as test data. In Test3, half subjects are used for
training and the rest ones used for testing.

Table 1. MSR-Action3D subset dataset

Action Set 1 (AS1) Action Set 2 (AS2) Action Set 3 (AS3)

Action name

horizontal wave high wave high throw
hammer hand catch forward kick
forward punch draw x side kick
high throw draw tick jogging
hand clap draw circle tennis swing
bend two hand wave tennis serve
tennis serve forward kick golf swing
pick up throw side boxing pick up throw



Sensors 2020, 20, 5180 13 of 22

Setting 2. Similar to Chen et al. [20], all samples in the MSR-Action3D are classified at the same
time. The samples of subject 1, 3, 5, 7, 9 are used as training data, and samples of subject 2, 4, 6, 8, 10 are
used as test data.

4.1.2. UTD-MHAD

There are 861 depth sequences in UTD-MHAD. The dataset includes 27 actions performed by
8 subjects (4 females and 4 males). Each subject performs each action 4 times. The 27 actions are
swipe left, swipe right, wave, clap, throw, arm cross, basketball shoot, draw x, draw circle clockwise,
draw circle counter clockwise, draw triangle, bowling, boxing, baseball swing, tennis swing, arm curl,
tennis serve, push, knock, catch, pickup throw, jog, walk, sit2stand, stand2sit, lunge, squat. The positive
order actions of the dataset are denoted as D3. The positive order actions and reverse order actions of
the dataset are denoted as D4. In this paper, two different settings are employed to this dataset.

Setting 3. In order to evaluate the model performance traits according to the training dataset
size changes, the samples in D3 and D4 are tested to three experiments. In Test1, 1/3 samples are
used as training data, and the remaining samples are used as test data. In Test2, 2/3 samples are used
as training data, and the remaining samples are used as test data. In Test3, we divid the samples
into 5 parts and take turns to use 4 parts for training and 1 part for testing, the final result is the average
of the 5 recognition rates.

Setting 4. Similar to Xu et al. [30], all samples in the UTD-MHAD are classified at the same time.
The samples of subject 1, 3, 5, 7 are used to train, and samples of subject 2, 4, 6, 8 are used to test.

4.2. Parameter Selection

4.2.1. Parameter Selection of ξ

In the calculation of MSTM, we must use key information extraction based on inter-frame
energy fluctuation algorithm to extract the key information in the motion energy. The amount of
key information directly affects the ability of MSTM. Therefore, we need to set the appropriate ξ,
which cannot only remove redundant information, but also retain key information completely. When
setting different ξ, the effect of key motion energy retained is shown in Figure 9.

(a) (b) (c)
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Figure 9. When setting different ξ, the effect of key motion energy retained. (a) ξ = 50%; (b) ξ = 80%
(c) The original motion energy (d) The recognition result of MTSM-HOG when setting different ξ.

Figure 9a shows the key motion energy of tennis serve retained when ξ = 50%. It can be seen that
the value of ξ is too small, much key information is mistaken for redundant, and the possibility of this
action being recognized as tennis serve is reduced. Figure 9b shows the key motion energy of tennis
serve retained when ξ = 80%. Compared with the original motion energy in Figure 9c, it not only
retains the key information, but also removes the energy of the area that the motion is not obvious.
Figure 9d shows the recognition rate of MTSM-HOG when setting different ξ according to Setting 2.



Sensors 2020, 20, 5180 14 of 22

It can be seen that MSTM-HOG achieves the highest recognition rate when ξ = 80%. So we set ξ to
80% in the following experiment.

4.2.2. Selection of Image Features

Due to excessive noise, if the proposed MSTM is directly classified, the recognition results are
affected. In this paper, we select Histogram of Oriented Gridient (HOG) [32] operator and Local Binary
Pattern (LBP) [33] operator for feature extraction of image because they are not sensitive to light.
HOG operator uses the image unit of 10× 10 pixels to segment the image, combines every 2× 2 image
units into an image block, and slides the image block of 10 pixels to extract the HOG features of the
image. LBP operator uses sampling radius of 2 and sampling point of 8 to extract the LBP features of
the image. According to Setting 1, the results on D1 are shown in Figure 10 when HOG features and
LBP features of MSTM are extracted.

Test1
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Figure 10. The recognition rate of MSTM when HOG features and LBP features are extracted.

