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Abstract: The swarm intelligence (SI)-based bio-inspired algorithm demonstrates features of
heterogeneous individual agents, such as stability, scalability, and adaptability, in distributed
and autonomous environments. The said algorithm will be applied to the communication
network environment to overcome the limitations of wireless sensor networks (WSNs). Herein,
the swarm-intelligence-centric routing algorithm (SICROA) is presented for use in WSNs that
aim to leverage the advantages of the ant colony optimization (ACO) algorithm. The proposed
routing protocol addresses the problems of the ad hoc on-demand distance vector (AODV) and
improves routing performance via collision avoidance, link-quality prediction, and maintenance
methods. The proposed method was found to improve network performance by replacing the periodic
“Hello” message with an interrupt that facilitates the prediction and detection of link disconnections.
Consequently, the overall network performance can be further improved by prescribing appropriate
procedures for processing each control message. Therefore, it is inferred that the proposed SI-based
approach provides an optimal solution to problems encountered in a complex environment, while
operating in a distributed manner and adhering to simple rules of behavior.
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1. Introduction

Swarm intelligence (SI) originates from the collective behavior of life groups [1]. It is a mechanism
that can overcome the limitations of the perceptions of individual agents. SI deals with complex
systems, in which individual agents interact with each other with minimal communication with
neighboring agents. Owing to this property, SI has been applied to several engineering applications [2–4].
The SI-based bio-inspired algorithm shows features such as stability, scalability, and adaptability in an
environment where many individuals exist, the environment changes dynamically, available resources
are restricted, and objects with heterogeneous characteristics remain distributed and autonomous.
This is similar to a communication network environment, along with its service requirements [5–7].

In this study, the ant colony optimization (ACO) algorithm—one of the most effective bio-inspired
algorithms used in communication and networking technology—has been employed to address the
limitations of wireless sensor networks (WSNs) [8–11]. Accordingly, an ACO-based WSN-routing
algorithm has been proposed in this paper. The basic idea of the ACO algorithm is to provide the
trailing ant with decision results from the leading ant, such that the trailing ant can use this information
to identify an optimal solution [12–14]. The ant system is suitable for use in large dynamic systems,
such as WSNs, for two reasons. First, within an ant colony, ants search for routes while exclusively
using local information (i.e., the number of pheromones). Therefore, the ACO-algorithm-based
system corresponds to a distributed control system used for communication over a wireless sensor
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network. Secondly, the ACO algorithm adapts well to unpredictable changes in the environment.
In WSNs, an ACO-algorithm-based system is designed to reroute data according to the network
traffic, thereby improving the performance of the entire transmission network. Therefore, using SI, an
algorithm that maximizes the service life of a sensor network, while simultaneously distributing data
traffic across the same, can be developed.

This paper presents the swarm-intelligence-centric routing algorithm (SICROA) for use in WSNs
that aim to leverage the advantages of the ACO algorithm. The proposed algorithm considers each data
packet transmitted to the base station as an ant, whereas each packet is considered the residual-energy
pheromone of the sensor connected to the corresponding link upon selection of each successive hop in
the path.

Additionally, SICROA ensures efficient energy utilization by each node, thereby maximizing the
sensor network’s lifetime, while also allowing it to adapt to variations in the network environment [15].

Section 2 discusses the ACO and other applied algorithms that form the basis of the proposed
algorithm. Section 3 presents the realization of collision avoidance via use of interrupts, link-quality
prediction, and maintenance technologies incorporated within SICROA. Using simulation results,
Section 4 compares the handling of the general routing problem by the proposed and other protocols,
thereby demonstrating the superiority of the proposed algorithm. Finally, Chapter 5 discusses the
simulation results, conclusions, and future work.

