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Abstract: Affecting computing is an artificial intelligence area of study that recognizes, interprets,
processes, and simulates human affects. The user’s emotional states can be sensed through
electroencephalography (EEG)-based Brain Computer Interfaces (BCI) devices. Research in emotion
recognition using these tools is a rapidly growing field with multiple inter-disciplinary applications.
This article performs a survey of the pertinent scientific literature from 2015 to 2020. It presents trends
and a comparative analysis of algorithm applications in new implementations from a computer
science perspective. Our survey gives an overview of datasets, emotion elicitation methods, feature
extraction and selection, classification algorithms, and performance evaluation. Lastly, we provide
insights for future developments.

Keywords: emotion recognition; emotion elicitation; datasets; emotion representation; feature
selection; feature extraction; classification; computer science; artificial intelligence; affective computing

1. Introduction

Affective computing is a branch of artificial intelligence. It is computing that relates to, arises
from, or influences emotions [1]. Automatic emotion recognition is an area of study that forms part of
affective computing. Research in this area is rapidly evolving thanks to the availability of affordable
devices for capturing brain signals, which serve as inputs for systems that decode the relationship
between emotions and electroencephalographic (EEG) variations. These devices are called EEG-based
brain-computer interfaces (BCIs).

Affective states play an essential role in decision-making. Such states can facilitate or hinder
problem-solving. Emotion recognition takes advantage of positive affective states, enhances emotional
intelligence, and consequently improves professional and personal success [2]. Moreover, emotion
self-awareness can help people manage their mental health and optimize their work performance.
Automatic systems can increase our understanding of emotions, and therefore promote effective
communication among individuals and human-to-machine information exchanges. Automatic
EEG-based emotion recognition could also help enrich people’s relationships with their environment.
Besides, automatic emotion recognition will play an essential role in artificial intelligence entities
designed for human interaction [3].

According to Gartner’s 2019 Hype Cycle report on trending research topics, affective computing
is at the innovation trigger stage, which is evidenced by the field’s copious publications. However,
there are still no defined standards for the different components of the systems that recognize emotions
using EEG signals, and it is still challenging to detect and classify emotions reliably. Thus, a survey
that updates the information in the emotion recognition field, with a focus on new computational
developments, is worthwhile.

This work reviews emotion recognition advances using EEG signals and BCI to (1) identify trends
in algorithm usage and technology, (2) detect potential errors that must be overcome for better results,

Sensors 2020, 20, 5083; doi:10.3390/s20185083 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-4718-0400
https://orcid.org/0000-0003-1376-3843
http://dx.doi.org/10.3390/s20185083
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/18/5083?type=check_update&version=2


Sensors 2020, 20, 5083 2 of 36

and (3) identify possible knowledge gaps in the field. The aim is to distinguish what has already been
done in systems implementations and catch a glimpse of what could lie ahead. For context, our study
is a survey from 2015 to 2020.

The present article gives an overview of datasets, emotion elicitation methods, feature extraction
and selection, classification algorithms, and in general terms, computer intelligence techniques used in
this field. We present a brief review of the components of an EEG-based system to recognize emotions
and highlight trends showing statistics of their use in the literature. We deliver a compilation of papers
describing new implementations, analyzing their inputs, tools, and considered classes. This up-to-date
information could be used to discover and suggest new research paths.

The present survey followed the guidelines of [4]. We used Semanticscholar.org for searches of
sources because it links to the major databases that contain journals and conferences proceedings.
The search criteria were the keywords linked to our review’s objectives.

We extracted articles from journals and conferences that present new implementations of
computational intelligence techniques. Concretely, the analyzed papers’ primary objectives were
computational systems that applied algorithms for the detection and classification of emotions using
EEG-based BCI devices. Such studies also included performance measures that allowed a comparison
of results while taking into account the classified number of emotions.

As a result, we obtained 136 journal articles, 63 conference papers, and 15 reviews. Each whole
article was read to have complete information to guide the application of inclusion and exclusion filters.
The inclusion criteria were: (1) The articles were published in the considered period in peer-reviewed
journals and conferences, (2) they constitute emotion recognition systems that used EEG-based BCI
devices with a focus on computational intelligence applications, and (3) they include experimental
setups and performance evaluations. Lastly, we applied additional exclusion criteria and eliminated
review articles and other studies that have a different perspective as medical studies for diagnosis
or assessment.

With these considerations, we selected 36 journal studies and 24 conference papers. From this
group, we extracted statistical data about computational techniques to detect trends and perform
a comparative analysis. Finally, from these 60 papers, we chose a sample of 31 articles to show a
summary of technical details, components, and algorithms. It should be noted that according to
generally accepted practices, 31 observations are sufficient for statistically valid conclusions due to
the central limit theorem. Then, from this subsample of articles, we obtained some additional data
and tendencies.

This document is organized as follows: Section 1 presents an introduction of the topic, with an
overview of BCI devices, emotion representations, and correlations among brain locations, frequency
bands, and affective states. Section 2 shows the structure of EEG-based BCI systems for emotion
recognition. Their principal components are revised: (1) Signal acquisition, (2) preprocessing, (3) eature
extraction, (4) feature selection, (5) classification, and (6) performance evaluation. Section 3 analyzes
the components of our chosen research pieces and discusses trends and challenges. Section 4 presents
future work. Section 5 features the conclusions or this survey.

1.1. EEG-Based BCI in Emotion Recognition

Many studies suggest that emotional states are associated with electrical activity that is produced
in the central nervous system. Brain activity can be detected through its electrical signals by
sensing its variations, locations, and functional interactions [5] using EEG devices. EEG signals
have excellent temporal resolution and are a direct measurement of neuronal activity. These signals
cannot be manipulated or simulated to fake an emotional state, so they provide reliable information.
The challenge is to decode this information and map it to specific emotions.

One affordable and convenient way to detect EEG signals is through EEG-based BCI devices that
are non-invasive, low cost, and even wearable, such as helmets and headbands. The development of
these tools has facilitated the emergence of abundant research in the emotion recognition field.
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Some scientists predict that EEG-based BCI devices will soon improve their usability. Therefore,
shortly, they could be used on an everyday basis for emotion detection with several purposes, such as
emotion monitoring in health care facilities, gaming and entertainment, teaching-learning scenarios,
and for optimizing performance in the workplace [6], among other applications.

1.2. Emotion Representations

Emotions can be represented using different general models [7]. The most used are the discrete
model and the dimensional models. The discrete model identifies basic, innate, and universal emotions
from which all other emotions can be derived. Some authors state that these primary emotions are
happiness, sadness, anger, surprise, disgust, and fear [8]. Some researchers consider that this model
has limitations to represent specific emotions in a broader range of affective states.

Alternatively, dimensional models can express complex emotions in a two-dimensional continuous
space: Valence-arousal (VA), or in three dimensions: Valence, arousal, and dominance (VAD) [9].
The VA model has valence and arousal as axes. Valence is used to rate positive and negative emotions
and ranges from happy to unhappy (or sad). Arousal measures emotions from calm to stimulated
(or excited). Three-dimensional models add a dominance axis to evaluate from submissive (powerless)
to empowered emotions. This representation distinguishes emotions that are jointly represented in the
VA model. For instance, fear and anger have similar valence-arousal representations on the VA plane.
Thus, three-dimensional models improve “emotional resolution” through the dominance dimension.
In this example, fear is a submissive feeling, but anger requires power [10]. Hence, the dominance
dimension improves the differentiation between these two emotions.

