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Abstract: For the near-field localization of non-circular distributed signals with spacial probability
density functions (PDF), a novel algorithm is proposed in this paper. The traditional algorithms
dealing with the distributed source are only for the far-field sources, and they need two-dimensional
(2D) search or omit the angular spread parameter. As a result, these algorithms are no longer
inapplicable for near-filed localization. Hence the near-filed sources that obey a classical probability
distribution are studied and the corresponding specific expressions are given, providing merits for
the near-field signal localization. Additionally, non-circularity of the incident signal is taken into
account in order to improve the estimation accuracy. For the steering vector of spatially distributed
signals, we first give an approximate expression in a non-integral form, and it provides the possibility
of separating the parameters to be estimated from the spatially discrete parameters of the signal. Next,
based on the rank-reduced (RARE) algorithm, direction of arrival (DOA) and range can be obtained
through two one-dimensional (1-D) searches separately, and thus the computational complexity
of the proposed algorithm is reduced significantly, and improvements to estimation accuracy and
identifiability are achieved, compared with other existing algorithms. Finally, the effectiveness of the
algorithm is verified by simulation.

Keywords: near-filed localization; spacial distributed source; non-circularity; RARE

1. Introduction

Source localization is an important branch in the field of array signal processing, and significant
achievements have been made in this field in recent decades [1,2]. However, most of the previous
studies focused on far-field signal parameter estimation [3,4]. On the other hand, research on near-field
source localization, which requires estimation of both DOA and the range of the signals has received
increasing attention [5]. The traditional DOA estimation algorithms for far-field signals are no longer
suitable for near-field sources [6]; thus, many scholars have proposed parameter estimation algorithms
for near-field models in recent years, most of which are based on higher-order statistics (HOS) [7,8].
These algorithms can mitigate Gaussian colored noise well [7], at the cost of a substantial increase in
calculations. Hence, lowering the computational complexity of the near-field localization, which is
arising as an important research issue, has been investigated, especially in the context of second-order
statistics. In [8], Li et al. developed a computationally efficient near-field localization method with
simplified fourth-order cumulants. However, it still needs two-dimensional spectral peak searches,
and the error caused by Schmidt’s orthogonalization therein will seriously affect the range estimation.
However, compared with methods using higher-order statistics, these SOS-based algorithms have
been at a disadvantage in estimation accuracy. Classical second-order statistics algorithms include the
weighted linear prediction method [9] and the generalized ESPRIT (GESPRIT)-based method [10].
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To further improve estimation accuracy, much effort has been devoted to exploiting the structure
of the signal, such as non-circular characteristics [11]. As is widely known, non-circularity is a universal
characteristic of communication signals, such as in binary phase shift keying (BPSK), offset quadrature
phase shift keying (OQPSK), and pulse amplitude modulation (PAM). It has been revealed that
non-circularity can greatly enhance both the estimation accuracy and identifiability, resulting in novel
research findings. The MUSIC-like algorithm for non-circular sources was first proposed in 1998 by [12].
Romer et al. tailored the ESPRIT method to non-circular signals and the corresponding Cramer–Rao
lower bound (CRLB) in [13] was derived to show the superiority of the algorithm. In [14], the author
provided a non-circular asymptotically minimum variance algorithm and the estimation performance
was close to CRLB, while requiring a very large amount of calculations due to the multi-dimensional
search. In [15,16], the CRLB for the non-circular signals in color or in Gaussian white noise were
discussed separately. An improved MUSIC algorithm was proposed with a more general scenario
where both the circular and non-circular sources coexist [17]. The idea based on sparse representation
was extended to non-circular cases in [18]. A two-dimensional (2D) DOA estimation of non-circular
sources was proposed in [19]. Unfortunately, the algorithms described above are only applicable
to far-field models. To the best of our knowledge, there are few localization algorithms that study
near-field non-circular signals, except for the work in [20], where Xie et al. utilized the advantages
of non-circular signals to improve localization performance, and then in the follow up work [21],
the same authors considered a more complex scenario where mixed far-field and near-field sources
impinge on the array with unknown mutual coupling.

