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Abstract: In this work, we show that a late fusion approach to multimodality in sign language recognition
improves the overall ability of the model in comparison to the singular approaches of image classification
(88.14%) and Leap Motion data classification (72.73%). With a large synchronous dataset of 18 BSL
gestures collected from multiple subjects, two deep neural networks are benchmarked and compared
to derive a best topology for each. The Vision model is implemented by a Convolutional Neural
Network and optimised Artificial Neural Network, and the Leap Motion model is implemented
by an evolutionary search of Artificial Neural Network topology. Next, the two best networks are
fused for synchronised processing, which results in a better overall result (94.44%) as complementary
features are learnt in addition to the original task. The hypothesis is further supported by application
of the three models to a set of completely unseen data where a multimodality approach achieves the
best results relative to the single sensor method. When transfer learning with the weights trained
via British Sign Language, all three models outperform standard random weight distribution when
classifying American Sign Language (ASL), and the best model overall for ASL classification was the
transfer learning multimodality approach, which scored 82.55% accuracy.

Keywords: sign language recognition; multimodality; late fusion

1. Introduction

Sign language is the ability to converse mainly by use of the hands, as well as in some cases
the body, face and head. Recognition and understanding of Sign Language is thus an entirely
visuo-temporal process performed by human beings. In the United Kingdom alone, there are 145,000
deaf adults and children who use British Sign Language (BSL) [1]. Of those people, 15,000 report
BSL as their main language of communication [2], which implies a difficulty of communication with
those who cannot interpret the language. Unfortunately, when another person cannot interpret sign
language (of who are the vast majority), a serious language barrier is present due to disability.

In addition to the individuals who act as interpreters for those who can only converse in Sign
Language, or who only feel comfortable doing so, this work aims to improve autonomous classification
techniques towards dictation of Sign Language in real-time. The philosophy behind this work is based
on a simple argument: If a building were to have a ramp in addition to stairs for easier access of the
disabled, then why should a computer system not be present in order to aid with those hard of hearing
or deaf? In this work, we initially benchmark two popular methods of sign language recognition
with an RGB camera and a Leap Motion 3D hand tracking camera after gathering a large dataset
of gestures. Following these initial experiments, we then present a multimodality approach which
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fuses the two forms of data in order to achieve better results for two main reasons: first, mistakes and
anomalous data received by either sensor has the chance to be mitigated by the other, and second,
a deep neural network can learn to extract useful complimentary data from each sensor as well as
the standard approach of extracting information towards the class itself. The driving force behind
improving the ability of these two sensors is mainly cost, in that the solution presented is of extremely
minimal cost and, with further improvement beyond the 18 gestures explored in this study, could
easily be implemented within public places such as restaurants, schools, libraries, etc. in order to
improve the lives of disabled individuals and enable communication with those they otherwise could
not communicate with.

In this work, the approaches of single modality learning and classification are compared to
multimodality late fusion. The main scientific contributions presented by this work are as follows.

1. Collection of a large BSL dataset from five subjects and a medium-sized ASL dataset from two
subjects (The dataset is publicly available at https://www.kaggle.com/birdy654/sign-language-
recognition-leap-motion).

2. Tuning of classification models for the RGB camera (processing layer prior to output), Leap
Motion Classification (evolutionary topology search) and multimodality late fusion of the two via
concatenation to a neural layer. Findings show that multimodality is the strongest approach for
BSL classification compared to the two single-modality inputs as well as state of the art statistical
learning techniques.

3. Transfer learning from BSL to improve ASL classification. Findings show that weight transfer to
the multimodality model is the strongest approach for ASL classification.

The remainder of this work is as follows. Section 2 explores the current state-of-the-art for Sign
Language Classification. Section 3 details the method followed for these experiments, which includes
data collection, data preprocessing and the machine learning pipeline followed. The results for all
of the experiments are presented in Section 4, including indirect comparison to other state-of-the-art
works in the field, before conclusions are drawn and future work is suggested in Section 5.

