

Sensors 2020, 20, 5103; doi:10.3390/s20185103 www.mdpi.com/journal/sensors

Article

Systems Architecture Design Pattern Catalog

for Developing Digital Twins

Bedir Tekinerdogan 1,* and Cor Verdouw 1,2

1 Information Technology Group, Wageningen University and Research, P.O. Box 35,

6700 AA Wageningen, The Netherlands
2 Mprise, P.O. Box 598, 3900 AN Veenendaal, The Netherlands; cor.verdouw@wur.nl

* Correspondence: bedir.tekinerdogan@wur.nl

Received: 16 July 2020; Accepted: 4 September 2020; Published: 7 September 2020

Abstract: A digital twin is a digital replica of a physical entity to which it is remotely connected. A

digital twin can provide a rich representation of the corresponding physical entity and enables

sophisticated control for various purposes. Although the concept of the digital twin is largely

known, designing digital twins based systems has not yet been fully explored. In practice, digital

twins can be applied in different ways leading to different architectural designs. To guide the

architecture design process, we provide a pattern-oriented approach for architecting digital twin-

based Internet of Things (IoT) systems. To this end, we propose a catalog of digital twin architecture

design patterns that can be reused in the broad context of systems engineering. The patterns are

described using the well-known documentation template and support the various phases in the

systems engineering life cycle process. For illustrating the application of digital twin patterns, we

adopt a case study in the agriculture and food domain.

Keywords: digital twins; system engineering; system architecture design; smart agriculture; internet

of things; farm management systems; remote sensing and control; virtualization

1. Introduction

A digital twin refers to a digital replica of potential or actual entities (i.e., physical twin) [1,2]. It

provides rich representations of the corresponding physical entity and enables sophisticated control

for various purposes. A key characteristic of a digital twin is that it is connected to a physical entity

which is typically established by the use of real-time data using sensors. Digital twins are made

possible through the integration of various technologies such as Internet of Things [3–5], artificial

intelligence, machine learning, and data science, which enable living digital simulation models to be

created that reflect the changes of the physical counterparts. Hereby, a digital twin continuously

learns and updates itself using data from sensors or external entities. The key motivations for

adopting digital twins are to be able to design, test, manufacture, and use the virtual version of the

systems [1]. In the industrial sector, for example, digital twins can be used to optimize the operation

and maintenance of physical assets and manufacturing processes. Overall, digital twins can be

applied to a broad range of application domains, including manufacturing, aerospace, smart farming,

healthcare, and the automotive industry.

Although the concept of digital twins has received increased interest, designing digital twins

has not yet been fully explored. The design of digital twin-based systems involves consideration of a

physical entity, a virtual entity, and the connection among these. Because the concept consists of a

view of both virtual and physical elements, we can consider this as a systems engineering approach

that adopts a holistic perspective for developing a system to meet multidisciplinary stakeholder

goals. An important asset in systems engineering is the system architecture that defines the gross

Sensors 2020, 20, 5103 2 of 20

level, systemic structure of the system. The system architecture defines the gross-level, systemic

structure, behavior, and views of a system, and is typically documented using a formal description

and representation of a system, organized in a manner that supports reasoning about the structures

and behaviors of the system. The system architecture consists of system components and the sub-

systems that work together to implement the overall system. In a digital twin-based system, the

system architecture includes the two key components of the digital twin and the physical twin.

Depending on the context and overall purpose, in practice, digital twins can be applied in

different ways, thus leading to various architectural designs. Designing an architecture from scratch

is not easy and requires a thorough background of both the application domain and the architecture

design and documentation principles. To leverage design expertise and support reuse, the software

and systems engineering community have introduced design patterns that can be applied at different

levels in the system development lifecycle, including the architecture design, detailed design, and the

code. A design pattern is a documented best practice and generic solution to recurring problems.

Currently, designers of digital twin-based systems appear to rely on informal design practices

to describe the architectures of the configurations of digital twin components that make up the overall

system. To guide the architecture design process and leverage reuse, we provide a pattern-oriented

approach for architecting digital twin-based systems. To this end, we propose a set of digital twin

architecture design patterns that can be reused to design the architecture of a system that meets the

corresponding digital twin requirements. The patterns are described using the well-known pattern

templates of context–problem–solution. For illustrating the application of the digital twin patterns,

we adopt a case study in the agriculture and food domain derived from the European IoF2020 project.

The remainder of this paper is organized as follows. In Section 2 we provide the background of

digital twins and architecture design. Section 3 presents the research methodology for discovering

and modeling the digital twin pattern catalog. Section 4 presents the domain analysis process for

digital twins that is used as a basis for describing the patterns. Section 5 presents the digital twin

pattern catalog. Section 6 presents the discussion, and finally, Section 7 concludes the paper.

2. Background and Key Concepts

Developing architecture design patterns requires an understanding of several independent but

related domains, including systems engineering, architecture design, and architecture design

patterns. We provide the background on these in the following sub-sections.

2.1. Systems Engineering

Systems engineering includes the conception, design, development, production, and operation

of physical systems. According to International Organization for Standardization and the

International Electrotechnical Commission (ISO/IEC 42010) [6], the notion of a “system” can be

defined as a set of components that accomplishes a specific function or set of functions. ISO/IEC

defines systems engineering as follows: “Systems engineering is defined as “an interdisciplinary

approach to translating users’ needs into the definition of a system, its architecture and design

through an iterative process that results in an effective operational system. Systems engineering

applies over the entire life cycle, from concept development to final disposal” [7,9].

The system to be developed interacts with its environment, which may include other systems,

users, and the natural environment. Further, the system is composed of system elements that include

hardware, software, firmware, people, information, techniques, facilities, services, and other support

elements [7,9]. A systems engineer is a person or role who supports this transdisciplinary approach

and applies the systems engineering process. In particular, the systems engineer elicits and translates

customer needs into specifications that can be realized by the system development team. A systems

engineer helps ensure the elements of the system fit together to accomplish the objectives of the

whole, and ultimately satisfy the needs of the customers and other stakeholders who will acquire and

use the system. A stakeholder is defined as an individual, team, or organization with interests in, or

concerns relative to, a system. A concern is defined as a matter of interest in the system that could be

Sensors 2020, 20, 5103 3 of 20

functional or related to quality issues. Architectural drivers define the concerns of the stakeholders

that shape the architecture.