On the other hand, most algorithms assume that far-field signals are point sources, and assume
so also for near-field signals; this cannot be utilized in many practical applications [22], especially for
near-filed localization where the angular expansion caused by the movement of the target in space
cannot be ignored. Compared to far-field targets, near-field sources are much closer to the sensor array.
For far-field signals, the angles may hardly change, while for near-field signals, the angle dithering can
be more dramatic. However, little research has been done on this issue so far. Jantti et al. proposed
to treat distributed sources as a set of point sources and then used traditional MUSIC and ESPRIT
algorithms to determine the DOA parameter. Although the method is workable, one target requires
many more degrees of freedom than the point source case for parameter estimation, leading to a larger
size, higher complexity and higher cost of the sensor array [23]. Besides, it is difficult or even impossible
to know what the distribution law of the target is in advance. The maximum likelihood method was
also used to solve the problem of distributed source localization in [24]. The computational complexity
of maximizing the likelihood function increased exponentially due to the introduction of distribution
parameters. Given the parameterized shape of the distribution, the authors in [25] attempted to use
discrete modeling methods to deal with non-overlapping sources. In [26], Chaaya et al. attempted to
localize and characterize coherently distributed (CD) sources in the near-field range. However, for the
range estimation, they supposed the signals are point sources, which means the spatial distribution
characteristics of signals was ignored, causing inherent error. The same problem occurred in [2], in
which Wan et al. only considered the special condition but ignored source spatial distribution although
circular and non-circular sources were mixed together.

The aforementioned reasons motivated us to propose an estimator of CD sources in the near-field
that is robust enough to accommodate the imperfect knowledge of the angular spread distribution.
Thus, in this paper we provide a method that can get the angle and range estimation while eliminating
the influence of angular spread distribution. In the new model, we relax the constraints on the
spatial distribution, that is, the probability density distribution of angle is known a priori but the
specific parameters are unknown. In order to improve estimation performance, the non-circular
property of signals is considered, and a rank reduction (RARE) method for non-circular CD sources
(NCSD-RARE) is proposed. It can effectively separate the DOA and range parameters form the
non-circular parameters needed for applying the RARE principle, which only needs two 1D searches;
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hence the influence arising from the unfixed state of the spatial distribution can be mitigated in this
method.

2. Problem Formulation

2.1. Signal Model

Consider a symmetrical uniform linear array (ULA) with 2M + 1 sensors; the spacing between
its elements is set to d, and it does not exceed one quarter of the wavelength of the received signal to
avoid phase ambiguity. K < (2M + 1) uncorrelated narrow-band CD non-circular sources are received
by the array, as shown in Figure 1. The data received by the 2M + 1 sensors can be expressed as
x(t) = [x−M(t), . . . , x0(t), . . . , xM(t)]T . Considering an angular spread of DOA, one has:

k

kr

k-th source

M 1 0 1

d
x

z

M y

Figure 1. The near-field source with the symmetric ULA.

x(t) =
M

∑
i=−M

∫ π/2

−π/2
a(θ, ri)vi(θ, θi, ∆i, t)dθ + n(t), (1)

where vi(θ, θi, ∆i, t) is the signal angular distribution of the i-th source, ∆i is the angular spread, and θi
is the central DOA for the source. n(t) is a vector expression of Gaussian white noise caused by the
system. The steering vector a(φ, r) represents the near-field array response, which is related to the
DOA φ and the range r. Therefore, observations received by the array at time t are as follows:

x(t) = Bs(t) + n(t), (2)

where B = [b−M, . . . , b0, . . . , bM] is the (2M + 1) × K generalized array manifold, s(t) =

[s1(t), . . . , sk(t), . . . , sK(t)]T is the K× 1 signal vector, and n(t) is the AWGN vector with zero means
and variance σ2

n . b(θi, ri.∆i) is given by:

b(θi, ri, ∆i) =
∫ π/2

−π/2
a(θi, ri)gi(θ, θi, ∆i)dθ. (3)

Thus b(θi, ri, ∆i) is the vector accommodating the steering vector a(θi, ri) with the angular distribution
of the i-th source with the probability density function (PDF) gi(θ, θi, ∆i). Then, we define τmk as the
time delay of the 0-th sensor and the m-th sensor when receiving the k-th signal:

τmk =
2π

λ
(
√

r2
k + (md)2 − 2rkmd sin θk − rk), (4)

where θk , rk, and λ respectively represent the azimuth, distance, and wavelength of the k-th signal.
The limiting condition for wavelength λ is λ ≥ 4d. The phase difference can be expressed as follows
via second-order Taylor expansion:

τmk = (−2πd
λ

sin θk)m + (
d2

λrk
cos2θk)m2 + o(d

2/
r2

k
) ≈ ωkm + φkm2. (5)
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In the formula above,

ωk = −2π
d
λ

sin θk, (6)

φk = π
d2

λrk
cos2θk. (7)

Hence a(θi, ri) has the following expression:

A = [a(ω1, φ1), a(ω2, φ2), . . . , a(ωK−1, φK−1), a(ωK, φK)]. (8)

For the 1-D signal model of a CD non-circular source, the PDF of angular spread gi(θ, θi, ∆i) could be
uniform distribution, triangular distribution, or Gaussian distribution.

2.2. Proposed Method

From (3), we defined:

βk(µ) = [b(β, r, ∆)]k ≈ [a(β, r)]kg[θ, ∆]k, (9)

where [a(β, r)]k is the complex exponential term defined as:

[a(β, r)]k = exp (j× (ωk + φk)) . (10)

Since the PDF of the angular spread is symmetrical to θ, g[θ, ∆]k is a real number, k = 1,2, . . ., M. When
the CD source follows a uniform distribution, the PDF of the angular spread is given by:

gi(θ, θi, ∆i) =

{
1

2∆i
, |θ − θi| ≤ ∆i

0, |θ − θi| > ∆i
, (11)

where θi is the angular range of the different incident signals in one CD source. The corresponding
[g[θ, ∆]]k becomes:

[g[θ, ∆]]k =
sin(−(k− 1))∆i
−(k− 1)∆i

. (12)

If the CD source obeys the Gaussian distribution, then the PDF of the angular spread is given by:

gi(θ, θi, ∆i) =
1√

2π∆2
i

exp(− (θ − θi)
2

2∆2
i

). (13)

The corresponding [g[θ, ∆]]k is given as:

[g[θ, ∆]]k = eM2∆2
i /2. (14)

For the triangular distribution, the corresponding PDFs of the angular spread and [g[θ, ∆]]k are,
respectively:

gi(θ, θi, ∆i) =


(θ − θi + ∆i)/∆2

i −∆i ≤ θ − θi < 0
(−θ + θi + ∆i)/∆2

i 0 ≤ θ − θi ≤ ∆i
0 else

(15)
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and

[g[θ, ∆]]k =
2[1− cos(M)∆i]

M2∆2
i

. (16)

As a result, we obtain the following steering vector for the three kinds of the angular spread PDFs.
For the uniform distribution, the steering vector is:

b(θi, ri, ∆i, ) = [ sin(−M)∆i
−M∆i

ej(−Mω+(−M)2φ), sin(−(M−1))∆i
−(M−1)∆i

ej(−(M−1)ω+(−(M−1))2φ), . . . , 1,

. . . , sin(M−1)∆i
(M−1)∆i

ej((M−1)ω+((M−1))2φ), sin(M)∆i
M∆i

ej(Mω+(M)2φ)]
. (17)

For the Gaussian distribution, the steering vector is:

b(θi, ri, ∆i) = [e−M2∆2
i /2ej(−Mω+(−M)2φ), e(−(M−1))2∆2

i /2ej(−(M−1)ω+(−(M−1))2φ), . . . , 1,

. . . , e(M−1)2∆2
i /2ej((M−1)ω+((M−1))2φ), eM2∆2

i /2ej(Mω+(M)2φ)]
. (18)

For the triangular distribution, the steering vector is:

b(θi, ri, ∆i, ) = [ 2[1−cos(−M)∆i ]

−M2∆2
i

ej(−Mω+(−M)2φ), 2[1−cos(−(M−1))∆i ]

−(M−1)2∆2
i

ej(−(M−1)ω+(−(M−1))2φ), . . . , 1,

. . . 2[1−cos(M−1)∆i ]

(M−1)2∆2
i

ej((M−1)ω+((M−1))2φ), 2[1−cos(M)∆i ]