Figure 1 shows a VA plane with the representation of basic emotions. The horizontal axis
corresponds to valence dimensions, from positive to negative emotions. Likewise, the vertical axis
corresponds to arousal. These two variables can be thought of as emotional state components [5].
Figure 2 presents the VAD space with a representation of the same basic emotions.
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Figure 2. Emotional states in the Valence-Arousal-Dominance space [12].

Table 1 shows that some researchers studying EEG-based functional connectivity in the brain
have reported a relationship between specific brain areas and emotional states. Studies that take
at-single-electrode-level analysis into account have shown that asymmetric activity at the frontal site
in the alpha band is associated with emotion. Ekman and Davidson found that enjoyment generated
an activation of the brain’s left frontal parts [13]. Another study found a left frontal activity reduction
when volunteers adopted fear expressions [14]. Increased power in theta bands at the frontal midline is
associated with pleasurable emotions, and the opposite has been observed with unpleasant feelings [15].

Table 1. Frequency bands associations [16,17].

Band State Association Potential Localization Stimuli

Gamma rhythm
(above 30 HZ)

Positive valence. These waves
are correlated with positive
spiritual feelings. Arousal
increases with high-intensity
visual stimuli.

Different sensory and
non-sensory cortical networks.

These waves appear stimulated by
the attention, multi-sensory
information, memory, and
consciousness.

Beta (13 to 30 Hz)

They are related to visual
self-induced positive and
negative emotions. These waves
are associated with alertness
and problem-solving.

Motor cortex.

They are stimulated by motor
activity, motor imagination, or
tactile stimulation. Beta power
increases during the tension of
scalp muscles, which are also
involved in frowning and smiling.

Alpha (8 to 13 Hz)

They are linked to relaxed and
wakeful states, feelings of
conscious awareness, and
learning.

Parietal and occipital regions.
Asymmetries reported:
rightward-lateralization of
frontal alpha power during
positive emotions, compared
to negative or
withdrawal-related emotions,
originates from
leftward-lateralization of
prefrontal structures.

These waves are believed to
appear during relaxation periods
with eyes shut while remaining
still awake. They represent the
visual cortex in a repose state.
These waves slow down when
falling asleep and accelerate when
opening the eyes, moving, or even
when thinking about the intention
to move.

Theta (4 to 7 Hz)

They appear in relaxation states,
and in those cases, they allow
better concentration. These
waves also correlate with
anxious feelings.

The front central head region
is associated with the
hippocampal theta waves.

Theta oscillations are involved in
memory encoding and retrieval.
Additionally, individuals that
experience higher emotional
arousal in a reward situation
reveal an increase of theta waves
in their EEG [17]. Theta coma
waves appear in patients with
brain damage.

Delta (0 to 4 Hz)

They are present in deep NREM
3 sleep stage.
Since adolescence, their
presence during sleep declines
with advancing age.

Frontal, temporal, and
occipital regions.

Deep sleep. These waves also
have been found in continuous
attention tasks [18].

Several studies confirm that frequency bands are related to affective responses. However, emotions
are complex processes. The authors in [15] assert that the recognition of different emotional states may
be more valid if EEG-based functional connectivity is examined, rather than a single analysis at the
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electrode level. Correlation, coherence, and phase synchronization indices between EEG electrode pairs
are used to estimate functional connectivity between different brain locations. Likewise, differential
entropy (DE), and its derivatives like differential asymmetry (DASM), rational asymmetry (RASM),
and differential caudality (DCAU) measure functional dissimilarities. Such features are calculated
through logarithmic power spectral density for a fixed-length EEG sequence, plus the differences and
ratios between DE features of hemispheric asymmetry electrodes [19].

The growing consensus seems to be that a simple mapping between emotions and specific brain
structures is inconsistent with observations of different emotions activating the same structure, or one
emotion activating several structures [20]. Additionally, functional connectivity between brain regions
or signal complexity measures may help to detect and describe emotional states [21].

2. EEG-Based BCI Systems for Emotion Recognition

Figure 3 presents the structure of an EEG-based BCI system for emotion recognition. The processes
of signal acquisition, preprocessing, feature extraction, feature selection, classification, and performance
evaluation can be distinguished and will be reviewed in the following subsections.
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2.1. Signal Acquisition

Inexpensive wearable EEG helmets and headsets that position noninvasive electrodes along
the scalp can efficiently acquire EEG signals. The clinical definition of EEG is an electrical signal
recording of brain activity over time. Thus, electrodes capture signals, amplify them, and send them
to a computer (or mobile device) for storage and processing. Currently, there are various low-cost
EEG-based BCI devices available on the market [22]. However, many current models of EEG-based BCI
become incommodious after continued use. Therefore, it is still necessary to improve their usability.

2.1.1. Public Databases

Alternatively, there are also public databases with EEG data for affective information. Table 2
presents a list of available datasets related to emotion recognition. Such datasets are convenient for
research, and several emotion recognition studies use them.
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Table 2. Publicly available datasets.

Source Dataset Number of
Channels Emotion Elicitation Number of

Participants Target Emotions

[19] DEAP 32 EEG
channels Music videos 32 Valence, arousal,

dominance, liking

[23] eNTERFACE’06 54 EEG
channels

Selected images from
IAPS. 5 Calm, positive, exciting,

negative exciting

[24] headIT - Recall past emotions 31
Positive valence (joy,

happiness) or of negative
valence (sadness, anger)

[25] SEED 62 channels Film clips 15 Positive, negative, neutral
[26] SEED-IV 62 channels 72 film clips 15 Happy, sad, neutral, fear

[27] Mahnob-HCI-
tagging 32 channels Fragments of movies

and pictures. 30
Valence and arousal rated

with the
self-assessment manikin

[28] EEG Alpha
Waves dataset 16 channels

Resting-state eyes
open/closed

experimental protocol
20 Relaxation

[29] DREAMER 14 channels Film clips 23 Rating 1 to 5 to valence,
arousal, and dominance

[30] RCLS 64 channels Native Chinese Affective
Video System 14 Happy, sad, and neutral

2.1.2. Emotion Elicitation

The International Affective Picture System (IAPS) [31] and the International Affective Digitized
Sound System (IADS) [32] are the most popular resources for emotion elicitation. These datasets
provide emotional stimuli in a standardized way. Hence, it is useful for experimental investigations.

IAPS consists of 1200 images divided into 20 sets of 60 photos. Valence and arousal values are
tagged for each photograph. IADS’ latest version provides 167 digitally recorded natural sounds
familiar in daily life, with sounds labeled for valence, arousal, and dominance. Participants labeled
the dataset using the Self-Assessment Manikin system [12]. IAPS and IADS stimuli are accessible
with labeled information, which is convenient for the construction of a ground-truth for emotion
assessment [33].

Other researchers used movie clips, which have also been shown capable of provoking emotions.
In [34], the authors state that emotions using visual or auditory stimuli are similar. However, results
obtained through affective labeling of multimedia may not be generalizable to more interactive
situations or everyday circumstances. Thus, new studies using interactive emotional stimuli to ensure
the generalizability of results for BCI would be welcomed.

Numerous experiments stimulated emotions in different settings, but they do not use EEG
devices. However, they collected other physiological indicators as heartrate, skin galvanic changes,
and respiration rate, among others. Conceptually, such paradigms could be useful if they are replicated
for EEG signal acquisition. Possible experiments include stress during interviews for the detection
of anger, anxiety, rejection, and depression. Exposure to odorants triggers emotions, such as anger,
disgust, fear, happiness, sadness, and surprise. Harassment provokes fear. A threat of short-circuit,
or a sudden backward-tilting chair elicits fear. A thread of shock provokes anxiety. Naturally, these
EEG-based BCIs experiments should take into account ethical considerations.