To help realize successful systems, systems engineering is defined as a systematic life cycle

process beginning early in conceptual design and continuing throughout the life cycle of the system

through its manufacture, deployment, use, and disposal. A systems engineering (SE) process defines

the primary activities that must be performed to implement systems engineering. Figure 1 shows the

generic ISO/IEC Systems Lifecycle [7] including the key stages of the systems engineering process.

The concept stage explores the stakeholders’ needs and enabling technologies to provide a high-level,

preliminary concept for the system. The development stage takes as an input the selected concept,

and defines and realizes a system of interest (SOI). The resulting SOI should meet the stakeholder

requirements and can be produced, utilized, supported, and retired. The systems architecture takes

form in the concept stage and is typically designed in the development stage. The system is produced

or manufactured during the production stage. During this stage, product modifications may still be

required to resolve production problems, reduce production costs, or enhance product or system

capabilities. The utilization stage is the stage in which the system is operated in its intended

environment to deliver its intended services. The support stage is the stage in which the system

provides services that enable continued operation. The retirement stage is the stage in which the

system and its related services are removed from operation.

Concept Stage
Development

Stage
Production

Stage

Utilization
Stage

Support Stage

Retirement
Stage

Figure 1. ISO/IEC 15288 System Lifecycle with the key lifecycle stages [8]

2.2. Architecture Design

Designing architecture is a key activity in developing software-intensive systems to meet

various quality concerns [1,9]. In fact, every software-intensive system has a software architecture,

whether it is complex or simple. A systems architecture describes the components of a system,

interactions among components, and the interaction of a system as a whole with its environment. A

systems architecture is an abstract representation that identifies the higher-level structure of a system

and is important for supporting communication among stakeholders, guiding design decisions,

supporting the subsequent development process, and analysis of an overall system.

The ISO/IEC 42010 Recommended Practice for Architectural Description of Software-Intensive

Systems [6] defines architecture as the fundamental organization of a system embodied in its

components, and their relationships to each other and to the environment, and the principles guiding

its design and evolution. The systems architecture is assumed to meet the stakeholder concerns.

In recent decades, the architecture design discipline has seen the rapid development of applied

approaches in architecture modeling, architecture design methods, and software architecture

evaluation. With these methods and techniques, the system/software architect makes a wide range of

design decisions that lead to the selection of a particular design alternative. In this paper we focus on

the design of architectures, and herewith architecture design patterns, which we elaborate on in the

next sub-section.

2.3. Architecture Design Patterns

Solving a problem usually does not require the development of a new solution, and the provided

solution is often not completely distinct from earlier proven solutions. An expert recalls earlier similar

problems and subsequently tries to reuse the proven solution. This combination of recurring

problems and generic solution templates for a given context is common to many different domains

Sensors 2020, 20, 5103 4 of 20

including systems architecture design. Patterns help to build on the collective experience of experts

in that domain and capture existing well-proven experience. As such, they help to promote good

design practice. Design patterns play an important role in the engineering design process and can be

applied at different levels in the lifecycle including architecture design, detailed design, and the code.

The idea of architectural patterns and recording design knowledge in a reusable and canonical

form can be traced to Christopher Alexander [10] who proposed the adoption of patterns in the

context of the architecture of buildings. In his book The Timeless Way of Building he identifies a catalog

of patterns that can be applied for designing buildings, neighborhoods, and even whole cities. The

underlying paradigm of Alexander is to design so-called living places that do not only fulfil

functional requirements but also address important quality factors that imbue buildings with comfort

and beauty.

The notion of patterns was subsequently applied to software engineering, as initiated by Gamma

et al. with their seminal book Design Patterns—Elements of Reusable Object-Oriented Software [11]. The

patterns in this book leaned heavily on Alexander’s style to describe patterns but were focused on

object-oriented software development. Architectural patterns are similar to software design patterns

but have a broader scope. An architectural pattern is a general, reusable solution to a commonly

occurring problem in software architecture within a given context [13,12].

The relationship among the above topics of systems engineering, architectural design, and

architectural design patterns is shown in Figure 2. The figure shows that the development of digital

twin-based systems is, in essence, a systems engineering activity. Like any system, a digital twin-

based system has an architecture that is designed using architectural patterns. In our study we

present a catalog of system architecture digital twin patterns. These patterns are used in and related

to the lifecycle stages that we presented in Figure 1.

System Architecture
Digital Twin Pattern

Architecture Pattern

Architecture

designed
using

*

Digital Twin
Based System

Systems Engineering

Lifecycle Stage

builds
System

is-a

has

is-a

adopts

used in

Lifecycle Process

includes
has

Digital Twin Physical Object
sync

*

Figure 2. Metamodel for system architecture digital twin patterns.

3. Research Methodology

We adopted a systematic research methodology to derive the architecture design patterns for

digital twins. The key steps are shown in the workflow in Figure 3.

Sensors 2020, 20, 5103 5 of 20

Domain Analysis
Multi-Case Study

Design and Analysis
Identification and

design of DT Patterns

Domain Model
Digital Twins

Digital Twin
Pattern Catalog

Case Study Design
and Implementation

Case Study
Requirements

Digital Twin
Literature

Existing Software/System
Design Patterns

Figure 3. Adopted research methodology.

In the first step we provide a thorough analysis of the digital twin literature to derive the key

concepts, and the common and variant properties and scenarios. The concept of digital twins is

relatively new and as such designing systems based on digital twins is not yet mature. Because digital

twins build on the notion of control systems, the domain analysis process also focused on the control

systems domain as it is observed, for example, in production control systems. The result of the

domain analysis process is a domain model that defines the relationships among the key concepts.