M2∆2
i

ej(Mω+(M)2φ)]
. (19)

Next we define `(M, ∆) as follows:

`(M, ∆) =


e−M2∆2/2 Gaussian

sin(M)∆
M∆ uni f orm

2[1−cos(M)∆]
M2∆2 triangular

, (20)

and the generalized steering vector b(θ, r, ∆) can be factorized as:

b(θ, r, ∆) = l�A, (21)

where l is the (2M + 1)× 1 vector containing the entry `(M, ∆).
⊙

is the Hadamard–Schur matrix.
These three classic shapes of the angular spread distribution are shown in Figure 2.
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Figure 2. Three classic shapes of the angular spread distribution.



Sensors 2020, 20, 5176 6 of 12

2.3. NCSD-RARE Method

Extracting the non-circularity embedded into the signal waveform S (t), the transmitted signal
can be factorized as [20]:

S (t) =Ψ1/2S0 (t) , (22)

where S0 (t) = [s0,1(t), ..., s0,K(t)]T ∈ RK×1, s0,k(t) is the real symbol of sk(t), and Ψ1/2 =

diag{ejϕ1/2, ...,jϕK/2} contains the non-circular phases on the diagonal.
We take the non-circular property of sources into account, and have the following argument

data matrix:

Y (t) =

[
X(t)
X∗(t)

]
=

[
B

B∗Ψ∗

]
S0 (t) +

[
N (t)
N∗ (t)

]
, (23)

where B = [b (θ1, r1, ∆1, ϕ1) , ..., b (θK, rK, ∆K, ϕK)] is the array manifold of the spacial distributed
signals with the following augmented near-field steering vector as:

b̄(θ, r, Ψ, ∆) =

[
b(θ, r, ∆)

b∗(θ, r, ∆)e−jΨ

]
, (24)

then the observation vector can be rewritten in a matrix format as:

Y (t) = B̄S0 (t) + N̄ (t) . (25)

Performing eigen-decomposition, the augmented data covariance matrix R is separated to:

R = E
{

Y (t)YH (t)
}
= USΛSUH

S + UNΛNUH
N , (26)

where ΛS is a diagonal matrix, corresponding to the K largest eigenvalues in the original covariance
matrix R. Similarly, the other small eigenvalues in matrix R correspond to the matrix ΛN . According
to the subspace theory, the augmented array manifold b̄ and the eigenvector matrix US share the
same space, and the subspace spanned by the eigenvector matrix UN is the noise subspace. Based on
the assumption that signal and noise are uncorrelated to each other, using the following function to
traverse the maximum energy within a certain angle range, one can obtain the estimate of the angle:

P(θ, r, Ψ, ∆) = b̄H(θ, r, Ψ, ∆)UNUH
N b̄(θ, r, Ψ, ∆). (27)

However, in order to find the minimum value of the spectral peak, (27) requires a four-dimensional
(4D) search, bringing about an impractical calculation load. To reduce the amount of computation,
we first decouple the DOA from the other three parameters by the principle of RARE, and obtain the
DOA through one-dimensional search. Because the ULA is symmetrical about the center of its array,
the augmented steering vector in (27) can be reparameterized as:

b̄(θ, r, Ψ, ∆) =

[
Γ(θ) 0

0 Γ∗(θ)

]
︸ ︷︷ ︸

Γ̄

[
h(φ, ∆)

h∗(φ, ∆)e−jΨ

]
︸ ︷︷ ︸

h̄

. (28)

Since the columns of US and b̄(θ, r, Ψ, ∆) are orthogonal, the following formula can be derived:

b̄H(θk, rk, Ψk, ∆k)UNUH
N b̄(θk, rk, Ψk, ∆k) = 0, k = 1, · · · , K. (29)
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Substituting (28) into (29), we have:

h̄H(θ, r, Ψ, ∆) Γ̄H(θ)UNUH
N Γ̄(θ)︸ ︷︷ ︸

ℵ(θ)

h̄(θ, r, Ψ, ∆) = 0. (30)

Obviously ℵ (θ) is not an all-zero matrix. According to the idea of rank reduction, the (30) can be
equivalent to:

Γ̄H(θ)UNUH
N Γ̄(θ)︸ ︷︷ ︸

ℵ(θ)

=0. (31)

According to the idea of the MUSIC algorithm, we can obtain the angle of the target through 1D
spectral peak search.