To our knowledge, only a few studies have used more interactive conditions where participants
played games or used flight simulators to induce emotions [35,36]. Alternatively, some authors have
successfully used auto-induced emotions through memory recall [37].

2.1.3. Normalization

EEG signals vary widely in amplitude depending on age, sex, and other factors like changes in
subjects’ alertness during the day. Hence, it is necessary to normalize measured values to deal with
this variability.
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There are three possible approaches to normalization. The first is to record reference conditions
without stimulus on the subject. The values obtained can be normalized by subtracting the reference
value, then dividing by the reference value (or subtracting the reference value), and then dividing by
that same value. The second approach also requires reference conditions. Those values are included
in the feature vector, which will have twice the characteristics that make up the “baseline matrix”.
The third approach normalizes the data separately by obtaining a specific range, for example, between
−1 and 1. This method applied to each feature independently ensures that all characteristics have the
same value ranges [38,39].

The effect of normalization and its influence on the entire process of emotion recognition is not yet
evident. However, some studies show that normalization allows the characteristics to be generalized
so that they can be used in cross-subject emotion recognition. Tangentially, data normalization helps
machine learning algorithms’ efficiency due to faster convergence.

2.2. Preprocessing

EEG signals’ preprocessing relates to signal cleaning and enhancement. EEG signals are weak and
easily contaminated with noise from internal and external sources. Thus, these processes are essential
to avoid noise contamination that could affect posterior classification. The body itself may produce
electrical impulses through blinking, eye or muscular movement, or even heartbeats that blend with
EEG signals. It should be carefully considered whether these artifacts should be removed because they
may have relevant emotional state information and could improve emotion recognition algorithms’
performance. If filters are used, it is necessary to use caution to apply them to avoid signal distortions.

The three commonly used filter types in EEG are (1) low-frequency filters, (2) high-frequency
filters (commonly known by electrical engineers as low-pass and high-pass filters), and (3) notch filters.
The first two filters are used to filter frequencies between 1 and 50–60 Hz.

For EEG signal processing, filters, such as Butterworth, Chebyshev, or inverse Chebyshev,
are preferred [39]. Each of them has specific features that need to be analyzed. A Butterworth filter has
a flat response in the passband and the stopband but also has a wide transition zone. The Chebyshev
filter has a ripple on the passband, and a steeper transition, so it is monotonic on the stopband.
The inverse Chevishev has a flat response in the passband, is narrow in the transition, and has a ripple
in the stopband. A Butterworth phase zero filter should be used to prevent a phase shift because this
filter goes forward and backward over the signal to avoid this problem.

Another preprocessing objective is to clean the noise that may correspond to low-frequency signals
generated by an external source, such as power line interference [40]. Notch filters are used to stop
the passage of a specific frequency rather than a frequency range. This filter is designed to eliminate
frequencies originated by electrical networks, and it typically ranges from 50 to 60 Hz depending on
the electrical signal’s frequency in the specific country.

All of these filters are appropriate for artifact elimination in EEG signals. However, as previously
noted, care must be taken when using filters. Generally, filters could distort the EEG signal’s waveform
and structure in the time domain. Hence, filtering should be kept to a minimum to avoid loss of EEG
signal information.

Nevertheless, preprocessing helps to separate different signals and sources. Table 3 shows
methods used for preprocessing EEG signals [41] and the percentage in which they are mentioned
in the literature as used from 2015 to 2020. Independent Component Analysis (ICA) and Principal
Component Analysis (PCA) are tools that apply blind source analysis to isolate the source signal
from noise when using multi-channel recordings so they can be used for artifact removal and noise
reduction. Common Average Reference (CAR) is right for noise reduction. SL is applied for spatial
filtering to improve the signal’s spatial resolution. The Common Spatial Patterns (CSP) algorithm finds
spatial filters that could serve to distinguish signals corresponding to muscular movements.
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Table 3. Frequently used pre-preprocessing methods of EEG signals.

Preprocessing Method Main Characteristics Advantages Limitations Literature’s Usage
Statistics % (2015–2020)

Independent component
analysis (ICA) [42]

ICA separates artifacts from EEG signals into
independent components based on the data’s
characteristics without relying on reference
channels. It decomposes the multi-channel
EEG data into temporal separate and
spatial-fixed components. It has been
applied for ocular artifact extraction.

ICA efficiently separates artifacts
from noise components.
ICA decomposes signals into
temporal independent and
spatially fixed components.

ICA is successful only under
specific conditions where one of
the signals is of greater
magnitude than the others.
The quality of the corrected
signals depends strongly on the
quality of the artifacts.

26.8

Common Average
Reference (CAR) [43,44]

CAR is used to generate a reference for each
channel. The algorithm obtains an average or
all the recordings on every electrode and
then uses it as a reference. The result is an
improvement in the quality of Signal to
Noise Ratio.

CAR outperforms standard types
of electrical referencing, reducing
noise by >30%.

The average calculation may
present problems for finite
sample density and incomplete
head coverage.

5.0

Surface Laplacian (SL)
[45–49]

SL is a way of viewing the EEG data with
high spatial resolution. It is an estimate of
current density entering or leaving the scalp
through the skull, considering the volume
conductor’s outer shape and does not require
details of volume conduction.

SL estimates are reference-free,
meaning that any EEG recording
reference scheme will render the
same SL estimates.
SL enhances the spatial resolution
of the EEG signal.
SL does not require any
additional assumptions about
functional neuroanatomy.

It is sensitive to artifacts and
spline patterns. 0.4

Principal Component
Analysis (PCA) [35,50–55]

PCA finds patterns in data. It can be pictured
as a rotation of the coordinate axes so that
they are not along with single time points.
Still, along with linear combinations of sets of
time points, collectively represents a pattern
within the signal. PCA rotates the axes to
maximize the variance within the data along
the first axis, maintaining their orthogonality.

PCA helps in the reduction of
feature dimensions.
The ranking will be done and
helps in the classification of data.

PCA does not eliminate noise,
but it can reduce it. PCA
compresses data compared to
ICA and allows for data
separation.

50.1

Common Spatial Patterns
(CSP) [55–57]

CSP applies spatial filters that are used to
discriminate different classes of EEG signals.
For instance, those corresponding to different
motor activity types. CSP also estimates
covariance matrices.

CSP does not require a priori
selection of sub-specific bands
and knowledge of these bands.

CSP requires many electrodes.
Changes in electrode location
may affect classification
accuracies.

17.7
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Therefore, each of the most widely used preprocessing algorithms has its benefits. In Table 3,
we can observe from the percentage of the usage column that the most utilized algorithms for
preprocessing are PCA (50.1%), ICA (26.8%), and CSP (17.7%).

2.3. Feature Extraction

Once signals are noise free, the BCI needs to extract essential features, which will be fed to the
classifier. Features can be computed in the domain of (1) time, (2) frequency, (3) time-frequency,
or (4) space, as shown in Table 4 [31,38,39]. This table presents the most popular techniques used for
feature extraction, their domain, advantages, and limitations.

Time-domain features include the event-related potential (ERP), Hjorth features, and higher-order
crossing (HOC) [58–60], independent component analysis (ICA), principal component analysis (PCA),
and Higuchi’s fractal dimensions (FD) as a measure of signal complexity and self-similarity in this
domain. There are also statistical measures, such as power, mean, standard deviation, variance,
skewness, kurtosis, relative band energy, and entropy. The latter evaluates signal randomness [61].

Among frequency-domain methods, the most popular is the fast Fourier transform (FFT).
Auto-regressive (AR) modeling is an alternative to Fourier-based methods for computing the frequency
spectrum of a signal [62,63].