The domain analysis process is followed by the design and analysis of multiple case studies in

which digital twins were applied. In this analysis we identify where digital twins have been applied

or aimed to be applied. In fact, this step aims to discover patterns rather than inventing these from

scratch. The case study was carried out as part of the European IoF2020 project in close interaction

with the involved business partners [14]. The project included 19 IoT use cases that were organized

in five coherent trials that aim to address the most relevant challenges for the concerned sub-sector

[15]. The use case architectures were modelled based on an architecture framework of IoT-based food

and farm systems [16]. Most of these case studies address the implementation of digital twins but

implicitly and in different ways. We selected three cases for illustrating each of the digital twin

patterns. The detailed descriptions are shown in Table 1.

Using the above three case studies, expert knowledge was distilled from the proven solutions

which were compared to the domain model and analyzed, and then explicitly documented in a

reusable format. An additional input to the pattern identification and documentation process is the

literature on existing software and systems design patterns. Some of the identified digital twin

patterns build on or resemble existing design patterns. The remainder of the paper introduces the

results following the research steps as described above.

Sensors 2020, 20, 5103 6 of 20

Table 1. Overview of the adopted use cases.

Trial/Sector Use Case Description

Arable

Within-field

management

zoning

This case study focuses on within field management zoning and

precision farming in arable farming. Hereby with the use of sensors,

connectivity, decision support tools and smart control equipment are

used to capture and transmit geo-localized real-time information at

low cost. The collected data from the sensors will be processed and

analyzed to measure and monitor the state of the agro-environment,

e.g., soil, crop and climate. Further, the data and the decision models

will be combined with agro-climatic and economic models, forecasts

and advices for supporting tactical decisions and operational

management of technical interventions.

Dairy Happy Cow

The case study aims to improve dairy farm productivity using 3D

cow activity sensing and machine learning techniques. Using

advanced sensor technology within farm management it is aimed to

monitor the cow behaviors and provide predictive analytics to

provide insight on heat detection and health, and thereby support in

the decision-making process and recommend feasible solutions to

farmers. Data is gathered at both the cow level and herd level, to

understand both individual animal and herd characteristics. For

different problems, different types of sensors are used which are

located, for example, in the neck of the cows (more comfortable

position) during daily activity. The collected data during the day is

transmitted through a high-efficient, long-range wireless

communication network and stored on the cloud for the data

analytics and decision-making process.

Vegs

Chain-

integrated

greenhouse

production

The focus of this case study is on developing IoT-based greenhouses

involving a large amount of data, physical and virtual sensors,

models, and algorithms focusing on important aspects such as water

and energy use efficiency, safety, and transparency, for both

conventional and organic supply chain traceability systems of

tomato. In this context, the chain-integrated greenhouse production

use case aims to develop a decision support system (DSS) for the

greenhouse tomato supply chain based on IoT technology and the

digital twin concept. With an integrated approach based on

standardized information, interoperability along the production

chain will be increased. This in turn will support quality and safety

management, improved products and processes, and a lower

environmental impact.

4. Domain Analysis of Digital Twins

Domain analysis can be defined as the process of identifying, capturing, and organizing domain

knowledge about the problem domain with the purpose of making it reusable when creating new

systems. The term domain is defined as an area of knowledge or activity characterized by a set of

concepts and terminology understood by practitioners in that area. Conventional domain analysis

methods consist generally of the activities Domain Scoping and Domain Modeling.

4.1. Domain Scoping

Domain Scoping identifies the domains of interest, the stakeholders, and their goals, and defines

the scope of the domain. An important activity hereby is the identification of the primary studies

from which the concepts are derived. There are now an increasing number of publications on digital

Sensors 2020, 20, 5103 7 of 20

twins. We have selected the studies that explicitly discuss the design of digital twins and that were

pioneering. The selected list of primary studies that we used to analyze the concept of digital twins

and, in particular, the design of digital twins are as follows: [1],[14],[17],[18],[19],[20],[21], and [23].

4.2. Key Concepts

In our domain analysis process, we focused on definitions, concepts, and design of digital twins.

A digital twin is basically a digital replica of a real-life object to which it is remotely connected [22,24].

The domain scoping is followed by the domain modeling process which is the activity for

representing the domain or the domain model. Typically a domain model is formed through a

commonality and variability analysis to concepts in the domain.

The concept of digital twins has increasingly become an area of interest to support the

development and analysis of smart systems. Various studies in the literature define a digital twin.

However, it is also worthwhile to indicate what a digital twin is not, that is, the misconceptions about

the term, which have also been discussed in the literature. The various views and misconceptions

about the digital twin concept is shown in Figure 4. In common with all of these views is that they

distinguish a digital object from a physical object, while indicating there is a relationship between

these. There seems to be an agreement on the notion of digital object and physical object, but the

semantics for the relationship are different. The relationship between the digital object and physical

object may or may not be automatic [1,2]. In addition, in the list of definitions presented later, only

the case in which a digital object is automatically related to the physical object is relevant to the notion

of digital twins. Ideas beyond these automated and synchronized states of both objects are considered

to be misconceptions in the strict sense. In the first view of Figure 4, digital model, digital object, and

physical object are loosely connected and the synchronization or data flow between these occurs

through manual intervention. There is no automated translation or interpretation between both

objects. In the second view, the digital generator, a digital model is used to automatically generate or

enhance a physical object. Thus, generation techniques as defined in the model-driven development

could be used. In this alternative, the dataflow from physical object to digital object is missing or is

based on manual intervention only. In the case of the digital shadow, mechanisms are provided (e.g.,

sensors) to provide an automatic data flow to the digital object. This could be needed for analysis or

simulation purposes. In the last alternative, digital twin, the digital object and physical object are

causally connected and synchronized.

Physical Object

Digital Object

Physical Object

Digital Object

Physical Object

Digital Object

Digital Generator Digital Shadow Digital Twin

automatic dataflowmanual dataflow

Physical Object

Digital Object

Digital Model

Figure 4. Identified relationships between digital object and physical object.

An analysis of the literature leads to useful insights into the notion of digital twins. Jones et al.

[23] provided a common list of these concepts based on a systematic literature review. Based on these

terms a conceptual model was provided. The key terms that we use in this paper are shown in Table

Sensors 2020, 20, 5103 8 of 20

2. In addition, authors have identified several open research issues related to digital twins. An aspect

that is not explicitly considered, however, is the notion of reuse-based design of digital twins.

Table 2. Selected and used key concepts related to digital twins, adopted from [23].