P1(θ) =
1

det{ℵ(θ)} . (32)

Through a similar approach, b̄(θ, r, Ψ, ∆) can be also decoupled as:

b̄(θ, r, Ψ, ∆) =

[
a(θ, r) 0

0 a∗(θ, r)

]
︸ ︷︷ ︸

H̄

[
eM2∆

e−jΨ−M2∆

]
︸ ︷︷ ︸

q

. (33)

Substituting (33) into (27), we have:

qH(Ψ, ∆) H̄H(θ, r)UNUH
NH̄(θ, r)︸ ︷︷ ︸

Ξ(θ,r)

q(Ψ, ∆) = 0. (34)

By the same principle, Ξ(θ, r) is not an all-zero matrix. According to the principle of RARE, the rank of
Ξ(θ, r) drops if and only if θ = θk and r = rk, where k = 1, · · · , K . Therefore, with the DOA estimates
θk obtained from (32), the range parameters can be generated by substituting each θk back into the
following RARE estimator:

P(k)
2 (r) =

1
det

{
Ξ
(
θ̂k, r

)} , k = 1, · · · , K(θ = θk). (35)

As can be seen from (35), the angle and range can be automatically paired without any other operation.
Additionally, it can be seen that the maximum number of sources that can be estimated by this
algorithm is K 6 2M. Compared to traditional second-order statistics algorithms, the identification
capability of the proposed method has been doubled. In addition, the estimation accuracy of the
proposed algorithm is also greatly improved, which will be verified through the following simulations.

3. Simulation Results and Discussion

In this section, the performance of the proposed algorithm will be tested under different
experimental conditions, and a comparison will be conducted between them. Assume near-field
signals are received by a ULA with a number of array elements of N = 7 (M = 3), where the spacing
element d is a quarter of the wavelength of the received signal. The received signal is set to the common
BPSK, typically non-circular signal. Performance is measured using root mean square error (RMSE),
which is defined as:

RMSE =

√√√√ 1
500

500

∑
n=1

(ẑn,k − zk)
2. (36)
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Among them, zk represents the parameters to be counted, and in this article refers to the DOA range.
ẑk is the estimate in the k experiment and 500 refers to the number of experiments repeated under the
same conditions to ensure that the statistics are close to the theory.

In the first experiment, we considered six BPSK sources. Their position information relative to
the reference element was as follows: (−20◦, 1.2λ), (−10◦, 1.3λ), (0◦, 1.4λ), (10◦, 1.5λ), (20◦, 1.6λ),
and (30◦, 1.7λ). In addition, they all obeyed the Gaussian distribution, and the corresponding spatially
distributed parameters were 1◦, 3.3◦, 2◦, 3◦, 2.4◦, and 2.5◦, respectively. The SNR was set as 15 dB.
The DOA and range spectra are shown in Figure 3. It can be seen that in the spectrum of the DOA,
six peaks can be clearly identified. With the angle information that we have obtained, we can see six
corresponding distance spectrum peaks in turn.

DOA (degree)
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D
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A
 s
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 (
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range (wavelength)
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
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e 
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-10

0

10

20

30

40

50 source1
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source3
source4
source5
source6

(b)

Figure 3. The spatial spectrum of DOA and range of six uncorrelated signals complying with Gaussian
distribution of angular spread when SNR = 15 dB. (a) The spatial spectrum of DOA of the six
uncorrelated signals, (b) The spatial spectrum of range of the six uncorrelated signals with each
estimated DOA

In the second scenario, we considered two sources following one of the distributions (Gaussian,
uniform, or triangle) from (−20◦, 1.2λ) and (−10◦, 1.3λ) that impinge on a five-element ULA, of whose
spatially distributed parameters’ ∆ are 1◦ and 3.3◦, respectively. The number of snapshots was set
to 200, and the SNR varied from 0 to 20 dB in a step-size of 2 dB. It is clear that the accuracy of the
DOA estimates of the first spatially distributed signal increased with the growth of SNR, as shown
in Figure 4a. For the second spatially distributed signal estimation, the results indicated a similar
conclusion, as seen in Figure 4b. At the same time, we can still see a small difference between the
two sources with three kinds of PDF, that is, a steady decline in the estimation errors of the second
distributed signal with the growth of SNRs. This is because that the estimation accuracy is reliant
upon the spatial distribution parameter ∇, which will be further verified in following simulations.