The time-frequency domain exploits variations in time and frequency, which are very descriptive
of the neural activities. For this, wavelet transform (WT) and wavelet packet decomposition (WPD)
are used [62].

The spatial information provided in the description of EEG signals’ characteristics is also considered
in a broader approach. For this dimension, signals are referenced to digitally linked ears (DLE) values,
which are calculated in terms of the left and right earlobes as follows:

Ve
DLE = Ve −

1
2
(VA1 + VA2), (1)

where VA1 and VA2 are the reference voltages on the left and right earlobe. Thus, EEG data is broken
down, considering each electrode. Consequently, each channel contains spatial information of the
location pertinent to its source.

For spatial computation, the surface Laplacian (SL) algorithm reduces volume conduction effects
dramatically. SL also improves EEG spatial resolution by reducing the distortion produced by volume
conduction and reference electrodes [47].

Figure 4 shows EEG signals in the time domain, the frequency domain, and spatial information.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 44 

 

2.3. Feature Extraction 

Once signals are noise free, the BCI needs to extract essential features, which will be fed to the 
classifier. Features can be computed in the domain of (1) time, (2) frequency, (3) time-frequency, or 
(4) space, as shown in Table 4 [31,38,39]. This table presents the most popular techniques used for 
feature extraction, their domain, advantages, and limitations. 

Time-domain features include the event-related potential (ERP), Hjorth features, and higher-
order crossing (HOC) [58–60], independent component analysis (ICA), principal component analysis 
(PCA), and Higuchi’s fractal dimensions (FD) as a measure of signal complexity and self-similarity 
in this domain. There are also statistical measures, such as power, mean, standard deviation, variance, 
skewness, kurtosis, relative band energy, and entropy. The latter evaluates signal randomness [61]. 

Among frequency-domain methods, the most popular is the fast Fourier transform (FFT). Auto-
regressive (AR) modeling is an alternative to Fourier-based methods for computing the frequency 
spectrum of a signal [62,63]. 

The time-frequency domain exploits variations in time and frequency, which are very 
descriptive of the neural activities. For this, wavelet transform (WT) and wavelet packet 
decomposition (WPD) are used [62]. 

The spatial information provided in the description of EEG signals’ characteristics is also 
considered in a broader approach. For this dimension, signals are referenced to digitally linked ears 
(DLE) values, which are calculated in terms of the left and right earlobes as follows: 𝑉௘஽௅ா  =  𝑉௘ − ଵଶ (𝑉஺ଵ + 𝑉஺ଶ), (1) 

where VA1 and VA2 are the reference voltages on the left and right earlobe. Thus, EEG data is broken 
down, considering each electrode. Consequently, each channel contains spatial information of the 
location pertinent to its source. 

For spatial computation, the surface Laplacian (SL) algorithm reduces volume conduction effects 
dramatically. SL also improves EEG spatial resolution by reducing the distortion produced by 
volume conduction and reference electrodes [47]. 

Figure 4 shows EEG signals in the time domain, the frequency domain, and spatial information. 

 
Figure 4. Frequency domain, time domain, and spatial information [63]. Figure 4. Frequency domain, time domain, and spatial information [63].



Sensors 2020, 20, 5083 10 of 36

Table 4. Feature extraction algorithms.

Feature Extraction Method Main Characteristics Domain Advantages Limitations Literature’s usage statistics
% (2015–2020)

ERP [18,40,64–69]
It is the brain response to a sensory, cognitive, or
motor event. Two sub-classifications are (1)
evoked potentials and (2) induced potentials.

Time

It has an excellent temporal
resolution.
ERPs provide a measure of the
processing between a stimulus
and a response.

ERP has a poor spatial resolution,
so it is not useful for research
questions related to the activity
location.

2.9

Hjorth Features [52,59,60]

These are statistical indicators whose parameters
are normalized slope descriptors.
These indicators are activity (variance of a time
function), mobility (mean frequency of the
proportion of standard deviation of the power
spectrum), and complexity (change in frequency
compared to the signal’s similarity to a pure sine
wave).

Time Low computational cost
appropriate for real-time analysis.

Possible statistical bias in signal
parameter calculations 17.0

Statistical Measures
[39,40,42,52,61–70]

Signal statistics: power, mean, standard deviation,
variance, kurtosis, relative band energy. Time Low computational cost. - 8.6

DE [1,10,11,15,59,68,71–84] Entropy evidences scattering in data. Differential
Entropy can reflect spatial signal variations. Time–spatial

Entropy and derivate indexes
reflect the intra-cortical
information flow.

4.9

HOC [1,2,42,63,85–88]

Oscillation in times series can be represented by
counts of axis crossing and its differences. HOC
displays a monotone property whose rate of
increase discriminates between processes.

Time

HOC reveals the oscillatory
pattern of the EEG signal
providing a feature set that
conveys enough emotion
information to the classification
space.

The training process is
time-consuming due to the
dependence of the HOC order on
different channels and different
channel combinations [60].

2.0

ICA [20,37,53,69,89–91]

ICA is a signal enhancing method and a feature
extraction algorithm. ICA separates components
that are independent of each other based on the
statistical independence principle.

Time.
There is also a FastICA in

the frequency domain.

ICA efficiently separates artifacts
from noise components. ICA
decomposes signals into temporal
independent and spatially fixed
components.

ICA is only useful under specific
conditions (one of the signals is of
greater magnitude than the
others).
The quality of the corrected
signals depends strongly on the
quality of the isolated artifacts.

11.3

PCA [33,40,52,69,92–95]

The PCA algorithm is mostly used for feature
extraction but could also be used for feature
extraction. It reduces the dimensionality of the
signals creating new uncorrelated variables.

Time PCA reduces data dimensionality
without information loss.

PCA assumes that the data is
linear and continuous. 19.7

WT [48]

The WT method represents the original EEG
signal with secured and straightforward building
blocks known as wavelets, which can be discrete
or continuous.

Time-frequency

WT describes the features of the
signal within a specified
frequency domain and localized
time domain properties. It is used
to analyze irregular data patterns.
Uses variable windows, wide for
low frequencies, and narrow for
high frequencies.

High computational and memory
requirements. 26.0
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Table 4. Cont.

Feature Extraction Method Main Characteristics Domain Advantages Limitations Literature’s usage statistics
% (2015–2020)

AR [48]

AR is used for feature extraction in the frequency
domain. AR estimates the power spectrum
density (PSD) of the EEG using a parametric
approach. The estimation of PSD is achieved by
calculating the coefficients or parameters of the
linear system under consideration.

Frequency domain

AR is used for feature extraction
in the frequency domain.
AR limits the leakage problem in
the spectral domain and
improves frequency resolution.

The order of the model in the
spectral estimation is challenging
to select.
It is susceptible to biases and
variability.

1.6

WPD [95]

WPD generates a sub-band tree structuring since a
full binary tree can characterize the decomposition
process. WPD decomposes the original signals
orthogonally and independently from each other
and satisfies the law of conservation of energy.
The energy distribution is extracted as the feature.

Time-frequency WPD can analyze non-stationary
signals such as EEG.

WPD uses a high computational
time to analyze the signals. 1.6

FFT [48]

FFT is an analysis method in the frequency
domain. EEG signal characteristics are reviewed
and computed by power spectral density (PSD)
estimation to represent the EEG samples signal
selectively.

Frequency

FFT has a higher speed than all
the available methods so that it
can be used for real-time
applications.
It is a useful tool for stationary
signal processing.

FFT has low-frequency resolution
and high spectral loss of
information, which makes it hard
to find the actual frequency of the
signal.