2. Related Work

Sign Language Recognition (SLR) is a collaboration of multiple fields of research which can involve
pattern matching, computer vision, natural language processing and linguistics [3–5]. The core of SLR
is often times focused around a feature engineering and learning model-based approach to recognising
hand-shapes [6]. Classically, SLR was usually performed by temporal models trained on sequences of
video. Many works from the late 1990s through to the mid-2000s found best results when applying
varying forms of Hidden Markov Models (HMMs) to videos [7–10]; HMMs are predictive models of
transition (prior distribution) and emission probabilities (conditional distribution) of hidden states.
To give a specific example, researchers found in [7] that hand-tracking via a camera and classification
of hand gestures while wearing solidly coloured gloves (similar to chroma key) was superior to
hand-tracking without a glove. In this work, a vector of eight features was extracted from the hands
including 2-dimensional X,Y positions, the angle of the axis of with the least inertia and the eccentricity
of a bounding ellipse around the hand. That is, four features for each hand. These vectors then
provided features as input to the HMM. More recently though, given affordable sensors that provide
more useful information than a video clip, studies have focused upon introducing this information
towards stronger and more robust real-time classification of non-verbal languages. Sign language
recognition with depth-sensing cameras such as Kinect and Leap Motion is an exciting area within the
field due to the possibility of accessing accurate 3D information from the hand through stereoscopy
similar to human depth perception via images from two eyeballs. Kinect allows researchers to access
RGBD channels via a single colour camera and a single infrared depth-sensing camera. A Microsoft
Kinect camera was used to gather data in [11], and features were extracted using a Support Vector
Machine from depth and motion profiles. Researchers in [12] found that generating synchronised

https://www.kaggle.com/birdy654/sign-language-recognition-leap-motion
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colour-coded joint distance topographic descriptor and joint angle topographical descriptor and used
as input to a two-steam CNN produced effective results; the CNNs in this study were concatenated
by late fusion similar to the multimodality method in this study and results were ~92% for a 20-class
dataset. In terms of RGB classification specifically, many state-of-the-art works have argued in favour
of the VGG16 architecture [13] for hand gesture recognition towards sign language classification [14].
These works include British [15], American [16], Brazilian [17] and Bengali [18] Sign Languages, among
others. Given the computational complexity of multimodality when visual methods are concerned in
part, multimodality is a growing approach to hand gesture recognition. Researchers have shown that
the approach of fusing the LMC and flexible sensors attached to the hand via Kalman filtering [19] is
promising. Likewise in this regard, recent work has also shown that RGBD (Realsense) along with
a physical sensor-endowed glove can also improve hand-tracking algorithms [20]. Given the nature
of SLR, physically-worn devices are an unrealistic expectation for users to accept when real-world
situations are considered, e.g., should someone wish to sign in a hotel lobby for staff who do not know
sign language. For this reason, we follow the approach of two non-physical sensors that are placed
in front of the subject as a “terminal”. That is, facing towards a camera and Leap Motion sensor are
similar to natural social interaction and do not require the adoption of a physical device on the body.

Transfer Learning is a relatively new idea applied to the field of Sign Language recognition. In [21],
researchers found it promising that knowledge could be transferred between a large text corpora
and BSL via both LSTM and MLP methods, given that sign language data is often scarcely available.
In this work, rather than transferring between syntax-annoted text corpora, we aim to follow the
multisensor experiments with transfer learning between two different sign languages, i.e., transferring
between the same task but in two entirely different languages (British Sign Language and American
Sign Language).

The Leap Motion Controller, a sketch of which can be observed in Figure 1, is a device that
combines stereoscopy and depth-sensing in order to accurately locate the individual bones and joints
of the human hand. An example of the view of the two cameras translated to a 3D representation
of the hand can be seen in Figure 2. The device measures 3.5 × 1.2 × 0.5 inches and is thus a more
portable option compared to the Microsoft Kinect. Features recorded from the 26 letters of the alphabet
in American Sign Language were observed to be classified at 79.83% accuracy by a Support Vector
Machine algorithm [22]. Similarly to the aforementioned work, researchers found that a different
dataset also consisting of 26 ASL letters were classifiable at 93.81% accuracy with a Deep Neural
Network [23]. Another example achieved 96.15% with a deep learning approach on a limited set of
520 samples (20 per letter) [24]. Data fusion via Coupled Hidden Markov Models was performed
in [25] between Leap Motion and Kinect, which achieved 90.8% accuracy on a set of 25 Indian Sign
Language gestures.

