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Abstract: The local reference frame (LRF) acts as a critical role in 3D local shape description and
matching. However, most existing LRFs are hand-crafted and suffer from limited repeatability
and robustness. This paper presents the first attempt to learn an LRF via a Siamese network that
needs weak supervision only. In particular, we argue that each neighboring point in the local
surface gives a unique contribution to LRF construction and measure such contributions via learned
weights. Extensive analysis and comparative experiments on three public datasets addressing
different application scenarios have demonstrated that LRF-Net is more repeatable and robust than
several state-of-the-art LRF methods (LRF-Net is only trained on one dataset). We show that LRFNet
achieves 0.686 MeanCos performance on the UWA 3D modeling (UWA3M) dataset, outperforming
the closest method by 0.18. In addition, LRF-Net can significantly boost the local shape description
and 6-DoF pose estimation performance when matching 3D point clouds.

Keywords: point cloud; local reference frame; deep learning

1. Introduction

The local reference frame (LRF) is a canonical coordinate system established in the 3D local surface,
which is a useful geometric cue for 3D point clouds. LRF possesses two intriguing traits. One is that
rotation invariance can be achieved via LRF if the local surface is transformed with respect to the
LRF [1]. The other is that useful geometric information can be mined with LRF [2]. These make LRF
popular in many geometric relevant tasks, especially for local shape description and six-degree-of-free
(6-DoF) pose estimation.

For local shape description, two corresponding local surfaces can be converted into the same pose
and full 3D geometric information can be employed, which is beneficial to improving the performance
of local descriptors. Some hand-crafted local shape descriptors, e.g., signature of histograms of
orientations (SHOT) [3] and signature of rotational projection statistics (RoPS) [1], estimate an LRF
from the local surface and then translate local geometric information with respect to the estimated
LRF into distinctive and rotation-invariant feature representations. Some learned local descriptors,
e.g., [4,5], leverage LRFs to overcome the limitation of geometric deep learning networks of being
sensitive to rotations. Therefore, LRF is critical for both traditional and learned local shape descriptors.
For 6-DoF pose estimation, an LRF can significantly improves its efficiency. Traditional 6-DoF pose
estimation is usually performed via RANSAC [6], which randomly selects inlier correspondences
from an initial correspondence pool for pose prediction. Such random sampling method is neither
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reliable nor computational efficient [7]. By contrast, we can directly predict an initial pose via two
corresponding LRFs, reducing the computational complexity from O(n3) to O(n).

The desirable properties for LRF are twofold [3]. The first one is the invariance to rigid
transformation (e.g., translations and rotations). The second one is the robustness to common
disturbances (e.g., noise, clutter, occlusion and varying mesh resolutions). To achieve these goals, many
LRF methods have been proposed in the past decade and they can be categorized into two classes [8]:
Covariance analysis (CA) [3,9] or point spatial distributions (PSD)-based [2,10,11]. CA-based LRFs
are based on the computation of eigenvectors of a covariance matrix calculated either for the points
or triangles in the local surface. PSD-based LRFs usually calculate axes successively, where the main
efforts are put on the determination of the x-axis [8]. However, most CA-based LRFs still suffer from
sign ambiguity, and PSD-based LRFs show limited robustness to high levels of noise and variations
of mesh resolution [10]. Methods in both classes usually apply a weighted strategy to improve their
repeatability performance. However, their weights are determined heuristically, and the repeatability
performance in challenging 3D matching cases cannot be guaranteed.

Motivated by existing considerations, we propose a learned approach toward LRF estimation
(named LRF-Net), which considers the contribution of all neighboring points (Figure 1). Our key
insight is that each neighboring point in the local surface gives a unique contribution to LRF
construction, which can be quantitatively represented by assigning weights to these points. Given a
local surface centered at a keypoint, we first resort to the normal of the keypoint computed within
a subset of the radius neighbors for the calculation of its z-axis. Its repeatability has been confirmed
in [2]. Compared with z-axis, estimating the x-axis is more challenging, due to noise, clutter,
and occlusion. By collecting angle and distance attributes within a local neighborhood, we can
formulate the estimation of x-axis as a weighted prediction problem with respect to these geometric
attributes. Note that, we choose these invariant geometric attributes instead of raw points as input
to our LRF-Net. The distance and angle computation are mathematically invariant under isometric
transformation and hence per definition invariant to rigid body motion. Unlike previous CA-based
and PSD-based approaches, such learned strategy of determining weights is shown to be invariant to
rigid transformation and robust to noise, clutter, occlusion and varying mesh resolutions. Our network
can be trained in a weakly supervised manner. Specifically, it needs the corresponding relationships
between local patches only, instead of ground-truth LRFs and/or exact pose variation information
between patches. We have conducted a set of experiments on three public datasets to comprehensively
evaluate the proposed LRF-Net. Extensive analysis and comparative experiments on three public
datasets addressing different application scenarios have demonstrated that LRF-Net is more repeatable
and robust than several state-of-the-art LRF methods (LRF-Net is only trained on one dataset).
In addition, LRF-Net can significantly boost the local shape description and 6-DoF pose estimation
performance when matching 3D point clouds. The major contributions of this paper are summarized
as follows:

• LRF-Net, based on a Siamese network that needs weak supervision only, is proposed that achieves
the state-of-the-art repeatability performance under the impacts of noise, varying mesh resolutions,
clutter and occlusion. To the best of our knowledge, we are the first to concentrate on designing
LRF for local surfaces with deep learning.

• LRF-Net can significantly boost the performance of local shape description and 6-DoF
pose estimation.
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Figure 1. Local reference frame (LRF)-Net first assigns learned weights to points in a local surface and
then uses these weights to estimate a repeatable and robust LRF.

The rest of this paper is organized as follows. Section 2 presents a detailed description of our
proposed LRF-Net. Section 3 presents the experimental evaluation of LRF-Net on three public datasets
with comparisons with several state-of-the-art methods. Several concluding remarks are drawn in
Section 4.

2. Related Works

Various methods for building LRFs have been proposed in the literature. Most of them can be
categorized into two classes: CA-based methods and PSD-based methods. Given a local surface with a
spherical support of radius r centered at the keypoint p, they compute a 3× 3 matrix as its LRF.

2.1. CA-Based LRF Methods

Most CA-based methods are based on the eigenvectors of the covariance matrix, which is usually
generated by the points or triangles in the support region.

Mian et al. [9]: This method directly calculates the unit vectors of the LRF via computing
covariance analysis on the radius neighbors of the keypoint, the three eigenvectors of the covariance
matrix are defined as the x,y,z-axis, respectively. While the eigenvectors of the covariance matrix define
the principal direction of the local surface, their sign is still ambiguous [10]. Mian et al. disambiguates
the sign of z-axis through the inner product between n(p) (normal of keypoint p) and two possible
vector, i.e., z(p) and −z(p), where z(p) denotes the z-axis. However, the rest axes are still suffer from
sign ambiguity.

SHOT [3]: This method leverages a weighted covariance matrix for the computation of LRF,
which assigns smaller weights to more distant points. The weighted covariance matrix is calculated
as follows:

Cshot =
1

∑q∈N(p) wq
∑

q∈N(p)
wq(q− p)(q− p)T (1)

where wq = R− ||q− p||. R denotes the support radius and || · || represents L2 norm. This weighted
strategy improves the repeatability in present of clutter under 3D object recognition scenarios.
To eliminate all sign ambiguities of the LRF axes, a technique which is similar to [12] is applied to the
eigenvectors of the weighted covariance matrix. Specifically, the sign of a eigenvector is reoriented to
coherent with the majority of the vectors. Such technique is used on the x-axis and z-axis. The rest
y-axis is calculated by the cross-product operation between the z-axis and the x-axis.

RoPS [1]: This method does not only calculate one covariance matrix for the local surface,
it aggregates multiple covariance matrices computed for every single triangle of the local surface into
a comprehensive one to enhance the robustness. Such method needs mesh representation of the 3D
local surface. For a triangle τ ∈ ψ(p), its covariance matrix is calculated as:
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Cτ =
1
12

3

∑
i=1

3

∑
j=1

(qτ
i − p)(qτ

j − p)T +
1
12

3

∑
i=1

(qτ
i − p)(qτ

i − p)T (2)

where qτ
1 , qτ

2 and qτ
3 denote the three vertices of τ. Then, the comprehensive covariance matrix is

calculated as:
Crops = ∑

τ∈ψ(p)
w1w2Cτ (3)

w1 and w2 are defined as:

w1 =
|(qτ

2 − qτ
1)× (qτ

3 − qτ
1)|

∑τ∈ψ(p) |(qτ
2 − qτ

1)× (qτ
3 − qτ

1)|
(4)

w2 = (R− |p−
qτ

1 + qτ
2 + qτ

3
3

|)2 (5)

where w1 alleviates the impact of mesh resolution variations and w2 improves the robustness
performance to clutter and occlusion [8]. Based on the eigenvalue decomposition of Crops, the three
axes of LRF can be calculated.