2. Related Works

2.1. Relevant Routing Algorithm for WSN

In WSNs, sink nodes are connected to multiple sensor nodes within a multi-hop network to acquire
data from the sensor nodes. Because all sensor nodes are battery-powered and periodically generate a
small amount of sensing data, their duration of continuous operation is limited. This problem can
be addressed via the use of a data aggregation technique to enhance the energy efficiency of each
sink node, thereby increasing the duration of continuous network operation [16–18]. In other words,
the sensing information received from each node can be merged in the WSN relay node and delivered as
a single dataset. For example, in the case of a WSN that measures the maximum/minimum temperature
of a smart greenhouse, the relay node can be considered efficient when it exclusively transmits the
said maximum/minimum temperature value from among several values received by multiple sensor
nodes [19,20]. In several scenarios involving WSNs, the use of a data merging technique can reduce
the data throughput and increase the network survival time. The authors in [21] present a routing
method to be used in a WSN environment, where all of the sensor-collected data can be gathered at
the sink node. This method was designed by considering in-network computational techniques, such
as data merging, and, therefore, it was named “data-centric routing” [21]. This method corresponds
to the existing address-centric routing scheme that aims to minimize the routing cost by reducing
the distance between the source and destination nodes without considering in-network calculations,
such as data aggregation. Therefore, data-centric routing aims to improve transmission or energy
efficiency, instead of ensuring fast transmission, by considering data merging at intermediate nodes in
the sensor network.

Data-centric routing in WSNs has been investigated to reduce the energy consumption of nodes or
to increase the network survival time [22–25]. However, merging a large amount of data at intermediate
nodes to reduce transmission-energy consumption causes a resultant increase in the waiting time.
This increases the overall sensor-data-acquisition time at the sink node.

On the other hand, if an intermediate node transfers the collected data directly to the sink node
without sufficient data merging, the resulting sensor-data-acquisition time can be reduced. However,
this comes at the cost of an increase in the energy consumed by the node owing to an increase in the
number of data transmissions. Therefore, a trade-off exists between the sensor-data-acquisition time
and the energy consumed by the nodes.
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2.2. ACO Algorithm

Ants are widely distributed around the world. While they are common insects, they have some
unique capabilities. Specifically, one of the abilities of harvester ants is relying on a mechanism
that controls the frequency of finding food. This is analogous to the function performed by a data
management algorithm. Therefore, this phenomenon has attracted considerable research interest and
triggered studies on optimization and control algorithms using ants’ swarm intelligence.

The ACO algorithm, as proposed by M. Dorigo, is based on the cooperative behavior of ants
attempting to identify the shortest path from their habitat to food [26]. It is used as a meta-heuristic
approach to solve complex and difficult network problems, such as those pertaining to transportation
and scheduling, store product displays, and optimized route search [27–29]. In the ACO algorithm,
each ant acts as an artificial agent that attempts to solve its corresponding problem probabilistically.
At each stage, the ants move and emit pheromones, as described in Figure 1. The said pheromones
are updated during each iteration of the ACO algorithm, thereby increasing the probability of
optimum-path calculation.
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Figure 1. Ant colony optimization (ACO) algorithm.

This study focuses on the indirect information transmission method using pheromones in the
ACO algorithm [26]. Because a phase change due to the mobility of a sensor node causes a change
in routing and multicasting paths, it is necessary to identify this change frequently for efficient data
transmission [27–29]. However, a limited bandwidth or power supply issue makes the transmission of
such information to each node difficult [30].

The ACO algorithm tries to mimic the behavior of an ant colony, wherein the blind worker ants
transport food located far from their nest through the shortest path. The algorithm has been applied
to various optimization problems related to communication networks, path exploration by a mobile
object, scheduling, and job allocation [31,32].
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As shown in Figure 1 [33], when an ant finds food (F), it transports it to its nest (N) leaving behind
a pheromone trail (b) on its path (a). When a swarm of ants transport food through multiple paths,
pheromones accumulate on the path with the shortest distance between the nest and the food. As ants
tend to move along the path with the most pheromones, after a certain period of time, all of the ants
end up transporting their food only through the shortest path. The amount of pheromone, τk

i j, on the
path, from i to j, after a certain period of time can be defined as follows:

τ∗i j = (1− ρ)τi j +
m∑

k=1

∆τk
i j (1)

In the above equation, τi j represents the current amount of pheromone on the path from i to j, ρ
represents the evaporation rate of pheromones, m represents the number of ants moving from i to j, and
∆τk

i j represents the amount of pheromone that the k-th ant releases along its path. An ant determines
its next position based on the amount of pheromones (calculated as above); thus, it does not return to
its own prior path, but selects a destination position within a one-hop distance. If the position that
the k-th ant has not yet visited within the one-hop distance is defined as l, the set of these positions is
defined as N( Sp), and the heuristic information is defined as µi j, the probability Pk

i j that the k-th ant
moves to position j when it arrives at a position i is determined as follows:

Pk
i j =


ταi jµ

β
i j∑

cil∈N(sp) τ
α
ilµ
β
il

0

ci j ∈ N(sp)

otherwise
(2)

In the equation, the heuristic information, µi j, is defined as µi j = 1/di j when the distance between i
and j is di j; α and β are parameters that assign weights to the amount of pheromones and the amount
of heuristic information, respectively. Therefore, if a path has more pheromones and is shorter, the
probability of its use becomes higher.