Additionally, studies often fail to apply trained models to unseen data, and therefore towards
real-time classification (the ultimate goal of SL recognition). With this in mind, Wang et al. proposed
that sign language recognition systems are often affected by noise, which may negatively impact
real-time recognition abilities [26]. In this work, we benchmark two single-modality approaches as
well as a multimodality late fusion approach of the two both during training, and on unseen data
towards benchmarking a more realistic real-time ability. Additionally, we also show that it is possible
to perform transfer learning between two ethnologues with the proposed approaches for British and
American Sign Languages.

In much of the state-of-the-art work in Sign Language recognition, a single modality approach is
followed, with multimodality experiments being some of the latest studies in the field.
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Figure 1. Photograph and labelled sketch of the stereoscopic infrared camera array within a Leap
Motion Controller, illuminated by three infrared light-emitting diodes (IR LEDs).

Figure 2. Screenshot of the view from Leap’s two infrared cameras and the detected hand reproduced
in 3D. Note that this study uses a front-facing view rather than up-facing as shown in the screenshot.

The inspiration for the network topology and method of fusion in this work comes from the work
in [27] (albeit applied to scene recognition in this instance), similarly, this work fuses two differing
synchronous data types via late-fusion by benchmarking network topologies at each step. In the
aforementioned work however, weights of the networks were frozen for late fusion layer training
(derived from benchmarking the two separate models). In this experiment, all weights are able to train
from the start of the late fusion network from scratch, and thus the networks can extract complimentary
features from each form of data for classification in addition to the usual method of extracting features
for direct classification and prediction.

Table 1 shows a comparison of state-of-the-art approaches to Sign Language recognition.
The training accuracy found in this work is given as comparison as other works report such metric,
but it is worth noting that this work showed that classification of unseen data is often lower than the
training process. For example, the multimodality approach score of 94.44% was reduced to 76.5%
when being applied to completely unseen data.
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Table 1. Other state-of-the-art works in autonomous Sign Language Recognition, indirectly compared
due to operation on different datasets and with different sensors. Note: It was observed in this study
that classification of unseen data is often lower than results found during training, but many works do
not benchmark this activity.

Study Sensor Input Approach Classes Score (%)

Huang et al. [28] Kinect Skeleton DNN 26 97.8
Filho et al. [29] Kinect Depth KNN 200 96.31
Morales et al. [30] Kinect Depth HMM 20 96.2
Hisham et al. [31] LMC Point Cloud DTW 28 95
Kumar et al. [32] LMC Point Cloud HMM, BLSTM 50 94.55
Quesada et al. [33] RealSense Skeleton SVM 26 92.31
Kumar et al. [12] MoCap Skeleton 2-CNN 20 92.14
Yang [34] Kinect Depth HCRF 24 90.4
Cao Dong et al. [35] Kinect Depth RF 24 90
Elons et al. [36] LMC Point Cloud MLP 50 88
Kumar et al. [37] Kinect Skeleton HMM 30 83.77
Chansri et al. [38] Kinect RGB, Depth HOG, ANN 42 80.05
Chuan et al. [22] LMC Point Cloud SVM 26 79.83
Quesada et al. [33] LMC Skeleton SVM 26 74.59
Chuan et al. [22] LMC Point Cloud KNN 26 72.78

This study LMC, RGB Hand feats, RGB CNN-MLP-LF 18 94.44

3. Proposed Approach: Multimodality Late Fusion of Deep Networks

Within this section, the proposed approach for the late fusion experiments is described.
The experiments that this section mainly refers to can be observed in Figure 3, which outlines the
image classification, Leap Motion classification and multimodality late fusion networks. The camera
is used to record an image, and features are extracted via the VGG16 CNN and MLP. The Leap motion
is used to record a numerical vector representing the 3D hand features previously described, which
serves as input to an evolutionarily optimised deep MLP. Given that data is recorded synchronously,
that is, the image from the camera and the numerical vector from the Leap Motion are captured at the
same moment in time, the data objects are used as the two inputs to the multimodality network as
they both describe the same frame captured.