As for disambiguating the sign, x-axis and z-axis (only take x-axis as an example) are further
adjusted via x(p) = x(p) · sign(h), where x(p) denotes the x-axis and h is a signum function, which is
defined as:

h = ∑
τ∈ψ(p)

w1w2(
1
6

3

∑
i=1

(qτ
i − p) · x(p)) (6)

Once the x-axis and z-axis are determined, the y-axis can be calculated via the cross-product
between them.

2.2. PSD-Based LRF Methods

As for PSD-based LRF methods, they calculate three axes of the LRF successively.
PS [13]: This method puts a sphere of radius r on the keypoint p and gain a contour at the

intersection of the local surface. The point with the biggest signed projection distance to the tangent
plane of the keypoint was selected to compute the x-axis, while the tangent plane is determined by
z-axis, which is directly performed by the normal of the keypoint. The y-axis is calculated via the
cross-product operation.

Board [2]: This method collects a small subset of the local surface for the estimation of the z-axis,
which has achieved a robust performance to occlusion. The x-axis is calculated by the points lying
in the border region. They choose the point lying in the border region with the biggest deviation
angle between its normal and the z-axis as the calculation of x-axis. The y-axis is computed by the
cross-product operation between z-axis and x-axis.

SD [10]: This method is a modified version of Board [2]. They make improvement to the
repeatability of the LRF via employing the point with largest local depth instead of deviation
angle in SD [10]. They achieve a more repeatable performance than Board on 3D registration and
recognition data. However, both of them show a weak performance on the robustness to the large
scale noise.

TOLDI [11]: This method resorts to the normal of the keypoint which is calculated by a subset of
the radius neighbors for the estimation of its z-axis. Then, the tangent plane of the keypoint with respect
to z-axis is determined and all radius neighbors of the keypoint are projected on the tangent plane.
A weighted strategy is employed to each projection vector to calculate the x-axis, which is defined as:

wi1 = (r− ||p− qi||)2 (7)

wi2 = (pqi · z(p))2 (8)
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where p donates the keypoint and qi is one of its radius neighbors within support radius r. wi1 is a
weight related to the distance from p to qi, which is designed to improve the robustness of the LRF to
clutter, occlusion and incomplete border regions [11]. wi2 is a weight related to the local depth which
is designed to provide high repeatability on flat regions [11]. The x-axis is calculated as:

x(p) =
k

∑
i=1

wi1wi2vi/

∥∥∥∥∥ k

∑
i=1

wi1wi2vi

∥∥∥∥∥ (9)

where k is the count of radius neighbors of keypoint p and vi denotes one of the projection vectors.
The y-axis is computed by the cross-product between z-axis and x-axis.

3. Methods

This section represents the details of our proposed LRF-Net for 3D local surface. We first introduce
the technique approach for calculating the three axes for an LRF and then describes a weakly supervised
approach for training LRF-Net.

3.1. A Learned LRF Proposal

The whole architecture of LRF-Net in shown in Figure 2a. LRF-Net predicts the direction of three
axes successively. For a local surface, we first estimate its z-axis via its normal vector computed over a
small subset of the local point set. Then, unique weights are learned for each point in the local surface.
The x-axis is calculated by integrating projection vectors with learned weights using a vector-sum
operation. At last, the y-axis is calculated by the cross-product operation between z-axis and x-axis.

LRF definition: Given a local surface Q centered at keypoint p, the LRF at p (denoted by Lp)
can be represented as :

Lp = [x(p), z(p)× x(p), z(p)], (10)

where x(p), y(p), and z(p) denote the x-axis, y-axis, and z-axis of Lp, respectively. As three axes are
orthogonal, the estimation of LRF therefore contains two parts: Estimation of the z-axis and the x-axis.

Figure 2. The architecture of LRF-Net. The input to LRF-Net is a local surface and we calculate its
normal as the z-axis of the LRF. Then, the local surface is converted to a set of rotation variant attributes.
Next, a projection weight for every point is computed with mlp. At last, the x-axis is calculated by
the weighted vector-sum of all the projection vectors and the y-axis is calculated by the cross product
between the z-axis and x-axis. The LRF is formed as the combination of the x-axis, y-axis and z-axis.