As showed in Figure 10, the recognition accuracy of MSTM when extracting HOG features is
higher than LBP. The LBP features mainly reflects the texture information around the pixel, while the
HOG features can capture the image contour, and the main information of MSTM distributes in the
image contour. Therefore, HOG features are more suitable for MSTM than LBP. In the following
experiments, we only extract the HOG features of the images.

4.2.3. Parameter Selection of λ1 and λ2

When using MTSL to fuse image and skeleton features, we should select the fitting parameters λ1

and λ2. Assuming that λ2 = 0.01, the optimal λ1 is selected by enumerating different λ1 and taking
the recognition accuracy of our method as the evaluation standard. As can be seen from Figure 11a,
when λ1 = 15, our method achieves the optimal result. To obtain the optimal value of λ2, we select
the optimal value by enumerating different λ2 when λ1 = 15, and taking the recognition accuracy of
our method as the evaluation criterion. As can be seen from Figure 11b, when λ2 = 0.05, our method
achieves the optimal result. In this experiment, the results are the recognition rate of our method on
MSR-Action3D according to Setting 2.
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Figure 11. Parameter selection of λ1 and λ2. (a) Parameter selection of λ1; (b) Parameter selection of λ2.

4.3. Results and Discussion

4.3.1. Evaluation of MCSTV

MCSTV is a comprehensive vector formed by weighted accumulation of limb motion vectors.
To verify that the accumulation of motion vectors can improve the action representation, we compare
the recognition rate of each limb’s movement features with MCSTV. According to Setting 2, the results
of different movement features on MSR-Action3D are shown in Figure 12a. According to Setting 4,
the results on UTD-MHAD are shown in Figure 12b.
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Figure 12. The recognition rate of different movement features. (a) The results on MSR-Action3D;
(b) The results on UTD-MHAD.

As shown in Figure 12a,b, MCSTV achieves the highest recognition rate on two datasets.
Among them, it reaches 77.42% on MSR-Action3D and 74.5% on UTD-MHAD, both of them are
higher than other movement features.

Next, we compare the variations of the three axes of various movement features. We select
the actions with the right hand as the main movement limb and compares the expressive effect of
SRH, MCSTV1 and MCSTV2. Where MCSTV1 is formed by the direct accumulation of each limb’s
motion vectors, MCSTV2 is formed by the weighted accumulation of each limb’s motion vectors.
We select high wave and tennis serve in MSR-Action3D, and select baseball swing in UTD-MHAD.
Various movement features of each action are shown in Figure 13.
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The main motion limb of the high wave is right upper limb, so the trajectory of MCSTV should
be similar to SRH. Tennis serve and baseball swing are the actions that the movement of each limb
is obvious, and right upper limb is the main motion joint, so the final MCSTV trajectory should be
dominated by SRH. As shown in Figure 13, compared with MCSTV1, the trajectory of MCSTV2 is
closer to SRH. In particular, the trajectory of baseball swing’s MCSTV2 is similar to SRH, but MCSTV1

is different. It can be explained that MCSTV formed by weighted accumulation is more accurate and
highlight the main moving limbs.
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Figure 13. Various movement features of each action.

Then, we verify that MCSTV formed by the weighted accumulation describes actions more
accurately. The recognition rates are used as the criterion, MCSTV2 is compared with SRH and
MCSTV1. The results on MSR-Action3D are shown in Figure 14a, and the results on UTD-MHAD are
shown in Figure 14b.

The data in Figure 14a,b are the recognition rates of various features running 20 times. The figure
clearly shows the mean, maximum, minimum, median, outlier, upper quartile, and lower quartile of
the multiple results. It can be seen from the two figures that the recognition rate of MCSTV2 is higher
than MCSTV1 and slightly higher than SRH. The main reason is that MCSTV formed by weighted
accumulation not only considers the motion vector of each limb, but also gives different weight to each
limb according to its contribution, which can highlight the information of the main moving limbs and
describe actions more accurately.
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Figure 14. The recognition rate of SRH, MCSTV1 and MCSTV2. (a) The results on MSR-Action3D;
(b) The results on UTD-MHAD.