Term Description

Physical Object
A “real-world” artefact, e.g., a vehicle, component, product,

system, model.

Virtual Object A computer generated representation of the physical object.

Physical Environment
The measurable “real-world” environment within which the

physical object exists.

Virtual Environment

Any number of virtual “worlds” or simulations that replicate the

state of the physical environment and designed for specific use-

case (s).

State
The current value of all parameters of either the physical or

virtual object/environment.

Realization The act of changing the state of the physical/virtual object/twin.

Metrology The act of measuring the state of the physical/virtual object/twin.

Twinning
The act of synchronizing the states of the physical and virtual

object/twin.

Twinning Rate The rate at which twinning occurs.

Physical-to-Virtual

Connection/Twinning

The connection from the physical to the virtual environment.

Comprises of physical metrology and virtual realization stages.

Virtual-to-Physical

Connection/Twinning;

The connection from the virtual to the physical environment.

Comprises of virtual metrology and physical realization stages.

The application of digital twins is in essence a control system activity to enhance the intelligence

of the system and the overall decision-making process herein. As such, the notions of control and

smart systems appear to be essential. A model for a control system is shown in Figure 5 (based on

[25, 26, 1]). In the figure, the rectangles represent control entities, while the arrows represent control

flows.

Sensor

Physical Object

Actuator

Comparitor Decision

get state
update state

command

provide
delta

get state

Figure 5. Conceptual model for a control system as derived from the literature.

The capabilities of smart systems can be grouped into four areas: monitoring, control,

optimization, and autonomy [26,26]. Each capability builds on the preceding one: control requires

monitoring, optimization requires control and monitoring, and autonomy requires all three.

Monitoring implies the observation of a system’s condition, operation, and external environment

through sensors and external data sources. Control implies the regulation of systems through remote

commands or algorithms that are built into the device or exist in the cloud. The data collected from

the monitoring activity together with the control capability allows the optimization of the system.

Sensors 2020, 20, 5103 9 of 20

Optimization can be implemented using dedicated algorithms and analytics that can adopt the

monitoring data optionally with the historical data. The goal of optimization is typically to improve

the quality of the system including its effectiveness and efficiency. The highest level of smart behavior

is autonomy, which combines monitoring, control, and optimization to learn about the environment,

self-diagnose the own goals and needs, and adapt to the changing preferences. An autonomous

system may be interfaced with other systems but controls its own actions.

Based on the higher-level model of the digital twin Figure 4 and the control model of Figure 5,

we now provide the digital twin model as shown in Figure 6. In essence, a digital twin is thus

considered a control system, but the control is now carried out in the digital object space. The model

itself will be used to illustrate the digital twin patterns in the following sections.

Digital Object Space

Physical Object Space

Digital Object

Digital Object
Adaptor

Comparitor

Sensor

Physical
Object

Decider

adapt digital
object state

get physical
object state

measure

Actuator

get digital
object state

delta

command

adapt

Figure 6. A conceptual model for control-based digital twin as derived from the literature.

5. Architecture Design Patterns for Digital Twins

The conceptual model of Figure 6 itself is not sufficient to provide the system architecture of a

digital twin-based system. The model by itself is generic and can be used to support the

understanding of various systems. However, no detail is provided about the type of digital twin or

the required design. Earlier, we indicated that different types of smart systems could be distinguished

including monitoring system, control system, and autonomous system. In alignment with and related

to this observation we provide different design patterns that are useful for designing a digital twin-

based system.

A design pattern is understandable and reusable if it is well-documented. In general, the

documentation for a design pattern includes the context in which the pattern is used, the recurring

problem description within the context that the pattern seeks to resolve, and the suggested solution

template. Unfortunately, there is no single, standard format for documenting design patterns, but

rather a variety of different formats have been proposed. Inspired by the documentation templates

as used in [10, 11], in this paper we adopt the documentation template as shown in Table 3. In

alignment with the conventional pattern documentation approaches, the catalog of architecture

design patterns does not specify a specific system architecture. Rather design patterns function as

templates that need to be instantiated for the particular context of the system. A systems architecture

might use one or more of these patterns.

In the following subsections we use this documentation template to describe the identified

digital twin patterns, which can be applied in the different stages of the systems engineering lifecycle.

Sensors 2020, 20, 5103 10 of 20

Thus, we cover a complete lifecycle, which also means that patterns are addressed that do not include

two-way synchronization (Figure 4), i.e., a Digital Model, Digital Generator, Digital Shadow, and

Digital Proxy pattern. The “real” digital twin patterns that we identified include a Digital Monitor,

Digital Control, and Digital Autonomy. For each of these patterns we also present the possible

variations leading to a comprehensive pattern catalog.

Table 3. Documentation template for patterns.

Documentation

Item
Description

Name
A descriptive and unique name that helps in identifying and referring to the

pattern.

Lifecycle Stage The lifecycle stage(s) in which the pattern can be applied.

Context The situations in which the pattern may apply.

Problem The problem the pattern addresses, including a discussion of its associated forces.

Solution The fundamental solution principle underlying the pattern.

Structure A detailed specification of the structural aspects of the pattern.

Dynamics Scenarios describing the run-time behavior of the pattern.

5.1. Digital Model Pattern

The first pattern we discuss is the Digital Model pattern as shown in Figure 7. This pattern is

related to the concept and development stage of the systems engineering lifecycle. In essence it does

not yet result in a truly digital twin-based system due to the manual creation and the lack of

continuous synchronization. However, it is regarded as the initial step towards a digital twin-based

system. Based on a predefined digital model (design), a physical object is developed.

Name—Digital Model.

Lifecycle Stage—Concept, Development, and Production stages.

Context—A physical object needs to be manually developed based on a digital object.

Problem—Based on a digital model a physical object needs to be created.

Solution—The digital twin object is used as a blueprint by the human client to develop the physical

object or allocate an existing digital twin. The abstract digital twin (in italic font) defines a common

reusable interface that can be enhanced by concrete digital twins. Various concrete digital twin

objects can be used, which can result in similar but different physical objects.