2.2

Functional EEG connectivity
indices [15]

EEG-based functional connectivity is estimated in
the frequency bands for all pairs of electrodes
using correlation, coherence, and phase
synchronization index. Repeated measures of
variance for each frequency band were used to
determine different connectivity indices among all
pairs.

Frequency

Connectivity indices at each
frequency band can be used as
features to recognize emotional
states.

Difficult to generalize and
distinguish individual differences
in functional brain activity.

1.3

Rhythm [14,56] Detection of repeating patterns in the frequency
band or “rhythm”. Frequency Specific band rhythms contribute

to emotion recognition. - 0.1

Graph Regularized Sparse
Linear Regularized GRSLR [30]

This method applies a graph regularization and a
sparse regularization on the transform matrix of
linear regression

Frequency

It can simultaneously cope with
sparse transform matrix learning
while preserving the intrinsic
manifold of the data samples.

- 0.2

Granger causality [63,96] This feature is a statistical concept of causation
that is based on prediction. Frequency

The authors can analyze the
brain’s underlying structural
connectivity.

These features only give
information about the linear
characteristics of signals.

0.6
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According to [97], emotions emerge as the synchronization of various subsystems. Several authors
use synchronized activity indexes in different parts of the brain. The efficiency of these indexes has
been demonstrated in [98], calculating the correlation dimension of a group of EEG signals. In [98],
other methods were used to calculate the synchronization of different areas of the brain. Synchronized
indexes are a promising method for emotion recognition that deserves further research.

Table 4 shows the most commonly used algorithms and their respective mention percentages
in the literature: (1) WT (26%), (2) PCA (19.7%), (3) Hjorth (17%), (4) ICA (11.3%), and (5) statistical
measures (8.6%).

2.4. Feature Selection

The feature selection process is vital because it obtains the signal’s properties that best describe
the EEG characteristics to be classified. In BCI systems, the feature vector generally has high
dimensionality [99]. Feature selection reduces the number of input variables for the classifier (not to
be confused with dimensionality reduction). While both processes decrease the data’s attributes,
dimensionality reduction combines features to reduce their quantity.

A feature selection method does not change characteristics but excludes some according to specific
usefulness criteria. Feature selection methods aim to achieve the best results by processing the least
amount of data. It serves to remove attributes that do not contribute to the classification because
they are irrelevant (or redundant) for simpler classification models (which are faster and have better
performance). Additionally, feature selection methods reduce the overfitting likelihood in regular
datasets, flexible models, or when the dataset has too many features but not enough observations.

One classification of feature selection methods based on the number of variables divides them
into two classes: (1) Univariate and (2) multivariate. Univariate methods consider the input features
one by one. Multivariate methods consider whole groups of characteristics together.

Another classification distinguishes feature selection methods as filtering, wrapper, and
built-in algorithms.

• Filter methods evaluate features using the data’s intrinsic properties. Additionally, most of the
filtering methods are univariate, so each feature is self-evaluated. These methods are appropriate
for large data sets because they are less computationally expensive.

• Wrapping methods depend on classifier types when selecting new features based on their impact
on characteristics already chosen. Only features that increase accuracy are selected.

• Built-in methods run internally in the classifier algorithms, such as deep learning. This type of
process requires less computation than wrapper methods.

Examples of Feature Selection Algorithms

The following are some examples of algorithms for feature selection:

• Effect-size (ES)-based feature selection is a filter method. ES-based univariate: Cohen’s is an
appropriate effect size for comparisons between two means [100]. So, if two groups’ means do
not differ by 0.2 standard deviations or more, the difference is trivial, even if it is statistically
significant. The effect size is calculated by taking the difference between the two groups and
dividing it by the standard deviation of one of the groups. Univariate methods may discard
features that could have provided useful information. ES-based multivariate helps remove several
features with redundant information, therefore selecting fewer features, while retaining the most
information [58]. It considers all the dependencies between characteristics when evaluating them.
For example, calculating the Mahalanobis distance using the covariance structure of the noise.
Min-redundancy max-relevance (mRMR) is a wrapper method [101]. This algorithm compares
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the mutual information between each feature with each class at the output. Mutual information
between two random variables x and y is calculated as:

I(x; y) =
x

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (2)

where p (x) and p (y) are the marginal probability density functions of x and y, respectively,
and p (x, y) is their joint probability function. If I (x, y) equals zero, the two random variables x
and y are statistically independent [58]. mRMR maximizes I (xi, y) between each characteristic
xi and the target vector y; and minimizes the average mutual information I (xi, yi) between
two characteristics.

• Genetic algorithms allow the dimensionality of the feature vector to be reduced using evolutionary
methods, leaving only more informative feature [2,86,97].

• Stepwise discriminant analysis SDA [74]. SDA is the extension of the statistical tool for discriminant
analysis that includes the stepwise technique.

• Fisher score is a feature selection technique to calculate interrelation between output classes and
each feature using statistic measures [101].

Table 5 shows feature selection algorithms and their percentage of usage in the literature.
Genetic algorithms are frequently used (32.3%), followed by SDA (17.7%), wrapper methods (15.6%),
and mRMR (11.5%).

Table 5. Feature selection methods used in the literature (2015–2020) in percentages (%).

Feature Selection Method Literature’s Usage Statistics % (2015–2020)

min-Redundancy Max-Relevance mRMR 11.5%
Univariate 6.3%

Multivariate 6.3%
Genetic Algorithms 32.3%

Stepwise Discriminant Analysis SDA 17.7%
Fisher score 7.3%

Wrapper methods 15.6%
Built-in methods 3.1%

2.5. Classification Algorithms

Model frameworks can categorize classification algorithms [56,57]. The model’s categories may
be (1) generative-discriminative, (2) static-dynamic, (3) stable-unstable, and (4) regularized [102–104].

There are two different selection approaches for the classifier that works best under certain
conditions in emotion recognition [56]. The first identifies the best classifier for a given BCI device.
The second specifies the best classifier for a given set of features.

For synchronous BCIs, dynamic classifiers and ensemble combinations have shown better
performances than SVMs. For asynchronous BCIs, the authors in this field have not determined an
optimal classifier. However, it seems that dynamic classifiers perform better than static classifiers [56]
because they handle better the identification of the onset of mental processes.

From the second approach, discriminative classifiers have been found to perform better than
generative classifiers, principally in the presence of noise or outliers. Dynamic classifiers like SVM
generally handle high dimensionality in the features better. If there is a small training set, simple
techniques like LDA classifiers may yield satisfactory results [58].

2.5.1. Generative Discriminative

These classifier models generally have supervised learning problems that fit the data’s probability.
A generative model specifies the distribution of each class using the joint probability distribution
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p(x,y) and Bayes theorem. A discriminative model finds the decision boundary between the categories
using the conditional probability distribution p(y|x). Such a model includes the following classifiers:
Naïve Bayes, Bayesian networks, Markov random fields, and hidden Markov models (HMM).

2.5.2. Static-Dynamic Classification

Static-dynamic classification takes into account the training method’s time variations. A static
model trains the data once and then uses the trained model to classify a single feature vector. In a
dynamic model, the system is updated continually. Thus, dynamic models can obtain a sequence of
feature vectors and catch temporal dynamics.

Multilayer perceptron (MLP) can be considered a static classifier. Likewise, an example of
a dynamic classifier is hidden Markov methods (HMM) because it can classify a sequence of
feature vectors.

2.5.3. Stable Unstable

Stable classifiers usually have low complexity and do not affect their performance with small
variations of the training set. For example, k Nearest Neighbors (kNN) is a common stable classifier.
Unstable classifiers have high complexity and present considerable changes in performance with minor
variations of the training set. Examples of unstable classifiers are linear support vector machine (SVM),
multi-layer perceptron (MLP), and bilinear recurrent neural network (BLR-NN).