4.3.2. Evaluation of MSTM

MSTM expresses the change of motion energy with time on three orthogonal axes. It retains
spatial structure and temporal information of actions. To verify that MSTM can completely retain the
spatial structure of actions, the recognition rate of MSTM is compared with MEI, MHI and DMM when
only positive order actions exist. In this experiment, according to Setting 1, the results of different
methods on D1 are shown in Table 2. According to Setting 3, the results of different methods on D3 are
shown in Table 3.

Table 2. The recognition rates (%) of different methods on D1.

Method
Test1 Test2 Test3

AS1 AS2 AS3 Average AS1 AS2 AS3 Average AS1 AS2 AS3 Average

MEI-HOG 73.29 73.03 72.30 72.87 86.30 86.84 90.54 87.89 86.24 81.58 71.17 79.66
MHI-HOG 69.86 64.47 72.97 69.10 86.30 88.16 90.54 88.33 83.49 81.58 72.07 79.05
DMM-HOG 76.03 71.71 77.70 75.15 87.67 86.84 94.59 89.10 84.40 85.09 75.68 81.72
MSTM-HOG 88.36 79.61 89.19 85.72 93.15 85.53 95.95 91.54 91.74 82.46 85.59 86.60

Table 3. The recognition rates (%) of different methods on D3.

Method Test1 Test2 Test3

MEI-HOG 69.51 83.28 89.53
MHI-HOG 72.47 89.55 94.19
DMM-HOG 78.57 94.08 98.84
MSTM-HOG 85.89 94.77 96.51

It can be seen from Tables 2 and 3 that MSTM-HOG achieves or approaches the highest recognition
accuracy in most tests. The reason is that MSTM represents the projection of motion energy on
three orthogonal axes, which completely preserves the spatial structure of actions. By contrast,
the recognition accuracy of MEI and MHI was lower in multiple tests. Due to MEI and MHI describe
the largest contour of actions, there is coverage of front and behind motion information, MEI and
MHI lose the motion information inside the contour. In addition, MEI and MHI do not involve the
depth information of actions. DMM achieves the highest recognition accuracy in some tests, mainly it
accumulates the motion energy from three views and completely retains the spatial information.
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Next, we verify that MSTM has a strong ability to represent temporal information, the recognition
rate of MSTM is compared with MEI, MHI and DMM when positive and reverse order actions exist.
According to Setting 1, the results of different methods on D2 are shown in Table 4. According to
Setting 3, the results of different methods on D4 are shown in Table 5.

Table 4. The recognition rates (%) of different methods on D2.

Method
Test1 Test2 Test3

AS1 AS2 AS3 Average AS1 AS2 AS3 Average AS1 AS2 AS3 Average

MEI-HOG 29.11 33.88 29.05 30.68 30.14 25.66 33.78 29.86 36.99 35.53 32.43 34.98
MHI-HOG 37.67 39.80 36.49 37.97 40.41 48.68 45.27 44.79 44.75 48.25 38.29 43.76
DMM-HOG 34.93 34.87 27.70 32.50 32.19 32.24 31.08 31.84 38.36 35.52 30.63 34.84
MSTM-HOG 80.48 69.74 84.46 78.22 83.56 83.55 91.89 86.33 85.84 81.58 90.54 85.99

Table 5. The recognition rates (%) of different methods on D4.

Method Test1 Test2 Test3

MEI-HOG 28.66 33.97 32.85
MHI-HOG 44.60 60.63 66.86
DMM-HOG 38.85 39.72 35.47
MSTM-HOG 83.80 92.68 94.48

In this paper, positive order high throw and reverse order high throw are considered to be two
different actions. They have the same spatial trajectory and the opposite temporal information. So the
number of actions in D2 is twice in D1, the number of actions in D4 is twice in D3. It can be known
from Tables 4 and 5 that the recognition rate of each method is lower than that of Tables 2 and 3.
MSTM maintains the highest recognition rate in all tests. The main reason is that MSTM splices the
motion energy according to the temporal series, which can fully express the temporal information of
actions. The MSTM of positive and reverse order actions are symmetric along the time axis, so the two
actions can be accurately classified. By contrast, the recognition rate of MEI and DMM is lower in each
test. The reason is that MEI and DMM could not express the temporal information. MEI and DMM of
positive and reverse order actions are very similar and cannot be distinguished. MHI expresses part of
the temporal information through brightness attenuation, so the recognition rate of MHI is higher than
MEI and DMM, but far lower than MSTM.