Structure

PhysicalObject

DigitalTwin

blueprint

Client

ConcreteDigitalTwin1

blueprint

ConcreteDigitalTwin2

blueprint

develop

blueprint

based on

Dynamics

:Client :DigitalTwin

getBlueprint()

:PhysicalObject
develop(blueprint)

blueprint

Figure 7. Digital Model pattern.

5.2. Digital Generator Pattern

The Digital Generator pattern (Figure 8) is similar to the Digital Model pattern in that it defines

the production of a physical object based on a digital model blueprint. The difference is that the

Sensors 2020, 20, 5103 11 of 20

production is now automated and human intervention is thus not needed. The implementation of

this pattern requires therefore also the implementation of the generation process that takes as an

input the digital blueprint and provides as an output a physical object or part of the physical object.

The automated production of the physical object could be based on techniques as defined in model-

driven development.

Name—Digital Generator.

Lifecycle Stage—Concept, Development, and Production stages.

Context—A physical object needs to be automatically developed based on a digital object.

Problem—Based on a digital model a physical object needs to be automatically created.

Solution—The digital twin object is used as a blueprint to automatically create the physical object.

The client can be a human or an external object that asks the DigitalTwin object to automatically

generate a PhysicalObject.

Structure

PhysicalObject
DigitalTwin

blueprint

Client

ConcreteDigitalTwin1

blueprint

ConcreteDigitalTwin2

blueprint

generate

generatePhysicalObject

Dynamics

:Client :DigitalTwin

generatePhysicalObject()

:PhysicalObject
generate(blueprint)

getBlueprint()

Figure 8. Digital Generator pattern.

5.3. Digital Shadow Pattern

The Digital Shadow pattern (Figure 9) provides a digital twin based on the physical object.

Hence, it assumes already the existence of a physical object. Multiple different digital twins can be

generated for one or more physical objects, based on the defined system requirements. The

implementation of this pattern requires that the physical object is equipped with the necessary

sensors to derive the information that needs to be modeled by the digital twin. In principle, the

development of a digital twin based on a physical object could be also a manual process, which would

be considered a kind of manual reverse engineering process.

Name—Digital Shadow.

Lifecycle Stage—Concept, Development, and Production stages.

Context—A digital twin needs to be developed for a physical object.

Problem—For a given physical object a digital twin needs to be developed. Various motivations

may be given for the need for digital twin but it is essential to provide a digital object that reflects

the physical object.

Solution—The physical object is used as a basis to create the Digital Twin. The digital twinning is

based on sensor measurements by a client (external object) of one or various different physical

objects.

Sensors 2020, 20, 5103 12 of 20

Structure

DigitalObject

state

PhysicalObject

state

Client

ConcreteDigitalTwin1

state

ConcreteDigitalTwin2

state

digitaltwin

physicaltwin

resembles

Dynamics

:Client :PhysicalObject

getState()

:DigitalObject
setState(state)

state

Figure 9. Digital Shadow pattern.

5.4. Digital Matching Pattern

The previous three patterns focused on the creation of a physical object based on a digital twin

(Digital Model, Digital Generator), or vice versa (Digital Shadow). The creation is either manual or

automatic. In the Digital Matching pattern we assume an existing digital model that is used to find

physical objects that match the properties of the digital model. The addressed problem is thus not

creation, but search (physical object) and match (with digital twin). Typical applications of this

pattern are, for example, classification and object recognition applications using machine learning or

deep learning approaches. The pattern is shown in Figure 10. This pattern is related to the utilization

and support stages of the systems engineering lifecycle. The matching process is assumed to be

automatic. Therefore, this pattern requires the implementation of search, classification, and object

recognition algorithms.

Name—Digital Matching.

Lifecycle Stage—Utilization, Support.

Context—A physical object needs to be found that matches the digital twin.

Problem—Based on a digital model a physical object needs to be found.

Solution—The digital twin object is used by an external client object to find and match the physical

object(s) that have similar properties as defined by the digital twin.

Structure

PhysicalObject

DigitalTwin

blueprint

Client

ConcreteDigitalTwin1

blueprint

ConcreteDigitalTwin2

blueprint

search/
match

blueprint

matches

Dynamics

search(blueprint)

:Client :DigitalTwin

search(blueprint)

:PhysicalObject
match()

physicalObject

:PhysicalEnvironment

Figure 10. Digital Matching pattern.

5.5. Digital Proxy Pattern

The Digital Proxy pattern (Figure 11) is also a pattern that is applied in the utilization and

support stages. The pattern provides a digital twin that is used as a proxy for the physical object. This

means that all the communication directed to the physical object is captured by the digital twin, which

Sensors 2020, 20, 5103 13 of 20

acts and responds in the name of the physical object. Hence, the digital twin can provide pre-

processing and post-processing of the required services. Multiple different digital twins can be

developed based on the different needs for communication, pre-processing and post-processing.

Introducing such a digital twin as a placeholder can serve many purposes, including enhanced

efficiency, easier access and protection from unauthorized access. To provide the proper behavior,

the digital twin that acts as a proxy can include, that is, reflect the state of, the physical object or be

stateless and rely on the retrieval of the state of the actual physical object.

Name—Digital Proxy

Lifecycle Stage—Utilization, Support and Retirement stages.

Context—A digital twin needs to act in case of a physical object.

Problem—It is often inappropriate to access a physical object directly.

Solution—The design pattern makes the clients of a component communicate with a

representative rather than to the component Itself. Introducing such a placeholder can serve many

purposes, including enhanced efficiency, easier access and protection from unauthorized access.

Before executing the requested service a pre-processing function can be performed by the Digital

Twin. Similarly after processing the service, a post-processing function can be performed. Once

the function has been performed the synchronization of the data (twinning) will be carried out.

Alternatively, this could be also done in the pre-processing or post-processing functions.

Structure

InterfaceObject

Service()
…..

Client

DigitalTwin

Service()
...

PhysicalObject

Service()
...

similar with

Dynamics

service()

:Client :DigitalTwin

service()

:PhysicalObject

pre-processing

post-processing

synchronize()

Figure 11. Digital Proxy Pattern.