2.5.4. Regularized

Regularization consists of carefully controlling classifier complexity to prevent overtraining.
These classifiers have excellent generalization performance. Regularized’s Fisher LDA (RF-LDA),
linear SVM, and radial basis function kernel for support vector machine (RBF-SVM) are examples of
regularized classifiers.

2.5.5. General Taxonomy of Classification Algorithms

Another taxonomy divides classifiers using their properties to distinguish them into general
types of algorithms as linear, neural networks, nonlinear Bayesian, nearest neighbor classifiers,
and combinations of systems (ensemble). Most of the more specialized algorithms can be generated
from these general types. Table 6 shows this taxonomy criterion with five different categories of general
classifiers: (1) Linear, (2) neural networks, (3) nonlinear Bayesian, (4) nearest neighbor classifiers,
and (5) combinations of classifiers or ensemble [44,56,58].

All general classifiers have characteristics of each of the previously mentioned framework models.
For instance, SVM is discriminant, static, stable, and regularized; HMM is generative, dynamic,
unstable, and not regularized; and kNN is discriminant, static, stable, and not regularized.

Consequently, the suggested guidelines for classifier selection are also applicable in this
categorization. Table 6 presents the usage statistics of these classifiers in the 2015–2020 literature.
The following are the most noteworthy classifiers: Neural networks CNN (46.16%), Linear
classifiers SVM (30.3%), and LDA (5.5%), Nearest Neighbors kNN (4.5%), and Ensembled classifier
AdaBoost (3.9%).
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Table 6. Categories of general classifiers.

Category of Classifier Description Examples of Algorithms in the Category Advantages Limitations Literature’s Usage Statistics
% (2015–2020)

Linear

Discriminant algorithms that
use linear functions
(hyperplanes) to separate
classes.

Linear Discriminant Analysis LDA [65].
Bayesian Linear Discriminant Analysis.
Support Vector Machine SVM [105,106].
Graph Regularized Sparse Linear
Regularized GRSLR [30].

These algorithms have
reasonable classification
accuracy and generalization
properties.

Linear algorithms tend to
have poor outcomes in
processing complex nonlinear
EEG data.

5.50
1.40
30.30
0.02

Neural networks (NN)

NN are discriminant
algorithms that recognize
underlying relationships in a
set of data resembling the
human brain operation.

Multilayer Perceptron MLP [107].
Long Short-term Memory Recurrent
Neural Network LSTM-RNN [66–69].
Domain Adversarial Neural Network
DANN [108].
Convolutional Neural Network CNN
[68,70–73,109–111].
Complex-Valued Convolutional Neural
Network CVCNN [105].
Gated-Shape Convolutional Neural
Network GSCNN [105].
Global Space Local Time Filter
Convolutional Neural Network
GSLTFCNN [105].
CapsNet-NN
Genetic Extreme Learning Machine
GELM–NN [82].

NN generally yields good
classification accuracy

Sensitive to overfitting with
noisy and non-stationary
data as EEGs.

1.60
1.10
0.20

46.16
0.40
0.40
0.02
0.10
0.10

Nonlinear Bayesian classifier Generative classifiers produce
nonlinear decision boundaries.

Bayes quadratic [110].
Hidden Markov Model HMM [50,112].

Generative classifiers reject
uncertain samples efficiently.

For Bayes quadratic, the
covariance matrix cannot be
estimated accurately if the
dimensionality is vast, and
there are not enough training
sample patterns.

0.10
0.30

Nearest neighbor classifiers
Discriminative algorithms that
classify cases based on its
similarity to other samples

k-Nearest Neighbors kNN [113].
Mahalanobis Distance [114].

kNN has excellent
performance with
low-dimensional feature
vectors.
Mahalanobis Distance is a
simple but efficient classifier,
suitable even for
asynchronous BCI.

kNN has reduced
performance for classifying
high dimension feature
vectors or noise distorted
features.

4.5
0.1

Combination of classifiers
(ensemble-learning)

Combined classifiers using
boosting, voting, or stacking.
Boosting consists of several
cascading classifiers. In voting,
classifiers have scores, which
yield a combined score per
class, and a final class label.
Stacking uses classifiers as
meta-classifier inputs.

Ensemble-methods can combine almost
any type of classifier [115].
Random Forest [10,116].
Bagging Tree [111,115].
XGBoost [117]
AdaBoost [118]

Variance reduction that leads
to increase of classification
accuracy.

Quality measures are
application dependent.

2.1
1.1
0.2
0.4
3.9
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2.6. Performance Evaluation

Results must be reported consistently so that different research groups can understand and compare
them. Hence, evaluation procedures need to be chosen and described accurately [119]. The evaluation
of the classifier’s execution involves addressing performance measures, error estimation, and statistical
significance testing [120]. Performance measures and error estimation configure the fulfillment rate
of the classifier’s function. The most recommended performance evaluation measures are shown
in Table 7. They are confusion matrix, accuracy, error rating, and other measures obtained from
the confusion matrix, such as the recall, specificity, precision, Area Under the Curve (AUC), and
F-measure. Other performance evaluation coefficients are Cohen’s kappa (k) [121], information transfer
rate (ITR) [65], and written symbol rate (WSR) [121].

Performance evaluation and error estimation may need to be complemented with a significance
evaluation. This is because high accuracies can be of little impact if the sample size is too small,
or classes are imbalanced (labeled EEG signals typically are). Therefore, significance classification is
essential. There are general approaches that can handle arbitrary class distributions to verify accuracy
values that lie significantly above certain levels. Used methods are the theoretical level of random
classification and adjusted Wald confidence interval for classification accuracy.

The theoretical level of random classification test classification results for randomness is the
sum of the products between the experimental results’ classification probability and the probability
calculated if all the categorization randomly occurs (p0 = classification accuracy of a random classifier).
This approach can only be used after the classification has been performed [122].

Adjusted Wald confidence interval gives the lower and upper confidence limits for the probability
of the correct classification, which specifies the intervals for the classifier performance evaluation
index [123].
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Table 7. Conventional performance evaluation methods for BCI.

Performance Evaluation Main characteristics Advantages Limitations

Confusion matrix
The confusion matrix presents the number of correct
and erroneous classifications specifying the
erroneously categorized class.

The confusion matrix gives insights into the
classifier’s error types (correct and incorrect
predictions for each class).
It is a good option for reporting results in M-class
classification.

Results are difficult to compare and discuss. Instead,
some authors use some parameters extracted from
the confusion matrix.

Accuracy and error rate

The accuracy p is the probability of correct
classification in a certain number of repeated measures.
The error rate is e = 1 − p and corresponds to the
probability that an incorrect classification has been
made.

It works well if the classes are balanced, i.e., there are
an equal number of samples belonging to each class.

Accuracy and error rate do not take into account
whether the dataset is balanced or not. If one class
occurs more than another, the evaluation may
appear with a high value for accuracy even though
the classification is not performing well.
These parameters depend on the number of classes
and the number of cases. In a 2-class problem the
chance level is 50%, but with a confidence level
depending on the number of cases.

Cohen’s kappa (k)

k is agreement evaluation between nominal scales.
This index measures the agreement between a true
class compared to a classifier output. 1 is a perfect
agreement, and 0 is pure chance agreement.

Cohen’s kappa returns the theoretical chance level of
a classifier.
This index evaluates the classifier realistically. If k
has a low value, the confusion matrix would not
have a meaningful classification even with high
accuracy values.
This coefficient presents more information than
simple percentages because it uses the entire
confusion matrix.