3.1. Dataset Collection and Preprocessing

Five subjects contributed to a dataset of British Sign Language, where each of the gestures was
recorded for thirty seconds each, 15 s per dominant hand. Rather than specific execution times, subjects
are requested to repeat the gesture at a comfortable speed for the duration of the recording; a recording
of 15 s in length prevents fatigue from occurring and thus affecting the quality of the data. An example
of recorded image data can be observed in Figure 4. Eighteen differing gestures were recorded at a
frequency of 0.2 s each using a laptop, an image was captured using the laptop’s webcam and Leap
Motion data are recorded from the device situated above the camera facing the subject. This allowed
for “face-to-face” communication, as the subject was asked to communicate as if across from another
human being. The “task-giver” was situated behind the laptop and stopped data recording if the
subject made an error while performing the gesture. Each 0.2 s recording provides a data object that is
inserted into the dataset as a numerical vector to be classified.
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Figure 3. An overall diagram of the three benchmarking experiments. Above shows the process of
image classification and below shows Leap Motion data classification for the same problem of sign
language recognition. The higher order function network shows the late fusion of the two to form a
multimodality solution.

0s	-	0.2s 0.2s	-	0.4s 0.4s	-	0.6s 0.6s	-	0.8s 0.8s	-	1s

Frame	1 Frame	2 Frame	3 Frame	4 Frame	5

t	=	0 t	=	1

Figure 4. An example of one second of RGB image data collected at a frequency of 0.2 s per frame (5 Hz).
Alongside each image that is taken is a numerical vector collected from the Leap Motion Controller.

From the Leap Motion sensor, data were recorded for each of the thumb, index, middle, ring
and pinky fingers within the frame (labelled “left” or “right”). The names of the fingers and bones can
be observed in the labelled diagram in Figure 5. For each hand, the start and end positions; 3D angles
between start and end positions; and velocities of the arm, palm and finger bones (metacarpal, proximal,
intermediate and distal bones) were recorded in order to numerically represent the gesture being
performed. The pitch, yaw and roll of the hands were also recorded. If one of the two hands were not
detected, then its values were recorded as “0” (e.g., a left handed action will also feature a vector of
zeroes for the right hand). If the sensor did not detect either hand, data collection was automatically
paused until the hands were detected in order to prevent empty frames. Thus, every 0.2 s, a numerical
vector is output to describe the action of either one or two hands. The θ angle is computed using
two 3D vectors by taking the inverse cosine of the dot product of the two vectors divided by the
magnitudes of each vector, as shown below.

θ = arccos
(

ab
| a || b |

)
, (1)
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where | a | and | b | are

| a |=
√

ax2 + ay2 + az2

| b |=
√

bx
2 + by

2 + bz
2,

(2)

with regards to the x, y and z co-ordinates of each point in space. The start and end points of each bone
in the hand from the LMC are treated as the two points.

Distal Intermediate Proximal Metacarpal
(Not	shown)

Thumb

Index

Middle

Ring

Pinky

Palm
Arm

Wrist

Figure 5. Labelled diagram of the bone data detected by the Leap Motion sensor. Metacarpal bones are
not rendered by the LMC Visualiser.

The following is a summary of each feature collected from the hierarchy of arm to finger joint.

• For each arm:

– Start position of the arm (X, Y and Z)
– End position of the arm (X, Y and Z)
– 3D angle between start and end positions of the arm
– Velocity of the arm (X, Y and Z)

• For each elbow:

– Position of the elbow (X, Y and Z)

• For each wrist:

– Position of the wrist (X, Y and Z)

• For each palm:

– Pitch
– Yaw
– Roll
– 3D angle of the palm
– Position of the palm (X, Y and Z)
– Velocity of the palm (X, Y and Z)
– Normal of the palm (X, Y and Z)
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• For each finger:

– Direction of the finger (X, Y and Z)
– Position of the finger (X, Y and Z)
– Velocity of the finger (X, Y and Z)

• For each finger joint:

– Start position of the joint (X, Y and Z)
– End position of the joint (X, Y and Z)
– 3D angle of the joint
– Direction of the finger (X, Y and Z)
– Position of the joint (X, Y and Z)
– Velocity of the joint (X, Y and Z)

Each feature was pre-processed via a minmax scaler between 0 (min) and 1 (max): Feat =

Featstd(max−min) + min, where Featstd = ( Feat−Featmin
Featmax−Featmin

). Thus, each feature value is reduced to a
value between 0 and 1. This was performed as it was observed that non-processed feature values caused
issues for the model and often resulted in classification accuracy scores of only approximately 4%,
showing a failure to generalise. The 18 British Sign Language (Visual examples of the BSL gestures can
be viewed at https://www.british-sign.co.uk/british-sign-language/dictionary/) gestures recorded
were selected due to them being common useful words or phrases in language. A mixture of one
and two-handed gestures were chosen. Each gesture was recorded twice where subjects switched
dominant hands.