5.6. Digital Restoration Pattern

The Digital Restoration pattern (Figure 12) is applied when the physical object needs to restore

its earlier state. This could be needed due to failures, loss, corruption, or to align with the state of

other physical objects and the environment state. The state of the physical object is reflected on the

digital twin at defined times. In the case in which restoration is needed, the process is reversed and

the state of the digital twin is used to restore the state of the physical object. The pattern is applied in

the utilization and support stages.

Name—Digital Restoration.

Lifecycle Stage—Utilization and Support stages.

Context—A physical object needs to be restored to its earlier state.

Problem—How can a physical object’s state be captured and externalized so that the object can be

restored to this state later.

Solution—A digital twin of the physical object is created at given checkpoints. In case of failure

the digital twin is checked and the state of the physical object is restored.

Sensors 2020, 20, 5103 14 of 20

Structure

PhysicalObject

state

getState()
setState(State)

Client

DigitalTwin

state

saveState()
restoreState()

Dynamics

getState()

:Client :DigitalObject

saveState()

:PhysicalObject

restoreState() setState(state)

Figure 12. Digital Restoration pattern.

5.7. Digital Monitor Pattern

The Digital Monitor pattern (Figure 13) is used to provide a digital twin that monitors a physical

object. One digital twin can in essence monitor multiple physical objects, and a physical object can

also be monitored by multiple twins. Hence, the relationship between digital twin and physical object

is many-to-many.

Name—Digital Monitor.

Lifecycle Stage—Utilization and Support stages.

Context—A physical object needs to be monitored by a human being or external entity.

Problem—How can a physical object’s state be perceived and viewed to support external actions.

Solution—A digital twin is connected to the physical object. The digital twin monitors the physical

object continuously or at given time intervals.

Structure

DigitalTwin

DigitalView

state

Client

PhysicalObject

getState

setState

showView

ConcreteDigitalView1 ConcreteDigitalView2

Dynamics

:DigitalView

getState()

:Client :DigitalObject :PhysicalObject

setState()

showView

state

Figure 13. Digital Monitor pattern.

5.8. Digital Control Pattern

The Digital Control pattern (Figure 14) builds on the earlier pattern that monitors the physical

object. However, it adds an additional level of intelligence and complexity which is that of control.

Based on defined control parameters and a comparison mechanism, the proper action is decided

which is then performed on the physical object. This pattern thus follows the behavior of a smart

feedback control system. Its implementation requires the development of sensors, definition of

control parameters, implementation of the comparison algorithms and the decision module, and

finally the actuator mechanism. The control parameters are typically externally defined by the client.

The decision making for the proper action can be guided by the accompanying data analytics.

Sensors 2020, 20, 5103 15 of 20

Name—Digital Control.

Lifecycle Stage—Utilization and Support stages.

Context—A physical object needs to be controlled.

Problem—How can a physical object’s state be perceived and changed.

Solution—A digital twin is connected to the physical object. The digital twin monitors the physical object

continuously or at given time intervals, and adapts the state of the physical object.

Structure

DigitalTwinAdaptor Decider

Comparitor

PhysicalObject

getState

setState

delta

DigitalTwin
state

Actuator

action

adapt

setState

ControlParameterClient
setValues

Dynamics

setState(state)

:Comparitor

getState()

:PhysicalObject :DigitalTwinAdaptor :DigitalTwin :Decider :Actuator

provideState(state)

provideDelta(delta)

provideAction(action)

perform action()

:Client :ControlParameter:ControlParameters

setControlValues()

state

Figure 14. Digital Control Pattern.

5.9. Digital Autonomy Pattern

The Autonomous Autonomy pattern (Figure 15) builds even further on the Digital Control

pattern and does not require manual, human intervention. The control parameters are now defined

by the digital twin itself and based on the changing conditions, if needed, these are adjusted. As a

result, the digital twin does not just follow earlier defined control actions but is also able to learn from

the dynamically changing situation, and thus adapt its control actions.

Sensors 2020, 20, 5103 16 of 20

Name—Digital Autonomy.

Lifecycle Stage—Utilization and Support stages.

Context—A physical object needs to be automatically controlled without human intervention.

Problem—How can a physical object’s state be perceived and automatically changed without human

intervention.

Solution—A digital twin is connected to the physical object. The digital twin monitors the physical object

continuously or at given time intervals, and automatically adapts the state of the physical object.

Structure

DigitalTwinAdaptor Decider

Comparitor

PhysicalObject

getState

setState

delta

DigitalTwin
state

Actuator

action

adapt

setState

ControlParameter
setValues

Dynamics

setState(state)

:Comparitor

getState()

:PhysicalObject :DigitalTwinAdaptor :DigitalTwin :Decider :Actuator

provideState(state)

provideDelta(delta)

provideAction(action)

perform action()

state

setControlValues()

Figure 15. Digital Autonomy pattern.

5.10. Pattern Selection Approach

In the previous section we presented the pattern catalog including nine different design patterns

for digital twins. Once these patterns have been explicitly described, each of these can be selected

based on a recurring problem, and applied to derive a design based on the pattern. The applicability

of these patterns is defined by the systems engineering stage for which it is mentioned, and of course

the identified problem that requires a solution. Figure 16 shows the systems engineering life cycle

stages and the potential digital twin patterns that can be applied at these stages. Note that the patterns

Digital Model, Digital Shadow, and Digital Generator can be applied in the earlier stages of the

lifecycle. The remaining patterns are applied in the later stages. The Digital Proxy pattern can also be

applied in the retirement stage to behave as a representative of the physical object, even if this has

been disposed of.

Concept Stage
Development

Stage
Production

Stage

Utilization
Stage

Support Stage

Retirement
Stage

Digital Model
Digital Shadow
Digital Generator

Digital Model
Digital Shadow
Digital Generator

Digital Matching
Digital Proxy
Digital Restoration
Digital Monitor
Digital Control
Digital Autonomy

Digital Proxy

Figure 16. Identified patterns in the systems engineering life cycle stages.

6. Case Study Research

To illustrate the application of the digital twin patterns we adopted a multiple case study

approach. As stated before, the case study was carried out as part of the European IoF2020 project in

Sensors 2020, 20, 5103 17 of 20

close interaction with the involved business partners (www.iof2020.eu). The primary objective of the

case studies is to evaluate the applicability of the identified digital twin patterns. To evaluate the

above research questions, the case study research protocol as defined by Runeson and Höst [28] was

applied. Based on this, the indicated five steps were followed: (1) case study design; (2) preparation

for data collection; (3) execution of data collection on the studied case; (4) analysis of collected data;

(5) reporting.