This coefficient has to be interpreted appropriately.
It is necessary to report the bias and prevalence of
the k value and test the significance for a minimum
acceptable level of agreement.

Sensitivity or Recall

Sensitivity, also called Recall, identifies the true
positive rate for describing the accuracy of
classification results. It evaluates the proportion of
correctly identified true positives related to the sum of
true positives plus false negatives.

Sensitivity measures how often a classifier correctly
categorizes a positive result.

The Recall should not be used when the positive
class is larger (imbalanced dataset), and correct
detection of positives samples is less critical to
the problem.

Specificity

Specificity is the ability to identify a true negative rate.
It measures the proportion of correctly identified true
negatives over the sum of the true negatives plus
false positives.
The False Positive Rate (FPR) is then equal to 1 –
Specificity.

Specificity measures how often a classifier correctly
categorizes a negative result.

Specificity focuses on one class only, and the
majority class biases it.

Precision

Precision also referred to as Positive Predicted Value,
is calculated as 1 – False Detection Rate (F).
False detection rate is the ratio between false positives
over the sum of true positives plus false positives.

Precision measures the fraction of
correct classifications.

Precision should not be used when the positive class
is larger (imbalanced dataset), and correct detection
of positives samples is less critical to the problem.
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Table 7. Cont.

Performance Evaluation Main characteristics Advantages Limitations

ROC

The ROC curve is a Sensitivity plot as a function of the
False Positive Rate. The area under the ROC curve is a
measure of how well a parameter can distinguish
between a true positive and a true negative.

ROC curve provides a measure of the classifier
performance across different significance levels.

ROC is not recommended when the negative class is
smaller but more important. The Precision and
Recall will mostly reflect the ability to predict the
positive class if it is larger in an imbalanced dataset.

F-Measure
F-Measure is the harmonic mean of Precision and
Recall. It is useful because as the Precision increases,
Recall decreases, and vice versa.

F-measure can handle imbalanced data. F-measure
(like ROC and kappa) provides a measure of the
classifier performance across different significance
levels.

F-measure does not generally take into account
true negatives.
True negatives can change without affecting
the F-measure.

Pearson correlation
coefficient

Pearson’s correlation coefficient (r), quantifies the
degree of a ratio between the true and predicted
values by a value ranking from −1 to +1.

Pearson’s correlation is a valid way to measure the
performance of a regression algorithm.

Pearson’s correlation ignores any bias which might
exist between the true and the predicted values.

Information transfer rate
(ITR)

As BCI is a channel from the brain to a device, it is
possible to estimate the bits transmitted from the brain.
ITR is a standard metric for measuring the information
sent within a given time in bits per second.

ITR is a metric that contributes to criteria to evaluate
a BCI System.

ITR is often misreported due to inadequate
understanding of many considerations as delays are
necessary to process data, to present feedback, and
clear the screen.
TR is best suited for synchronous BCIs over
user-paced BCI.
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3. Literature Review of BCI Systems that Estimate Emotional States

In recent years, several research papers have been published in emotion recognition using BCI
devices for data capture. Such publications use different models and strategies that produce a wide
range of frameworks. Table 8 offers a summary of the research in this field from 2015 to 2020.

The following components characterize the systems presented in Table 8: (1) Stimulus type;
(2) databases, generated by the paper’s authors or publicly available; (3) the number of participants;
(4) extraction and selection of characteristics; (5) features; (6) classification algorithms; (7) number and
types of classes; and (8) performance evaluation.

The applied preprocessing methods are mostly similar in the reviewed studies. Their primary
preprocessing methods are standard, so this information was omitted in Table 8.

3.1. Emotion Elicitation Methods

This article analyzes research papers that used different resources to provoke emotions in their
subjects. These stimuli are music videos, film clips, music tracks, self-induced disgust (produced by
remembering an unpleasant odor), and risky situations in a flight simulator as an example of active
elicitation of emotions. EEG-based BCI systems frequently use the public DEAP and SEED databases
that apply music videos and film clips as stimuli, respectively. Different stimuli provoke emotions that
affect different areas of the brain and produce EEG signals that can be recognized concerning specific
emotions. Figure 5 shows the frequency in which different emotion elicitation methods are applied to
generate datasets used in the reviewed systems.
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Few research papers resort to more elaborate platforms to provoke “real life” emotions. However,
such methods have been applied to other physiological responses (other than EEG like skin conductance,
respiration, electrocardiogram (ECG), facial expressions, among others) [124]. Some authors state
that stimuli that provoke wide-ranging emotions could make it challenging to explore the brain’s
mechanisms activated for specific emotion generation. In this sense, focusing on a particular emotion
could improve our understanding of such mechanisms. For our research sample, we highlighted
research pieces that study emotions, such as dislike, and disgust separately [37,125].
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Table 8. Summary of emotion recognition systems using BCI 1.

Reference/Year Stimuli EEG Data Feature Extraction Feature Selection Features Classification Emotions Accuracy

[126]/2016 - DEAP

Computation in the
time domain, Hjorth,

Higuchi,
FFT

mRMR Statistical features, BP,
Hjorth, FD

RBF NN
SVM

3 class/Arousal
3 class/Valence

Arousal/60.7%
Valence/62.33%

[85]/2015 15 movie clips Own dataset/15
participants DBN -

DE, DASM, RASM,
DCAU, from

Delta, Theta, Alpha,
Beta, and Gamma.

kNN
LR

SVM
DBNs

Positive Neutral
Negative.

SVM/83.99%
DBN/86.08%

[37]/2015 Self-induced
emotions

Own dataset/10
participants WT PCA Eigenvalues vector SVM Disgust Avg. 90.2%

[127]/2018 Video clips Own dataset/10
participants Higuchi - FD RBF

SVM

Happy
Calm

Angry
Avg. 60%

[128]/2017 Video clips Own dataset/30
participants SFTT, ERD, ERS LDA PSD LIBSVM

Joy Amusement
Tenderness Anger

Disgust
Fear

Sadness Neutrality

Neutrality 81.26%
3 Positive emotions

86.43%
4 Negative emotions

65.09%

[125]/2020 - DEAP DFT, DWT -

PSD, Logarithmic
compression of Power

Bands, LFCC, PSD,
DW

NB
CART
kNN

RBF SVM SMO

Dislike

Avg.
SMO/81.1%
NB/63.55%

kNN/86.73%
CAR/74.08%

[86]/2019 - DEAP and
SEED-IV

Computations in time
domain, FFT, DWT - PSD, Energy,

DE, Statistical features SVM

HAHV
HALV
LALV
LAHV

Avg DEAP/79%
Avg.SEED/76.5%

[14]/2016 Music tracks Own dataset/30
participants SFTT, WT -

PSD, BP
Entropy, Energy,

Statistical features,
Wavelets

SVM
MLP
kNN

Happy
Sad

Love
Anger

Avg.
SVM/75.62%
MLP/78.11%
kNN/72.81%

[79]/2017 - SEED FFT, and electrode
location Max Pooling DE, DASM, RASM,

DCAU

SVM
ELM

Own NN method

Positive
Negative
Neutral

Avg.
SVM/74.59%
ELM/74.37%

Own NN/86.71%

[48]/2019 Video clips Own dataset/16
participants SFTT, WT, Hjorth, AR -

PSD, BP, Quadratic
mean, AR Parameters,

Hjorth
SVM

Happy
Sad
Fear

Relaxed

Avg. 90.41%

[129]/2019 - DEAP WT - Wavelets LSTM RNN Valence
Arousal Avg. 59.03%

[130]/2018 - SEED
LSTM to learn context
information for each

hemispheric data
- DE BiDANN

Positive
Negative
Neutral

Avg. 92.38%
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Table 8. Cont.