Sensors 2020, 20, 5086 6 of 18

A naive way to learn an LRF for the local surface is to train a network that directly regresses the
axes. The premise is that ground-truth LRFs are labeled for local surfaces. Unfortunately, the network
trained in this manner meets two difficulties. The first one is that the definition of ground-truth
LRFs for local surfaces remain an open issue in the community [8]. The second one, which is more
important, is that the orthogonality of three axes cannot be guaranteed. We suggest estimating z-axis
and x-axis independently.

Z-axis: As for z-axis, we take the normal of the keypoint as the z-axis., which has been confirmed [2] to
be quite repeatable. To resist the impact of clutter and occlusion, we collect a small subset of the local
surface to calculate the normal. For more details, readers are referred to [11].

X-axis: Once the z-axis is determined, the remaining task is to compute the x-axis. Compared with
z-axis, x-axis is more challenging due to the influence of noise, clutter, and occlusion [8]. We argue that
each neighboring point in the local surface gives a unique contribution to LRF construction. Hence,
we predict a weight for each neighboring point and leverage all neighboring points with learned
weights for x-axis prediction. The main steps are as follows.

First, to make the estimate LRF invariant to rigid transformation, our network consumes with
invariant geometric attributes, rather than point coordinates. In particular, two attributes, i.e., relative
distance adist and surface variation angle aangle are used in LRF-Net as illustrated in Figure 2b. For a
neighbor qi of p, the two attributes of qi are computed as:ai

dist = ‖pqi‖ /r

ai
angle = cos(z(p), pqi)

, (11)

where ‖·‖ is the L2 norm and r represents the support radius of the local surface. The range of aangle
and adist are [−1, 1] and [0, 1], respectively. Thus, every radius neighboring point represented by two
attributes that will be encoded to a weight value via LRF-Net later. The employed two attributes in
LRF-Net have two merits at least. First, the unique spatial information of a radius neighboring point
in the local surface can be well represented, as shown in Figure 3. Both attributes are complementary
to each other. Second, the two attributes are calculated with respect to the keypoint, which are rotation
invariant. It makes the learned weights rotation invariant as well.

Figure 3. An illustration of information complementary inherent to the two attributes in LRF-Net.
The two radius neighbors q1 and q2 of the keypoint p in (a) and (b) have different spatial locations.
In (a), the two radius neighbors with the same distance value are distinguished by the surface variation
angle attribute. In (b), their surface variation angle attribute values are similar, while they can be
distinguished by the distance attribute.
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Second, with geometric attributes being the input, we use a simple network with multilayer
perceptions (MLP) layers only to predict weights for neighboring points. The details of the network
are illustrated in Figure 4. The network is very simple, however, is sufficient to predict stable and
informative weights for neighboring points (as will be verified in the experiments).

Figure 4. Parameters of our LRF-Net.

Third, because x-axis is orthogonal to z-axis, we project each neighbor qi on the tangent plane S
of the z-axis and compute a projection vector for qi as:

vi = pqi − (pqi · z(p)) · z(p). (12)

We integrate all weighted projection vectors in a weighted vector-sum manner:

x(p) =
n

∑
i=1

wivi/

∥∥∥∥∥ n

∑
i=1

wivi

∥∥∥∥∥ , (13)

where n denotes the total number of radius neighbors of keypoint p and wi is a learned weight by
LRF-Net. Another way for determining the x-axis, based on these weights, is choosing the vector with
the maximum weight, as in many PSD-based LRFs [2,10]. However, it fails to leverage all neighboring
information and we will shown that it is inferior to the vector-sum operation in the experiments.

Y-axis: Based on the calculated z-axis and x-axis, the y-axis can be computed by the cross-product
between them.

3.2. Weakly Supervised Training Scheme

Our training data are constituted by a series of corresponding local surface patches.
The corresponding relationship is obtained based on the ground-truth rigid transformation of two
whole point clouds. In particular, LRF-Net needs the corresponding relationships between local surface
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patches only, rather than ground-truth LRFs and/or exact pose variation information between patches.
Therefore, our network can be trained in a weakly supervised manner.