The useful gestures for general conversation were

1. Hello/Goodbye
2. You/Yourself
3. Me/Myself
4. Name
5. Sorry
6. Good
7. Bad
8. Excuse Me
9. Thanks/Thank you

10. Time

The gestures for useful entities were

1. Airport
2. Bus
3. Car
4. Aeroplane
5. Taxi
6. Restaurant
7. Drink
8. Food

Following this, a smaller set of the same 18 gestures, but in American Sign Language (Visual
examples of the ASL gestures can be viewed at https://www.handspeak.com/), are collected from
two subjects for thirty seconds each (15 per hand) towards the transfer learning experiment. “Airport”
and “Aeroplane/Airplane” in ASL are similar, and so “Airport” and “Jet Plane” are recorded instead.

https://www.british-sign.co.uk/british-sign-language/dictionary/
https://www.handspeak.com/
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Figures 6 and 7 show a comparison of how one signs “hello” in British and American sign languages;
though the gestures differ, the hand is waved and as such it is likely that useful knowledge can be
transferred between the two languages.

Figure 6. The sign for “Hello” in British Sign Language.

Figure 7. The sign for “Hello” in American Sign Language.

3.2. Deep Learning Approaches

For the image classification network, VGG16 [39] convolutional layers are used as a starting
point for feature extraction from image data, as can be seen in Figure 8, where the three 4096 neuron
hidden layers are removed. The convolutional layers are followed by 2, 4, 8, . . . , 4096 ReLu neuron
layers in each of the ten benchmarking experiments to ascertain a best-performing interpretation
layer. For the Leap Motion data classification problem, an evolutionary search is performed [40] to
also ascertain a best-performing neural network topology; the search is set to a population of 20 for
15 generations, as during manual exploration, stabilisation of a final best result tends to occur at
approximately generation 11. The evolutionary search is run three times in order to mitigate the risk of
a local maxima being carried forward to the latter experiments.

With the best CNN and Leap Motion ANN networks derived, a third set of experiments is then
run. The best topologies (with softmax layers removed) are fused into a single layer of ReLu neurons
in the range 2, 4, 8, . . . , 4096.

All experiments are benchmarked with randomised 10-fold cross-validation, and training time is
uncapped to a number of epochs and rather executed until no improvement of accuracy occurs after
25 epochs. Thus, the results presented are the maximum results attainable by the network within this
boundary of early stopping.
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Figure 8. Feature extraction from the RGB branch of the network, the input image is passed through a
fine-tuned VGG16 CNN [39] and then a layer of 128 ReLu neurons provide output. The network is
trained via softmax output, but this softmax layer is later removed and the 128 outputs are used in late
fusion with the Leap Motion network.

Following the experiments on BSL, initial preliminary experiments for Transfer Learning between
languages are performed. Figure 9 shows the outline for the transfer experiments, in which the
learnt weights from the three BSL models are transferred to their ASL counterparts as initial starting
weight distributions and ultimately compared to the usual method of beginning with a random
distribution. This experiment is performed in order to benchmark whether there is useful knowledge
to be transferred between each of the model pairs.

British	Sign
Language

Large	Dataset

American	Sign
Language

Medium	dataset

CV	Model LM	Model Multi-modality
Model

CV	Model LM	Model Multi-modality
Model

Initial	Weight
Transfer

BSL	Models	Trained

ASL	Models	Trained

Figure 9. Transfer Learning Experiments which train on BSL and produce initial starting weight
distributions for the ASL models.

3.3. Experimental Software and Hardware

The deep learning experiments in this study were performed on an Nvidia GTX 980Ti which has
2816 CUDA cores (1190 MHz) and 6 GB of GDDR5 memory. Given the memory constraints, images
are resized to 128 × 128 although they were initially captured in larger resolutions. All deep learning
experiments were written in Python for the Keras [41] library and TensorFlow [42] backend.
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The statistical models trained in this study were performed with a Coffee Lake Intel Core i7 at a
clock speed of 3.7 GHz. All statistical learning experiments were written in Python for the SciKit-Learn
library [43].