The case study research was applied to three selected case studies. Each of these studies were

prospective cases, that is, they included the system that was planned to be developed. The detailed

descriptions of these case studies were provided in Table 1.

Table 4 shows the case study design elements. The goal for the case study was to evaluate both

the effectiveness and the practicality of the approach. The research questions were defined

accordingly as shown in the table. For the adopted background and sources in the case study

research, official design documents were used and unstructured interviews were conducted with

project managers and system architects. A qualitative data analysis approach was used in which

document analysis approaches were used.

Table 4. Case study design.

Case Study Design

Activity
Case Study

Goal
Assessing the effectiveness of the method

Assessing the practicality of the method

Research Questions

RQ1. To which extent do the defined digital twin patterns support the

system architecture design?

RQ2. How practical is the method for applying the digital twin patterns?

Background and

source

Official requirements documents

Project managers and system architects

Data Collection
Indirect data collection and direct data collection through document

analysis and unstructured interviews

Data Analysis Qualitative data analysis

Table 5 shows the result of the overall case study research with the identified patterns for each

of the three case studies. A number of interesting observations can be derived from the table.

The Digital Model pattern can only be applied for non-living things, in this case the greenhouses.

The application of the Digital Generator pattern is different for different case studies. For example, a

cow as a physical object is different from a greenhouse. In the case of a greenhouse, the Digital

Generator can make sense, whereas for a cow this is not possible. The generation often involves the

generation of the computational modules. For a physical generation, this would imply techniques

such as 3D printing of physical objects. The Digital Shadow pattern is broadly applicable since it

assumes a capturing of the state of a physical object. Hereby, the nature of the physical object is less

decisive. However, this will impact the implementation of the pattern because different types of

sensors might be needed for different types of physical object (field, cow, greenhouse). The Digital

Restoration pattern was planned to be used for the greenhouse case study, to undo/redo facilities to

restore/update the state of greenhouses (temperature sensor, light sensor, humidity sensor, and

actuators). Again, this pattern can be typically applied for non-living things. The Digital Monitor and

Digital Control patterns appeared to be applied in each of the three case studies, although what was

monitored and how (sensors) and what was adapted (actuators) was clearly different per case study.

None of the case studies used the Digital Autonomy pattern. This is indeed the most difficult pattern,

and requires sophisticated knowledge and implementation. We foresee that this pattern can be used

in the near future.

Sensors 2020, 20, 5103 18 of 20

Table 5. Overview of the use cases and the identified digital twin patterns.

Use Case

Digital

Twin

Pattern

Within Field Management

Zoning
Happy Cow

Chain-Integrated Greenhouse

Production

Digital

Model
- -

Each greenhouse production

system can be developed

based on a digital model

(design)

Digital

Generator
- -

Digital twin could be used to

(automatically) generate

greenhouse production

systems.

Digital

Shadow

Initially, a digital model is

developed for the fields

that are monitored. Later

on these digital shadows

can become digital twins

and the other patterns are

applied (e.g., digital

monitor, digital control)

Initially, a digital model of a

cow is developed that

captures the relevant states.

Later on these digital

shadows can become digital

twins and the other patterns

are applied (e.g., digital

monitor, digital control)

Initially, a digital model of a

greenhouse production

system is developed that

captures the relevant states.

Later on these digital shadows

can become digital twins and

the other patterns are applied

(e.g., digital monitor, digital

control)

Digital

Matching

The pattern can be used to

support the analysis and

classification of the fields

based on defined

properties in the digital

twin

Properties as defined in the

digital twin (e.g., for disease

detection) can be used to

match with cows.

The pattern can be used to

support the analysis and

classification of the products

in a greenhouse, based on

defined properties in the

digital twin

Digital

Proxy

A digital twin can be used

as a proxy to provide

information about the

fields.

A digital twin can be used as

a proxy to provide

information about a cow.

A digital twin cane be used as

a proxy to provide

information about greenhouse

production.

Digital

Restoration
- -

Digital model includes

undo/redo facilities to

restore/update the state of

greenhouse production

Digital

Monitor

Fields can be monitored by

digital twin.

Cows can be monitored by

digital twin for various

physiological data

(temperature, rumen and

body activity, pH level).

Greenhouse production

systems can be monitored by

digital twins.

Digital

Control

Based on a sophisticated

data analytics decision

support, yields are

predicted, management

zones defined and task

maps prepared for farm

equipment (e.g., variable

application of herbicides,

water and fertilizers).

Based on a sophisticated data

analytics decision support,

monitoring various

physiological data

(temperature, rumen and

body activity, pH level), and

a cloud-based server

application to provide

accurate information for

daily operations.

Based on a sophisticated data

analytics decision support,

yields are predicted and task

instructions prepared for

greenhouse equipment (e.g.,

climate, lighting, and

irrigation).

Digital

Autonomy
- - -

Sensors 2020, 20, 5103 19 of 20

7. Conclusion

The notion of digital twins can be considered as a new phase in IoT-based systems that will have

an increasing and lasting impact on many application domains. It enables remote control of

operations based on (near) real-time digital information instead of having to rely on direct

observation and manual tasks on-site. Despite its pervasiveness and increased popularity, there

appears to be a lack of understanding and consensus on both the basic concepts and, in particular,

the design and modeling abstractions. Developing digital twin-based systems requires a systems

engineering approach due to its multidisciplinary nature. One of the essential concepts in systems

design is the notion of design patterns, which has been largely applied in software engineering and,

more recently, also in the broader systems engineering context. Based on our study, this article is the

first that proposes a design patterns catalog that can be used to leverage the development of high

quality digital twin-based systems. The design patterns catalog is based on a conceptual model of

control systems and includes a total of nine different design patterns that address different problems

and that can be applied to different systems engineering life cycle stages. The case studies show the

application of these patterns in the agriculture and food domain. The usage of digital twin patterns

was explicitly identified in cases that were not yet framed as digital twins. The identified patterns

focus on the usage stage of the life cycle. The application of patterns in the concept, realization, and

retirement stages was still in an early stage of development. We analyzed and checked the digital

twin patterns for retrospective case studies that showed the applicability of these patterns. In addition

to the food and farm domain, the proposed pattern catalog can be used for various systems

engineering applications. In our future work we will focus on the implementation of the presented

digital twins, and also consider multiple different case studies from multiple different systems

engineering domains. The exploration of other domains will help to discover additional digital twin

patterns and thus extend the pattern catalog.