We train our LRF-Net with two streams in a Siamese fashion where each stream independently
predicts an LRF for a local surface. Specifically, two streams take the local surfaces of keypoints pm and
ps as inputs, respectively. Here, pm and ps are two corresponding keypoints sampled from the model
and scene point cloud. Both streams share the same architecture and underlying weights. We use the
predicted LRFs Lm and Ls by two stream to transform the local surfaces Qm and Qs to the coordinate
system of the two LRFs. Then, we calculate the Chamfer Distance [14] between two transformed local
surfaces as the loss function to train LRF-Net:

Loss = dcham(Lm ·Qm, Ls ·Qs), (14)

where

dcham(X, X̂) = min

{
1
|X| ∑

x∈X
min
x̂∈X̂
||x− x̂||, 1

|X̂| ∑
x̂∈X̂

min
x∈X
||x− x̂||

}
. (15)

Our opinion is that it is difficult to define a “good” LRF for a single local surface. For 3D
shape matching, LRFs that can align the poses of two local surface patches are judged as repeatable.
This motivates us to consider two local patches simultaneously and employ the Chamfer Distance to
train the network.

4. Experiments

In this section, we first evaluate the repeatability performance of our LRF-Net on three standard
datasets, including the Bologna retrieval (BR) dataset [15], the UWA 3D modeling (UWA3M)
dataset [16], and the UWA object recognition (UWAOR) dataset [17], together with a comparison
with other state-of-the-art LRFs. Second, we apply our LRF-Net perform local shape description and
6-DoF pose estimation to verify the practicability of our method. Third, analysis experiments are
conducted to improve the explainability of the proposed LRF-Net.

4.1. Experimental Setup

The details of our experiments including the description of datasets and the illustration for all
compared methods are introduced before evaluation. The experiments were conducted on a Windows
Server with an Intel Xeon E5-2640 2.39 GHz CPU and 96 GB of RAM. We train our LRF-Net using a
batch size of 512 local surface pairs with Pytorch and leverage the ADAM optimizer with an initial
learning rate of 1× 10−4, which decays 5% every epoch. Each sampled local surface contains 256 points.
The max epoch count is set to 20.

4.1.1. Datasets

Our experimental datasets includes three standard datasets with different application scenarios.
The variety among these public 3D datasets definitely helps us to evaluate the performance of our
method in a comprehensive manner. Figure 5 displays two exemplar models and scenes without noise
in each dataset. The main properties of these datasets are summarized in Table 1.

These dataset are also injected with five levels of Gaussian noise (i.e., from 0.1 mr to 0.5 mr
Gaussian noise) and four levels of mesh decimation (i.e., 1

2 , 1
4 , 1

8 and 1
16 of original mesh resolution).

Here, the unit mr denotes mesh resolution. Remarkably, the noise-free BR dataset is used to train
our LRF-Net, the rest noisy data in the BR dataset and data in the UWA3M dataset and the UWAOR
dataset are used for testing.
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Figure 5. Two exemplar models and scenes without noise (shown from left to right), respectively, taken
from the BR, UWA3M, and UWAOR datasets.

Table 1. Experimental datasets and inherited properties.

Dateset BR UWA3M UWAOR

Scenario Retrieval Registration Recogntion

Challenge Gaussian
noise

holes, missing
region, and

self-occlusion

clutter
and occlusion

# Models 6 4 5

# Scenes 18 75 50

# Matching Pairs 18 75 188

# means the quantitative attribute of the dataset (e.g., the number of models).

4.1.2. Compared Methods

We compare our LRF-Net with several existing LRF methods for a thorough evaluation.
Specifically, the compared methods are proposed by Mian et al. [9], Tombari et al. [3], Petrelli et al. [10],
Guo et al. [1] and Yang et al. [11], respectively. We dub them as Mian, Tombari, Petrelli, Guo, and Yang,
respectively. To compare fairly, we keep the support radius of all the LRFs as 15 mr. The properties of
these LRFs are shown in Table 2.
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To evaluate the local shape description performance of our method, we replace the LRF in
four LRF-based descriptors (i.e., snapshots [18], SHOT [3], RoPS [1] and TOLDI [11]) and assess the
performance variations. To measure the 6-DoF pose estimation performance of our method, we adapt
LRF-Net to the RANSAC pipeline and compare with the original RANSAC [19].

Table 2. Properties of six LRF methods. H and L, respectively, represent hand-crafted and learned
methods for point weight calculation; P and M, respectively, denote point cloud and mesh.