In the third simulation, the relationship of the parameter estimation accuracy with the snapshot
number was studied. We considered distributed signals from (−20◦, 1.2λ) and (−10◦, 1.3λ) impinging
on a five-element ULA, whose spatially distributed parameters’ ∆ were 1◦ and 3.3◦, respectively.
The SNR was set to 15 dB, and the number of snapshots varied from 100 to 1200 in a step-size of 100.
As seen in Figure 5a, the RMSEs of the DOA estimates descended in a steady trend with the increase
of the number of snapshots. The results indicated a similar conclusion for the second source, as seen in
Figure 5b.
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Figure 4. RMSE of the DOA estimates of two signals versus SNR. (a) First spatially distributed source,
(b) second spatially distributed source.
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(b)

Figure 5. RMSE of the DOA estimates of two signals versus snapshots. (a) First spatially distributed
source with three kinds of PDF, (b) second spatially distributed with three kinds of PDF.

In the final experiment, the relationship of the parameter estimation accuracy with the spatially
distribution was showed. We considered two distributed sources from (−20◦, 1.2λ) and (−20◦, 1.2λ)

impinging on a five-element ULA. The SNR was set to 15 dB and the number of snapshots was set as
200. The spatially distributed parameters’ ∆ varied from 0.1 to 10 in a step-size of 0.5. As can be seen in
Figure 6a, the DOA estimation error of two signals became bigger as the spatially distributed parameter
∆ growed, which means that the amplitude of estimated target shaking was bigger, making it more
difficult to ascertain the location of the target. This also supports an explanation of the difference
between Figure 4a,b. It can be observed that the estimation performance for the second source under
all three spatial distributions became worse in general. Alternatively, we can compare three signals
with the different kinds of PDF. It is obvious that the signal following Gaussian distribution was more
sensitive to the spatial spread parameter, and the signal following a uniform distribution changed
more erratically compared with the two others.

So far, various cases of DOA estimation were discussed, except for range estimation for the
spatially distributed source. From Figures 7–9, we can see that the range estimations had an irregular
influence on the SNR, snapshot, and ∇. The signal model in this paper is based on an assumption that
the angle follows some PDF, which is a pragmatic approach to real applications to near-filed sources.
A change of angular information will influence the range of the near-field source. Due to the fact that
the variation between these two parameters is nonlinear, coupled with the PDF of the source, it is hard
to find rules for the range estimation; although the performance of range estimation is satisfactory, we
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still have a very accurate range estimator (we can see that all the errors for the range estimator were
under the orders of magnitude 10−1).
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Figure 6. RMSE of the DOA estimates of two signals versus spatial distribution parameter ∇. (a) First
spatially distributed source with three types of PDF, (b) second spatially distributed source with three
types of PDF.
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Figure 7. RMSE of the range estimates of two signals versus SNR. (a) First spatially distributed source,
(b) second spatially distributed source.
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Figure 8. RMSE of the range estimates of two signals versus snapshot. (a) First spatially distributed
source with three kinds of PDF, (b) second spatially distributed source with three kinds of PDF.
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Figure 9. RMSE of the range estimates of two signals versus parameter∇. (a) First spatially distributed
source with three types of PDF, (b) second spatially distributed source with three types of PDF.

4. Conclusions

The near-field localization problem of non-circular distributed sources was addressed in this
paper. The traditional use for distributed source processing is only for far-field sources, and it generally
needs a 2D searching method or omits the influence of angular spread for the DOA estimation. In order
to improve estimation performance, the non-circularity of signals was taken into account. By carefully
examining the structure of the steering vector, we decoupled the DOA and range from the non-circular
phase and angular spread, and obtained the estimates by the RARE principle in sequence. The proposed
method exhibited satisfactory localization performance for near-field non-circular sources.
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