3. Proposed SICROA

Because all nodes in a WSN environment are mobile, the network topology changes dynamically
over time; the data transmission radius is limited by the available battery power; and it has an unstable
routing path, where link disconnections occur frequently owing to interference, multipath fading,
and/or collisions. To overcome these difficulties, this paper presents a biomimetic algorithm based on
the SI-centric routing algorithm (SICROA) for WSNs. The said method is capable of providing an agile
and appropriate response to routing problems.

3.1. Collision Avoidance through Interrupts (CATI)

The ad hoc on-demand distance vector (AODV)—a representative WSN protocol—defines a
“Hello” message to alleviate frequent link-disconnection problems, and to allow mobile nodes on
a path to exchange beacons with one another. However, link disconnections still frequently occur,
and the transmission of periodic “Hello” messages can cause network congestion along with several
other problems [34,35].

In ant colonies, individual ants passing through a path closer to the shortest one accumulate more
pheromones. This accumulation of a large amount of pheromones along a path causes the ants to
recognize it as the shortest path, thereby resulting in their movement along this recognized path.

Therefore, the aforementioned method results in collisions in the routing process, as well as a
higher congestion density between adjacent nodes. Additionally, in the event of a traffic congestion,
the establishment of a new path cannot be considered. This causes deterioration of the node-congestion
state, increased end-to-end latency, and network-performance degradation.
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To solve the aforementioned problems, collision avoidance through interrupts (CATI), wherein
data relay is rejected by a node, which is considered to face increased traffic, by sending an interrupt
message to the source node. Subsequently, the node that receives the message can establish a new
bypass path. In addition, the node sending the interrupt message prevents a new path from being
established through itself by not relaying the route request (RREQ) message to its neighboring nodes.

CATI replaces the “Hello” message with an interrupt to avoid collisions caused by periodic message
transmissions, and it adopts the message formats of <Battery Check> and <Mobility Check> [36].
The <Battery Check> message checks the residual energy level. If the battery capacity is insufficient,
or if the residual energy level of the node is less than or equal to the threshold value, <Battery Check>

confirms the occurrence of the interrupt message by checking the threshold value. If the corresponding
interrupt occurs, the status is transmitted to the neighboring node using the event process module.
Because the neighboring nodes that receive this status can predict the disconnection of a link, the service
life of the concerned node is set to zero in its corresponding route table, and the same is removed from
the set of neighbor nodes after a certain time has elapsed.

Figure 2 depicts an example of the <Battery Check> interrupt. Node A denotes a relay node
that exists on the data paths of the [S1, D1], [S2, D2], and [S3, D3] pairs. If node A predicts a link
disconnection due to a low battery level caused by excessive traffic, the neighboring nodes receiving
the message reduce the frequency of the link disconnections by modifying the received messages to
bypass the path using alternate nodes prior to the occurrence of link disconnections.
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Node S2, which receives the <Battery Check> message, initiates a new routing mechanism by
broadcasting an RREQ message to establish a new route to node D2 [37]. If node S2 successfully
completes the establishment of a new bypass route and initiates data transfer through the new route
via node B, the route maintained by node A is no longer used. Therefore, the time for that entry expires,
and it is naturally deleted from the routing table.

The <Mobility Check> message specifies the occurrence of a movement owing to changes in the
position value of a node (A→A′). Consequently, the module that checks the movement status of the
concerned node is called, and the corresponding module checks the coordinate values of the node at
each period by setting a timer for transmitting the next <Mobility Check> message. Finally, when a
change occurs, the event process module is used to send the status to neighboring nodes.
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The neighboring nodes receiving this status set the service life of the node in their route table at
regular intervals, and whenever a <Mobility Check> message is received, the corresponding node
in motion can be checked to verify if it lies within the transmission range. As depicted in Figure 3,
when the link is broken owing to the sudden movement of the next hop or link disconnection during
data transmission, path recovery is first performed using an alternate node to improve the frequency
of path rescan.
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Because CATI, which operates as presented in Algorithm 1, can determine the state of the
neighboring nodes based on their type, the overall network performance can be improved by predicting
or detecting link disconnections [33].