Method Mian Tombari Guo Petrelli Yang Ours

Category CA CA CA PSD PSD PSD

Date type P P M P P P

Weight − H H H H L

4.2. Performance Evaluation of LRF-Net

4.2.1. Repeatability Performance

We evaluate the repeatability of all LRFs via the popular MeanCos [3] metric, which measures
overall angular error between two LRFs. The MeanCos criterion is computed as:

MeanCos(Lm, L
′
s) =

Cos(X) + Cos(Z)
2

(16)

L
′
s = Ls ∗GT (17)

where Lm and Ls denote two corresponding LRFs between model and scene. L
′
s represents

the transformed Ls, gained via ground truth transformation GT. ∗ denotes matrix-product.
Cos(Z) represents the cosine of the angle between the z-axis of the Lm and the L

′
s, and Cos(X) coincides

with the x-axis angular error between Lm and the L
′
s. Due to the y-axis can always be calculated from the

other two axes via cross-product, it is not necessary to be included in MeanCos calculation [2]. In our
evaluation, we first randomly select 1000 points from each models and collect the corresponding points
in the scenes via ground truth transformation for each model-scene pair. Then, we calculate the LRF for
every local surface centered at the selected point in the model and scene. At last, the average MeanCos
of the MeanCos value of all the corresponding LRFs between each model-scene pair is calculated as
the final result for a dataset. Note that, the MeanCos of two perfectly corresponding LRFs equals to 1.
The repeatability results of evaluated LRFs are shown in Figures 6 and 7. Several observations can be
made from these figures.

First, as witnessed by Figure 6, our LRF together with Tombari, Petrelli, and Yang achieve decent
performance on the BR dataset. On the UWA3M and UWAOR datasets, our LRF-Net achieves the
best performance. Second, as shown in Figure 7a, LRF-Net and Tombari achieve a comparably stable
performance on the BR dataset with respect to different levels of Gaussian noise. Figure 7b,c indicate
that LRF-Net achieves the best performance under all levels of Gaussian noise on the UWA3M
and UWAOR datasets, surpassing the others by a very significant gap. Note that UWA3M and
UWAOR datasets also include nuisances such as clutter, self-occlusion, and occlusion. Third, results
in Figure 7d–f suggest that LRF-Net is the best competitor with 1

2 , 1
4 , and 1

8 mesh decimation on
all datasets.

These results clearly demonstrate the strong robustness of our LRF-Net with respect to Gaussian
noise, mesh decimation, clutter, and occlusion. The reasons are at least twofold. One is that all points
are leveraged to generate the critical x-axis, which guarantees the robustness to Gaussian noise and
low level mesh decimation. The other is that a LRF-Net can learn stable and informative weights for
neighboring points. It can improve the robustness of LRF-Net to common nuisances.
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Figure 6. Repeatability performance of six LRF methods on the Bologna retrieval (BR), UWA 3D
modeling (UWA3M), and UWA object recognition (UWAOR) datasets.

Figure 7. Robustness performance of six LRF methods on the BR, UWA3M, and UWAOR datasets with
Gaussian noise and mesh decimation.
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4.2.2. Local Shape Description Performance

We further evaluate our LRF-Net by replacing the LRFs in four LRF-based descriptors
(i.e., snapshots, SHOT, RoPS, and TOLDI) with our LRF-Net. Then we compare their descriptor
matching performance measured via recall vs. 1-precision curve (RPC) [3,20]. The calculation of recall
is defined as:

recall =
Ntrue

Ncorr
(18)

where Ntrue denotes the number of correct matches and Ncorr is the total number of
corresponding features. The calculation of 1-precision is defined as:

1− precision =
N f alse

Nmatch
(19)

where N f alse represents the number of false matches and Nmatch is the total number of matches.
Notably, the original LRF methods employed by snapshots, SHOT, RoPS, and TOLDI are Mian,

Tombari, Guo Yang, respectively. We conduct this experiment on the original BR, UWA3M, and UWAOR
datasets. Figure 8 reports the RPC results of the all tested descriptors.

Figure 8. Local shape description performance of LRF-based descriptors with LRF-Net and their
original LRFs on the BR, UWA3M, and UWAOR datasets.

As witnessed by Figure 8 and Table 3, most LRF-based descriptors equipped with our
LRF-Net outperform their original versions. Specifically, snapshots achieves a dramatic performance
improvement with our LRF-Net on the BR dataset; the performance of SHOT also climbs significantly
on the UWA3M and UWAOR datasets with the help of the proposed LRF-Net. Therefore, we can
draw a conclusion that LRF plays an important role in local shape description, where a repeatable LRF
can effectively improve the description performance of an LRF-based descriptor without changing its
feature representation. It also indicates that the proposed LRF-Net can bring positive impacts on a
number of existing local shape descriptors.