Author Contributions: B.T.: Conceptualization, Methodology, Writing-Review and Editing. C.V.:

Conceptualization, Methodology, Writing-Review and Editing. All authors have read and agreed to the

published version of the manuscript.

Funding: This research was supported by the European Union’s Horizon 2020 research and innovation program

under grant agreement no. 731884.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex

systems. In Transdisciplinary Perspectives on Complex Systems; Springer Cham, 2017; pp. 85–113.

2. Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research.

arXiv 2020, arXiv:1911.012762020.

3. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805.

4. Tekinerdogan, B.; Köksal, Ö. Pattern-Based Integration of Internet of Things Systems. In Proceedings of the

Internet of Things—ICIOT 2018, Seattle, WA, USA, 25–30 June 2018; Georgakopoulos, D., Zhang, L.J., Eds.;

Volume 10972.

5. Verdouw, C.; Wolfert, S.; Tekinerdogan, B. Internet of Things in agriculture. CAB Rev. 2016, 11, 1–12.

6. ISO/IEC 42010:2011 Recommended Practice for Architectural Description of Software-Intensive Systems (ISO/IEC

42010); 2011.

7. The Guide to the Systems Engineering Body of Knowledge (SEBoK), v. 2.2, R.J. Cloutier (Editor in Chief).

Hoboken, NJ: The Trustees of the Stevens Institute of Technology. Accessed [2020-09].

www.sebokwiki.org.; October 2016.

8. ISO/IEC/IEEE 15288:2015. Systems and Software Engineering — System life cycle processes, 2015.

9. Walden, D.D.; Roedler, G.J.; Forsberg, K.J.; Hamelin, R.D.; Shortell, T.M. (Eds.) INCOSE Systems Engineering

Handbook: A Guide for System Life Cycle Processes and Activities, 4th ed.; John Wiley & Sons, Inc.: Hoboken,

NJ, USA, 2015.

10. Alexander, C. The Timeless Way of Building; Oxford University Press: Oxford, UK, 1979.

Sensors 2020, 20, 5103 20 of 20

11. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software;

Addison-Wesley Professional: 1995.

12. Sözer, H.; Tekinerdogan, B.; Akşit, M. Optimizing decomposition of software architecture for local

recovery. Softw. Qual. J. 2013, 21, 203–240, doi:10.1007/s11219-011-9171-6.

13. Bushmann, F.; Meunier, R.; Rohnert, H. Pattern-Oriented Software Architecture: A System of Patterns; John

Wiley & Sons: Hoboken, NJ, USA, 1996; Volume 1, p. 476.

14. Verdouw, C.N.; Kruize, J.W. Digital twins in farm management: Illustrations from the FIWARE

accelerators SmartAgriFood and Fractals. In Proceedings of the 7th Asian-Australasian Conference on

Precision Agriculture Digital, Hamilton, New Zealand, 16–18 October 2017.

15. Verdouw, C.N.; Beulens, A.J.M.; Reijers, H.A.; van der Vorst, J.G. A Control Model for Object Virtualization

in Supply Chain Management. Comput. Ind. 2015, 68, 116–131.

16. Verdouw, C.; Sundmaeker, H.; Tekinerdogan, B.; Conzon, D.; Montanaro, T. Architecture framework of

IoT-based food and farm systems: A multiple case study. Comput. Electron. Agric. 2019, 165, 104939.

17. Alam, K.M.; Saddik, A.E. C2PS: A Digital Twin Architecture Reference Model for the Cloud-Based Cyber-

Physical Systems. IEEE Access 2017, 5, 2050–2062.

18. Alves, R.G.; Souza, G.; Maia, R.F.; Tran, A.L.H.; Kamienski, C.; Soininen, J.-P.; Aquino, P.T., Jr.; Lima, F. A

digital twin for smart farming. IEEE Global Humanitarian Technology Conference, Seattle, WA, USA, 17–

21 October 2019.

19. Canedo, A. Industrial iot lifecycle via digital twins. In Proceedings of the 11th IEEE/ACM/IFIP International

Conference on Hardware/Software Codesign and System Synthesis (CODES 2016), Pittsburgh, PA, USA,

1–7 October 2016.

20. Glaessgen, E.; Stargel, D. The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles. In

Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials

Conference, Honolulu, HI, USA, 23–26 April 2012.

21. Schleich, B.; Anwer, N.; Mathieu, L.; Wartzack, S. Shaping the digital twin for design and production

engineering. CIRP Ann. 2017, 66, 141–144.

22. Boschert, S.; Rosen, R. Digital Twin—The Simulation Aspect, In Mechatronic Futures: Challenges and Solutions

for Mechatronic Systems and Their Designers; Hehenberger, P., Bradley, D., Eds.; Springer International

Publishing: Cham, Switzerland, 2016; pp. 59–74.

23. Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature

review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52, doi:10.1016/j.cirpj.2020.02.002., 2020.

24. Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex

systems. In Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches; Kahlen, F.-J.,

Flumerfelt, S., Alves, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 85–113.

25. Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical

literature review and classification. IFAC Pap. 2018, 51, 1016–1022.

26. Tekinerdogan, B. Engineering Connected Intelligence: A Socio-Technical Perspective; Wageningen University &

Research: Wageningen, The Netherlands, 2017; doi:10.18174/401115.

27. Porter, M.E.; Heppelmann, J.E. How Smart, Connected Products are Transforming Competition, Harvard Business

Review; Harvard Business School Publishing: 2014.

28. Runeson, P.; Höst, M. Guidelines for conducting and reporting case study research in software 844

engineering. Empir. Softw. Eng. 2008, 14, 131.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