Algorithm 1: Collision Avoidance through Interrupts

[When node A receives a packet]
if RREQ message in a packet
if node A is in the interrupt state for battery or mobility
ignore the packet
else
process the packet using the existing routing algorithm
else if receive interrupt message for battery or mobility
if the interrupt state is destined to node A
initiate the route-discovery mechanism of the existing routing algorithm
else
forward the packet with the alternative route

[At the end of a time interval (for lifetime & mobility)]
if # of forwarding packets for the time interval ≥ threshold
change the state to battery check or mobility check
send a <Battery Check> or <Mobility Check> message to the source of last received packet
if # of forwarding packets for the time interval < threshold
change the state to normal

3.2. Link-Quality Prediction and Maintenance

In SICROA, the route establishment and maintenance technology was applied by considering
the residual energy of a node based on the AODV protocol. When setting the path by considering
the residual energy of the node, it is possible to reduce the frequency of resetting the path that occurs
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owing to energy depletion. Furthermore, by setting the residual energy threshold of the node and
notifying the source node before the path is disconnected, it is possible to reduce the data loss and
transmission delay that occur owing to path resetting.

Reverse routing caused by the RREQ packet is similar to the flooding of existing AODV [38].
The source node broadcasts the RREQ packet to neighboring nodes. After the RREQ packet is received,
the intermediate nodes store the route in their routing table and broadcast the RREQ packet to the
neighboring nodes if they are not the destination nodes. If the intermediate node receives another
RREQ packet through another path, the link dependency of the concerned path is verified. If the
concerned path is link-independent, it is considered a potential alternative, and the received RREQ
packet is discarded to ensure the link-independent path. Finally, when the destination node receives
the RREQ packet, it also stores the path in its routing table prior to proceeding to the step wherein the
forward path is established using the route reply (RREP) packet.

As illustrated in Figure 4, the Warning_Energy field, W, with a size of 1 byte was added to the
RREP packet used in the existing AODV protocol. The destination node adds its minimum energy to
the Warning_Energy field, and it subsequently sends the RREP packet to the unicast along the reverse
path configured to receive the RREQ packet.

Warning_Energyt =Min (Et, Warning_Energyt-1) (3)
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The intermediate node that receives the RREP packet stores the route in its routing table.
As described in Equation (3), Et, which denotes the current residual energy, is compared with the value
stored in the Warning_Energy(t-1) field received from the previous node. Subsequently, the smaller
value is stored in the current Warning_Energy(t) field, and the RREP packet is sent along the route
stored in its routing table.

When the source node receives the RREP packet, it saves the route and Warning_Energy value in
its routing table, and initiates communication through the route. If the source node receives multiple
RREP packets, it compares the value of the Route_Initial_Energy field of the current route stored
in the routing node’s routing table with the value of the Warning_Energy field of the RREP packet.
Subsequently, the communication continues by changing the path to that with a higher field value.
If the Warning_Energy value remains unchanged or reduces, the existing path is used as it is. If the
Warning_Energy value becomes larger, the path could be maintained for a longer duration, and thus,
the resulting data transmission becomes stable. Figure 5 depicts the SICROA routing table, wherein
the Route_Initial_Energy field is added to the existing AODV routing table.
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4. Performance Evaluation

This section presents the results of the WSN simulations performed using Network Simulator-2
(NS-2), and compares them with those obtained using the proposed SICROA protocol, AODV,
and dynamic source routing (DSR) routing protocols [39–41].

One hundred nodes were randomly distributed in a square region with 1000-m2 area, and the
results obtained were measured in accordance with the change in the number of nodes in the proposed
protocol. The experiment was repeated 10 times, and the number of nodes was increased from 10 to
100 in increments of 10 during each iteration. The random waypoint (RWP) was used as the mobility
model, and the performance change was examined in terms of mobility by changing the maximum
speed from 5 to 30 m/s.