Table 3. Overall accuracy of eight LRF-based descriptors with LRF-Net (denoted by L) and their
original LRFs on the BR, UWA3M, and UWAOR datasets.

Snapshots Snapshots+L SHOT SHOT+L RoPS RoPS+L TOLDI TOLDI+L

BR 0.3733 0.9066 0.5489 0.5801 0.8827 0.9462 0.9084 0.9082
UWA3M 0.0016 0.0023 0.0209 0.0625 0.0661 0.0787 0.0417 0.0484
UWAOR 0.0048 0.0158 0.0672 0.0672 0.1623 0.1806 0.1558 0.1721

The bold means the better performance compared with other methods.
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4.2.3. 6-DoF Pose Estimation Performance

A general 6-DoF pose estimation process with local descriptors is achieved by correspondence
generation and pose estimation from correspondences with potential outliers [6]. RANSAC is arguablly
the de facto 6-DoF pose estimator in many applications. However, a key limitation of RANSAC is that
the computational complexity of RANSAC is O(n3) and estimating a reasonable pose requires a huge
number of iterations. With LRFs, a single correspondence is able to generate a 6-DoF pose (shown as
Figure 9), decreasing the computational complexity from O(n3) to O(n). Therefore, we apply LRF-Net
to 6-DoF pose estimation, following a RANSAC-fashion pipeline. The difference is that we sample one
correspondence per iteration. Two criteria, i.e., the rotation error errr between our predicted rotation R
and the ground-truth one RGT , and the translation error errt between the predicted translation vector
T and the ground truth one TGT [16], are employed for evaluating the performance of 6-DoF pose
estimation. errr and errt are defined as:

errr = arccos(
trace(R

′ − 1)
2

)
180
π

(20)

errt =
||TGT − T||

mr
(21)

where R
′
= RGT(R)−1 and mr denotes the mesh resolution.

Figure 9. Illustration of directly calculating an initial pose via a single correspondence. We generate
three corresponding point pairs via the centroids and LRFs of the corresponding local surface pair.
The final pose is computed via SVD, which is a inner function in PCL [21].

The initial feature correspondence set is generated by first matching TOLDI (equipped with our
LRF-Net) descriptors and keeping 100 correspondences with the highest similarity scores. 100 and
1000 iterations are assigned to our method and RANSAC. The average rotation errors and translation
errors of the two estimators on three experimental datasets are shown in Table 4.

Table 4. Six-degree-of-free (6-DoF) pose estimation performance on three experimental datasets.

BR UWA3M UWAOR

RANSAC
errt 0.000 7.929 9.513
errr 0.030 0.696 0.769

LRF-Net
errt 0.000 6.088 4.392
errr 0.024 0.608 0.405
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Two salient observations can be made from the table. First, both RANSAC and our method
manage to achieve accurate pose estimation results on the BR dataset that contains point cloud
pairs with large overlapping ratios. However, our method only needs 1

10 of the iterations required
for RANSAC. Second, on more challenging datasets, i.e., UWA3M and UWAOR, our method
significantly outperforms RANSAC. This demonstrates that LRF-Net can improve the accuracy and
efficiency of RANSAC for 6-DoF pose estimation simultaneously.

4.3. Analysis Experiments

4.3.1. Verifying the Rationality of LRF-Net

To verify the rationality of the main technique components of our LRF-Net, we conduct the
following experiments. As mentioned above, our LRF-Net contains two main parts: Estimating z-axis
and x-axis. First, in order to verify the choice of normal vector for z-axis calculation, we replace
the normal vector with the one regressing z-axis via a network shown in Figure 10 (dubbed ”DR”).
Second, to confirm the advantage of our x-axis technique, we perform analysis experiments from
three aspects. (1) To prove the advantage of invariant geometric attributes, we replace the invariant
geometric attributes with the combination of original points and z-axis (i.g., [qi, z(p)]). Then,
we calculate the x-axis in a weighted vector-sum manner. The former is dubbed ”Sum1” and the
latter is dubbed ”Sum2”. (2) In order to verify the choice of weighted vector-sum operation for
x-axis calculation, we test the approach using the vector with the maximum weight as the x-axis
(dubbed ”Max”). (3) To demonstrate that the axes of LRF is not suitable to be directly regressed,
we compare our method with the one regressing x-axis via a network (DR). There are totally eight
different combinations. All of them are tested on BR, UWA3M and UWAOR datasets. The results are
shown in Tables 5–7.