4. Experimental Results

4.1. Fine Tuning of VGG16 Weights and Interpretation Topology

Figure 10 shows the results for tuning of the VGG network for image classification. Each result is
given as the classification ability when a layer of neurons are introduced beyond the CNN operations
and prior to output. The best result was a layer of 128 neurons prior to output, which resulted in a
classification accuracy of 88.14%. Most of the results were relatively strong except for 2–8 neurons and,
interestingly, layers of 256 and 2048 neurons. Thus, the CNN followed by 128 neurons forms the first
branch of the multimodality system for image processing alongside the best Leap Motion network
(in the next section). The SoftMax output layer is removed for purposes of concatenation, and the 128
neuron layer feeds into the interpretation layer prior to output.
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Figure 10. Mean image 10-fold classification accuracy corresponding to interpretation neuron numbers.

4.2. Evolutionary Search of Leap Motion Dnn Topology

The evolutionary search algorithm is applied three times for a population of 20 through
15 generations, which can be observed in Figure 11. The maximum number of neurons was 1024,
and the maximum number of layers was 5. After an initial random initialisation of solutions,
the algorithm performs roulette selection for each solution and generates an offspring (where number
of layers and number of neurons per layer are bred). At the start of each new generation, the worst
performing solutions outside of the population size 20 range are deleted and the process runs again.
The final best result is reported at the end of the simulation. Table 2 shows the best results for three runs
of the Leap Motion classification networks. Of the three, the best model was a deep neural network
of 171, 292, 387 neurons which resulted in a classification accuracy of 72.73%. Interestingly, the most
complex model found was actually the worst performing of the best three results selected. This forms
the second branch of the multimodality network for Leap Motion classification in order to compliment
the image processing network. Similarly to the image processing and network, the SoftMax output
layer is removed and the final layer of 387 neurons for Leap Motion data classification is connected
to the dense interpretation network layer along with the 128 hidden neurons of the image network.
In terms of mean and standard deviations of the runs on a generational basis, Run 1 was 65.48% (5.37),
Run 2 was 66.98% (4.87) and Run 3 was 68.02% (5.05). With regards to the mean and standard deviation
of the three final results, they were 70.5% (1.14).
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Figure 11. Three executions of optimisation of neural network topologies via an evolutionary algorithm.

Table 2. Final results of the three evolutionary searches sorted by 10-fold validation accuracy along
with the total number of connections within the network.

Hidden Neurons Connections Accuracy

171, 292, and 387 243,090 72.73%
57, 329, and 313 151,760 70.17%
309, 423, and 277 385,116 69.29%

4.3. Fine-Tuning the Final Model

Figure 12 shows the results of fine-tuning the best number of interpretation neurons within the
late fusion layer; the best set of hyperparameters found to fuse the two prior networks was a layer of
16 neurons, which achieved an overall mean classification ability of 94.44%. This best-performing layer
of 16 neurons receives input from the Image and Leap Motion classification networks and is connected
to a final SoftMax output. Given the nature of backpropagation, the learning process enables the two
input networks to perform as they were prior (that is, to extract features and classify data) but a new
task is also then possible; to extract features and useful information from either data format which may
compliment the other, for example, for correction of common errors, or for contributing to confidence
behind a decision.
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Figure 12. Multimodality 10-fold classification accuracy corresponding to interpretation neuron
numbers towards benchmarking the late-fusion network.
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4.4. Comparison and Analysis of Models

Table 3 shows a comparison of the final three tuned model performances for recognition of British
Sign Language through the classification of photographic images (RGB) and bone data (Leap Motion)
compared to the multimodality approach that fuses the two networks together. The maximum
classification accuracy of the CV model achieved 88.14%, the Leap Motion model achieved 72.73% but
the fusion of the two allowed for a large increase towards 94.44% accuracy. A further comparison to
other statistical approaches can be observed in Table 4, within which the different algorithms applied
to the same dataset are shown and directly compared; although the DNN approach is relatively weak
compared to all statistical models except for Gaussian Naive Bayes, it contributes to the multimodality
approach by extracting features complimentary to the CNN prior to late fusion as well as the task
of classification—this, in turn, leads to the multimodality approach attaining the best overall result.
The best statistical model, the Random Forest, was outperformed by the CNN by 1.07% and the
multimodality approach by 7.37%. Performance aside, it must be noted that the statistical approaches
are far less computationally complex than deep learning approaches; should the host machine for the
task not have access to a GPU with CUDA abilities, a single-modality statistical approach is likely the
most realistic candidate. Should the host machine, on the other hand, have access to a physical or
cloud-based GPU or TPU, then it would be possible to enable the most superior model, which was the
deep learning multimodality approach.