During the 90-s simulation, the occurrence of data packets was observed every 0.25 s, and RREQ
flooding occurred in intervals of 1, 2, and 3 s. ROUTE_TIMEOUT—i.e., the time for deleting the
generated routing information—was set to 3 s, and the TTL value of all of the control packets was
set to 20. To confirm the routing effect, they were only reflected in the results when the number of
shortest-path hops between the origin and destination exceeded three. In addition, the TTL value was
set large enough to ensure that RREQ and RREP remained flooded throughout the network during
flooding for initial routing.

The end-to-end delay in Figure 6 denotes the time required for a data packet to arrive successfully
at its destination, and it represents the length of the path used for data transmission. The proposed
method demonstrates the lower delay performance compared with the existing AODV and DSR
techniques. In addition, a lower delay performance is observed corresponding to a shorter flooding
period at the beginning of the destination, owing to frequent updating of the new path. In general,
for all of the routing protocols, the delay increases with the increase in mobility. However, in this study,
the end-to-end delay of all of the routing protocols was reduced owing to the consideration of only
successfully delivered data packets for delay-performance evaluation, and the new shortest path was
found during path disconnection.
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The packet delivery ratio in Figure 7 can be defined as the ratio of data packets arriving at the
destination to the total number of data packets originating from the source. Thus, the packet delivery
ratio is directly affected by the number of disconnections, because each node immediately discards
the data packet, which needs to be delivered to the destination without resending it, when the path
is disconnected. Therefore, the performance of the proposed method was observed to have greatly
improved in terms of the packet delivery ratio.
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Figure 7. Packet delivery ratio with respect to number of nodes.

Figure 8 shows the trend concerning changes in the survival rate of nodes with an increase in
the node count until the end of the simulation. The observed trends correspond to the formation of
a large network. As can be confirmed, SICROA demonstrates a higher survival rate, owing to its
consideration of residual energy, which is not considered by other routing protocols. Upon selection of
the network path, both the transmission and reception of the control packets is reduced, which in turn
reduces energy consumption.
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Based on the observed trends concerning the simulation factors, as described in Figures 6–8,
the proposed SICROA routing protocol clearly outperforms AODV and DSR. Because the transmitting
node exchanges paths through the researching path prior to the occurrence of node failure and link
damage, no data or link loss occurs. Additionally, the packet delivery rate in SICROA exceeds those
observed when using DSR and AODV. In other words, because the transmitting node continues to
initiate path discovery prior to packet transmission, the disconnection of all paths can be avoided.
Any increase in the average node speed, number of connections, or number of nodes tends to reduce
the packet delivery rate, and this can be attributed to the high node mobility that causes frequent link
damages, owing to which, several packets are discarded. Additionally, the increase in connection
and node counts causes an increase in signal-strength traffic interference, which in turn increases the
possibility of link damage.

5. Conclusions

The proposed routing protocol overcomes the disadvantages of AODV and improves routing
performance via the incorporation of collision avoidance, link-quality prediction, and maintenance
techniques that mimic the ACO algorithm. SI can operate reliably in accordance with simple rules of
behavior, while providing reliable solutions to given problems in complex environments.

In this study, the performance of the routing protocol was improved by replacing the periodic
“Hello” message with an interrupt message capable of detecting and predicting link disconnections.
As observed, routing performance can be further improved via the addition of processing procedures
for each message type. In addition, when the signal strength of a received data packet approaches
the residual-energy threshold prior to energy loss, an increase in path-loss tendency can be observed.
In contrast, when the signal strength of a received packet falls below the minimum threshold,
a pre-warning packet is generated. Simulation results reveal that the proposed method is superior
to the existing AODV and DSR routing protocols. The trade-off between the acquisition time of
the sensing information and the energy consumed by the nodes is well resolved. In addition to
providing a highly reliable and robust path for information transmission, the proposed method
improves source-to-destination data latency, thereby reducing the frequency of the link disconnections
and unnecessary control packet transmissions within the network.

In view of its above-mentioned features and advantages, the proposed biomimetic algorithm is
expected to be effectively utilized in large-scale communication networks. This requires sophisticated
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mathematical modeling of various biological systems, as well as rigorous performance verification
based on several system-environment variables. In future, further research is required on techniques
to maintain a continuous alternative path in the proposed algorithm and to increase the reliability of
the path in one-way links that often occur in wireless network environments. In addition, some path
improvements can be made, such as using the results of the proposed method to compare with other
methods (e.g., recursive neural networks).
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