Figure 10. The architecture of DR.

Clearly, LRF-Net (Normal + Sum1) achieves the best performance among tested methods.
It verifies that learning weights via invariant geometric attributes rather than directly learning axes is
more reasonable. In addition, vector-sum is more appropriate for integrating projection vectors with
learned weights for LRF-Net.
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Table 5. MeanCos performance of eight different combinations on BR Dataset.

BR Dataset

z-Axis
x-Axis

Sum1 Sum2 DR Max

Normal 0.999 0.999 0.775 0.720

DR 0.737 0.778 0.582 0.471

The bold means the better performance compared with other methods.

Table 6. MeanCos performance of eight different combinations on UWA3M Dataset.

UWA3M Dataset

z-Axis
x-Axis

Sum1 Sum2 DR Max

Normal 0.690 0.429 0.574 0.412

DR 0.390 0.495 0.323 0.287

The bold means the better performance compared with other methods.

Table 7. MeanCos performance of eight different combinations on UWAOR Dataset.

UWAOR Dataset

z-Axis
x-Axis

Sum1 Sum2 DR Max

Normal 0.624 0.432 0.528 0.380

DR 0.408 0.490 0.467 0.366

The bold means the better performance compared with other methods.

4.3.2. Resistance to Rotation

To evaluate the robustness of LRF-Net to rotation, we manually rotate the tested data. Specifically,
we rotate the scene point clouds a certain degree among z-axis (i.g., 30, 60, 90, and 120 degrees). Then,
we measure their MeanCos performances. Figure 11 displays the results of eight different combinations.

Figure 11. Robustness performance of eight combination on three rotated datasets.

As shown in Figure 11, we can see that LRF-Net, Normal+Max, and Normal+Sum2 achieve very
stable performances. The other ones which include ”DR” part, show less robust performances.

This result has demonstrated two conclusions. One is that it is hard to achieve rotation-invariance
by only relying on original points. A guidance (e.g., normal vector) is very necessary. The other is that
the invariant attributes is not indispensable. Just a simple combination (e.g., combination of original
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points and normal vector) can also achieve rotation-invariance. However, the invariant attributes can
boost the performance of our network.

4.3.3. Performance under Varying Support Radius

Figure 12 shows MeanCos performances of six LRF methods under varying support radius on
three public datasets without noise. From the observation of Figure 12, we can see that our LRFNet
achieves a stable and outstanding performance on the BR dataset. On the UWA3M and UWAOR
datasets, our LRFNet outperforms other LRF methods when support radius is more than 7.5 mr.
Another observation is that the performance of our LRFNet is tending towards stability with the
increase of support radius, while some other LRF methods present a downward trend. It verifies that
our LRFNet is able to gain a stable LRF from a local surface which contains enough points to guarantee
its statistical significance and uniqueness.

Figure 12. MeanCos performance of six LRF methods under varying support radius on three
public dataset.

4.3.4. Visualization

Figure 13 visualizes the learned weights by our LRF-Net for several sample local surfaces, which
presents two interesting findings. First, closer points do not seem to have greater contributions.
It is a common assumption for many existing CA- and PSD-based LRF methods, including Tombari,
Guo, and Yang, that closer points should have greater weights. However, they are inferior to our
LRF-Net in terms of repeatability performance. Second, x-axis estimation is generally determined
by a particular area, rather than a single salient point as employed by many PSD-based methods,
e.g., Petrelli. These visualization results also demonstrate our opinion that each neighboring point in
the local surface gives a unique contribution to LRF construction.

Figure 13. The visualization of the weights for every point in a local surface.
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5. Conclusions

In this paper, we proposed LRF-Net, a learned LRF for 3D local surface that is repeatable and
robust to a number of nuisances. LRF-Net assumes that each neighboring point in the local surface
gives a unique contribution to LRF construction and measure such contributions via learned weights.
Experiments showed that our LRF-Net outperforms many state-of-the-art LRF methods on datasets
addressing different application scenarios. In addition, LRF-Net can significantly boost the local shape
description and 6-DoF pose estimation performance.

6. Future Work

In the future, we are going to do our research in two interesting directions. The first one is to
consider the texture of 3D objects. RGB information can provide a power guidance when the 3D
models lack sufficient geometric features but has photometric cues. The other is to take multi-scale
geometric information into consideration.
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