Table 3. Sign Language Recognition scores of the three models trained on the dataset.

Model Sign Language Recognition Ability

RGB 88.14%
Leap Motion 72.73%
Multi-modality 94.44%

Table 4. Comparison of other statistical models and the approaches presented in this work.; Deep
Neural Network (DNN), Convolutional Neural Network (CNN), Random Forest (RF), Sequential
Minimal Optimisation Support Vector Machine (SMO SVM), Quadratic Discriminant Analysis (QDA),
Linear Discriminant Analysis (LDA), Logistic Regression (LR), and Naïve Bayes (NB).

Model Input Sensor(s) Sign Language Recognition Ability

MM(DNN, CNN) LMC, Camera 94.44%
CNN Camera 88.14%
RF LMC 87.07%
SMO SVM LMC 86.78%
QDA LMC 85.46%
LDA LMC 81.31%
LR LMC 80.97%
Bayesian Net LMC 73.48%
DNN LMC 72.73%
Gaussian NB LMC 34.91%

Table 5 shows the ten highest scoring features gathered from the Leap Motion Controller by
measure of their information gain or relative entropy. Right handed features are seemingly the most
useful, which is possibly due to the most common dominant hand being the right. Though all features
shown have relatively high values, it can be noted that the roll of the right hand is the most useful
when it comes to classification of the dataset.

Table 6 shows the final comparison of all three models when tasked with predicting the class
labels of unseen data objects (100 per class (18 classes)). The error matrix for the best model, which
was the multimodality approach at 76.5% accuracy can be observed in Figure 13. Interestingly, most
classes were classified with high confidence with the exception of three main outliers: “thanks”
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was misclassified as “bus” in almost all cases, “restaurant” was misclassified as a multitude of
other classes and “food” was often mistaken for “drink”, although this did not occur vice versa.
Outside of the anomalous classes which must be improved in the future with more training examples,
the multimodality model was able to confidently classify the majority of all other phrases. Though it
would require further experiments to pinpoint, it is likely that the poor performance of the leap motion
suggests that such data is difficult to generalise outside of the learning process. Though, on the other
hand, useful knowledge is still retained given the high accuracy of the multimodality model which
considers it as input alongside a synchronised image.
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Figure 13. Confusion matrix for the best model (multimodality, 76.5%) on the set of unseen data
(not present during training).

Table 5. The top ten features by relative entropy gathered from the Leap Motion Controller.

Leap Motion Feature Information Gain
(Relative Entropy)

right_hand_roll 0.8809
right_index_metacarpal_end_x 0.8034
right_thumb_metacarpal_end_x 0.8034
right_pinky_metacarpal_end_x 0.8034
left_palm_position_x 0.8033
right_index_proximal_start_x 0.8028
left_index_proximal_start_x 0.8024
right_middle_proximal_start_x 0.8024
left_middle_proximal_start_x 0.8023
right_ring_proximal_start_x 0.8021
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Table 6. Results of the three trained models applied to unseen data.

Approach Correct/Incorrect Classification Accuracy

RGB 1250/1800 69.44%
Leap Motion 752/1800 41.78%
Multi-modality 1377/1800 76.5%

4.5. Leave-One-Subject-Out Validation

Table 7 shows the training metrics for each model with a leave-one-subject-out approach. That is,
training on all subjects but one, and then validation upon the left out subject. All models performed
relatively well, with the interesting exception of the RGB camera when classifying subject 2, which
scored only 68.24%. On average, the best approach remained the multimodality model, which
scored 92.12% accuracy (+6.69% over RGB, +3.55% over Leap Motion). This finding is similar to the
outcomes of the other experiments, where the multimodality model always outperformed the singular
sensor approaches.

Table 7. Results for the models when trained via leave-one-subject-out validation. Each subject column
shows the classification accuracy of that subject when the model is trained on the other four.