4.3.3. Evaluation of Feature Fusion

MCSTV can accurately describe the integrity and cooperativity of human limbs. MSTM can
completely record the spatial structure and temporal information of actions. To combine the advantages
of MSTM and MCSTV, we use MTSL to fuse MCSTV and MSTM-HOG. To prove that the fusion feature
describes actions more accurately, we compare the recognition accuracy of the fusion algorithm
with single algorithms. According to Setting 2, the results on MSR-Action3D are shown in Table 6.
According to Setting 4, the results on UTD-MHAD are shown in Table 7.

It can be seen from Tables 6 and 7 that the recognition accuracy of feature fused by MTSL algorithm
is higher than single algorithms. The reason is that MTSL projects different features into a common
subspace and complements the advantages of each single features.

It can be also known that the recognition accuracy of feature fused by MTSL is higher than CCA
and DCA. Mainly, the MTSL algorithm constructs multiple projection targets to make the subspace
samples converge to the hyperplane near the multiple projection target centers and increases the
distance between the subspace samples. However, CCA and DCA mainly describe the correlation of
two features, image and skeleton are two different modals with small correlation.
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Table 6. The results on MSR-Action3D, according to Setting 2.

Method Recognition Rate (%)

MEI-HOG 69.23
MHI-HOG 69.96
DMM-HOG 85.35
MSTM-HOG 84.24
MCSTV 77.42
CCA + MCSTV + MSTM-HOG 67.77
DCA + MCSTV + MSTM-HOG 75.09
Our Method 91.58

Table 7. The results on UTD-MHAD, according to Setting 2.

Method Recognition Rate (%)

MEI-HOG 49.77
MHI-HOG 57.21
DMM-HOG 79.07
MSTM-HOG 83.72
MCSTV 74.50
CCA + MCSTV + MSTM-HOG 63.95
DCA + MCSTV + MSTM-HOG 77.21
Our Method 89.53

4.4. Comparison with Other Methods

We compare our method with other methods. According to Setting 2, the recognition accuracy
comparison with other methods on MSR-Action3D is shown in Table 8, According to Setting 4,
the recognition accuracy comparison with other methods on UTD-MHAD is shown in Table 9.

Table 8. The recognition accuracy comparison with other methods on MSR-Action3D.

Method Recognition Rate (%)

DMM-HOG [7] 85.5
HON4D [6] 88.89
Bag of 3D points [5] 74.7
DMM-GLAC-FF [21] 89.38
Random Occupancy Patterns [23] 86.5
Depth Cuboid [24] 89.3
STOP [25] 84.8
Our Method 91.58

Table 9. The recognition accuracy comparison with other methods on UTD-MHAD.

Method Recognition Rate (%)

Kinect [30] 66.1
Kinect + Inertial [30] 79.1
3DHoT-MBC [22] 84.4
Our Method 89.53

It can be seen from Tables 8 and 9 that the recognition accuracy of our method reached 91.58% on
the MSR-Action3D and 89.53% on the UTD-MHAD, both of which were higher than the recognition
accuracy of other methods listed. The evaluation results indicate the superiority of our method.
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5. Conclusions

In this paper, we propose an action feature representation that considers the integrally cooperative
movement features of human action, called MCSTV and MSTM. MCSTV accumulates weighted
limbs’ motion vector to form a new vector and uses this vector to account for the movement features
of actions. MSTM algorithm projects key motion energy that extracted by key information extraction
based on inter-frame energy fluctuation to three orthogonal axes and stitches them in temporal series
to construct the MSTM. To describe the action information more accurately, the MTSL algorithm is
used to fuse MCSTV and MSTM-HOG. The experimental results on MSR-Action3D and UTD-MHAD
show that MCSTV not only considers the integral and cooperative between the motion joints, but also
highlights the main moving limbs of the body. Compared with MEI, MHI, and DMM, MSTM describes
the spatial structure and temporal information better. The recognition accuracy of features fused by
MTSL algorithm is higher than most existing algorithms.

6. Future Expectations

When we use key information extraction based on inter-frame energy fluctuation algorithm to
extract the key information, in some cases, the redundancy cannot be effectively removed because the
habitual shaking of some joints is too sharp. Next, we will focus on how to effectively remove the
redundant information.
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