Model
Subject Left Out Accuracy (%)

Mean Std.
1 2 3 4 5

RGB 81.12 68.24 93.82 89.82 94.15 85.43 9.79
Leap Motion 89.21 88.85 86.97 89.27 88.54 88.57 0.84
Multi-modality 85.52 96.7 87.51 93.82 97.1 92.12 4.76

4.6. Transfer Learning from BSL to ASL

Table 8 shows the results for transfer learning from BSL to ASL. Interestingly, with the
medium-sized ASL dataset and no transfer learning, the multimodality approach is worse than
both the Computer Vision and Leap Motion models singularly. This, and considering that the best
model overall for ASL classification was the multimodality model with weight transfer from the BSL
model, suggests that data scarcity poses an issue for multimodality models for this problem.

Table 8. Results of pre-training and classification abilities of ASL models, with and without weight
transfer from the BSL models.

Model
Non-Transfer from BSL Transfer from BSL

Epoch 0 Final Ability Epoch 0 Final Ability

RGB 2.98 80.68 13.28 81.82
Leap Motion 5.12 67.82 7.77 70.95
Multi-modality 5.12 65.4 21.31 82.55

The results show that transfer learning improves the abilities of the Leap Motion and
multimodality classification approaches to sign language recognition. With this in mind, availability of
trained weights may be useful to improve the classification of other datasets regardless of whether
or not they are in the same sign language. Overall, the best model for ASL classification was the
multimodality model when weights are transferred from the BSL model. This approach scored 82.55%
classification ability on the ASL dataset. The results suggest that useful knowledge can be transferred
between sign languages for image classification, Leap Motion classification and late-fusion of the two
towards multimodality classification.
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Though future work is needed for further explore the transfer learning hypotheses, the results
in these initial experiments suggest the possibility of success when transferring knowledge between
models and ultimately improving their recognition performances.

5. Conclusions and Future Work

This work has presented multiple experiments for the singular sensor and multimodality
approaches to British and American Sign Language. The results from the experiments suggest that a
multimodality approach outperforms the two singular sensors during both training and classification
of unseen data. This work also presented a preliminary Transfer Learning experiment from the large
BSL dataset to a medium-sized ASL dataset, in which the best model for classification of ASL was
found to be the multimodality model when weights are transferred from the BSL model. All of
the network topologies in this work that were trained, compared and ultimately fused together
towards multimodality were benchmarked and studied for the first time. Accurate classification
of Sign Language, especially unseen data, enables the ability to perform the task autonomously
and thus provide a digital method to interpretation of non-spoken language within a situation
where interpretation is required but unavailable. In order to realise this possibility, future work
is needed. The hypotheses in these experiments were argued through a set of 18 common gestures
in both British and American Sign Languages. In future, additional classes are required to allow
for interpretation of conversations rather than the symbolic communication enabled by this study.
In addition, as multimodality classification proved effective, further tuning of hyperparameters could
enable better results, and other methods of data fusion could be explored in addition to the late fusion
approach used in this work. Transfer learning could be explored with other forms of non-spoken
language, for example, Indo-Pakistani SL, which has an ethnologue of 1.5 million people and Brazilian
SL with an ethnologue of 200,000 people. The aim of this work was to explore the viability and ability
of multimodality in Sign Language Recognition by comparing Leap Motion and RGB classification
with their late-fusion counterpart. In addition, the 0.2s data collection frame poses a limitation to
this study, and as such, further work could be performed to derive a best window length for data
collection.

A cause for concern that was noted in this work was the reduction of ability when unseen data
is considered, which is often the case in machine learning exercises. Such experiments and metrics
(ability on unseen dataset and per-class abilities) are rarely performed and noted in the state-of-the-art
works within sign language recognition. As the main goal of autonomous sign language recognition is
to provide a users with a system which can aid those who otherwise may not have access to a method
of translation and communication, it is important to consider how such a system would perform
when using trained models to classify data that was not present in the training set. That is, real-time
classification of data during usage of the system and subsequently the trained classification models.
In this work, high training results were found for both modalities and multimodality, deriving abilities
that are competitive when indirectly compared to the state of the art works in the field. When the best
performing 94.44% classification ability model (multimodality) was applied to unseen data, it achieved
76.5% accuracy mainly due to confusion within the “thanks” and “restaurant” classes. Likewise,
the RGB model reduced from 88.14% to 69.44% and the Leap Motion model reduced from 72.73%
to 41.78% when comparing training accuracy and unseen data classification ability. Future work is
needed to enable the models a better ability to generalise towards real-time classification abilities that
closely resemble their abilities observed during training.
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