Reference/Year Stimuli EEG Data Feature Extraction Feature Selection Features Classification Emotions Accuracy

[111]/2019 - DEAP
Signal computation in
the time domain, and

FFT

Statistical
characteristics. PSD

BT
SVM
LDA

BLDA
CNN

Valence
Arousal

Avg. for combination
features AUC BT/0.9254

BLDA/0.8093
SVM/0.7460
LDA/0.5147

CVCNN/0.9997
GSCNN/1
GSCNN/1

[118]/2017 - DEAP Computation in the
time domain, and FFT GA

Statistical
characteristics, PSD,

and nonlinear
dynamic

characteristics

AdaBoost Joy
Sadness 95.84%

[131]/2019 - DEAP SFTT, NMI -
Inter-channel

connection matrix
based on NMI

SVM

HAHV
HALV
LALV
LAHV

Arousal/73.64%
Valence/74.41%

[74]/2018 - SEED FFT SDA Delta, Theta, Alpha,
Beta, and, Gamma LDA

Positive
Negative
Neutral

Avg. 93.21%

[112]/2019 - SEED FFT -
Electrodes-frequency

Distribution Maps
(EFDMs)

CNN
Positive

Negative
Neutral

Avg. 82.16%

[80]/2019 -
SEED/
DEAP/

MAHNOB-HCI

Computation in the
time domain, and FFT

Fisher-score,
classifier-dependent

structure
(wrapper),

mRMR,
SFEW

EEG based network
patterns (ENP)

PSD, DE, ASM, DASM,
RASM, DACU, ENP,

PSD + ENP, DE + ENP

SVM
GELM

Positive
Negative
Neutral

Best feature F1
SEED/DE+ENP

gamma 0.88
DEAP/PSD+ENP

gamma 0.62
MAHNOB/PSD+ENP

Gamma 0.68

[96]/2019 - DEAP Tensorflow framework Sparse group lasso Granger causality
feature

CapsNet Neural
Network Valence-arousal Arousal/87.37%

Valence/88.09%

[30]/2019 Video clips

Own dataset
RCLS/14

participants.
SEED

Computation in the
time domain, WT - HOC, FD, Statistics,

Hjorth, Wavelets GRSLR
Happy

Sad
Neutral

81.13%

[132]/2019 - DEAP Computation in the
time domain, FFT, WT

Correlation
matrix,

information gain,
and sequential

feature
elimination

Statistical measures,
Hjorth, Autoregressive
parameters, frequency

bands, the ratio
between frequency

bands, wavelet
domain features

XGBoost
Valence, arousal,
dominance, and

liking

Valence/75.97%
Arousal/74.20%

Dominance/75.23%
Liking 76.42%
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Table 8. Cont.

Reference/Year Stimuli EEG Data Feature Extraction Feature Selection Features Classification Emotions Accuracy

[133]/2015 - DEAP Frequency phase
information

Sequential feature
elimination

Derived features of
bispectrum SVM Low/high valence,

low/high arousal

Low-high
arousal/64.84%

Low-high
valence/61.17%

[134]/2016 - DEAP Higuchi, FFT - FD, PSD SVM Valence, arousal Valence/86.91%
Arousal/87.70%

[135]/2017 - DEAP DWT - Discrete wavelets kNN Valence, arousal Valence/84.05%
Arousal/86.75%

[136]/2015 - DEAP RBM - Raw signal-6 channels Deep-Learning Happy, calm, sad,
scared Avg. 75%

[137]/2017 - DEAP DWT
Best classification
performance for
channel selection

Discrete wavelets MLP
kNN Positive, negative MLP/77.14%

kNN/72.92%

[138]/2017 - DEAP - - - LSTM NN
Low/high valence,
Low/high arousal,
Low/high liking

Low-high
valence/85.45%

Low-high
arousal/85.65%

Low-high liking/87.99%

[139]/2018 - DEAP - - - 3D-CNN Valence, arousal Valence/87.44%
Arousal/88.49%

[140]/2018 - DEAP
FFT, phase

computations, Pearson
correlation

-
PSD, phase, phase
synchronization,

Pearson correlation
CNN Valence Valence/96.41%

[36]/2019 Flight simulator Own dataset/8
participants

Computation in time
domain, and WT - Statistical measures,

DE, Wavelets ANN
Happy, Sad,

Angry,
Surprise, Scared

Avg. 53.18%

1 Autoregressive Parameter (AR). Bagging Tree (BT). Band Power (BP). Bayesian linear discriminant analysis (BLDA). Bi-hemispheres Domain Adversarial Neural Network (BiDANN).
Convolutional Neural Network (CNN). Complex-Valued Convolutional Neural Network (CVCNN). Gated-Shape Convolutional Neural Network (GSCNN). Global Space Local Time
Filter Convolutional Neural Network (GSLTFCNN). Deep Belief Networks (DBNs). Differential entropy (DE). DE feature Differential Asymmetry (DASM). DE feature Rational Assimetry
(RASM). DE feature Differential Caudality (DCAU). Electrooculography (EOG). Electromyogram (EMG). Event-Related Desynchronization (ERD) and Synchronization (ERS). Feature
selection and weighting method (SFEW). Fractal dimensions (FD). Genetic Algorithm (GA). Graph regularized Extreme Learning Machine (GELM) NN. Graph Regularized Sparse Linear
Regularized (GRSLR). High Order Crossing (HOC). Linear Discriminant Analysis (LDA). Logistic Regression (LR). Long short-term memory Recurrent Neural Network (LSTM RNN).
Minimum-Redundancy-Maximum-Relevance (mRMR). Normalized Mutual Information (NMI). Principal Component Analysis (PCA). Radial Basis Function (RBF). Short-Time Fourier
Transform (STFT). Stepwise Discriminant Analysis (SDA). Support Vector Machine (SVM). Wavelet Transform (WT).
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3.2. Number of Participants to Generate the System Dataset

Figure 6 presents the number of participants in the experiments to obtain EEG datasets to train
and test the emotion recognition systems. Most of the systems used a number of subjects in a range
from 31–40 (53%), and 11–20 (31%). The targeted studies used EEG data from healthy individuals.
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3.3. Datasets

Figure 7 presents the usage percentage of datasets used in emotion recognition. DEEP and SEED
are publicly available databases, and are the most frequently used (49% and 23% of applications,
respectively). Sometimes, other studies used self-generated datasets (23%), which are typically not
freely accessible. The MAHNOB-HCI and RCLS public datasets appeared in our research sample,
with a participation of 3% each.
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Systems that use public databases offer some comparability, but contrast is limited even if the
same characteristics are handled. Still, such public databases could eventually lead to findings if
objective comparisons are performed.

3.4. Feature Extraction

Most systems use feature extraction methods in the time, frequency, time-frequency, or space
domains. A small percentage of works evaluate the functional connectivity (or differences) in the
observed activity between brain regions when emotions are provoked. Features with non-redundant
information combined from different domains yield better classification results. However, it is still
unclear if features work better alone or in combination with each other, or which type of features are
more relevant for emotion recognition.

In our review, we found that researchers addressed these issues through the development of feature
extraction algorithms that outperform the classic frequency bands and extract as much information
as possible from brain signals. We believe that further developments should be connected to a
comprehensive understanding of the brain’s neurophysiology.

Figure 8 presents the domains of the used features. Frequency domain features are the most
frequently used, and appear nearly twice as often as time domain or time-frequency domain
features. Asymmetry characteristics between electrode pairs (by each hemisphere) are increasingly
being used—likewise, electrodes’ location data in different brain sections. Additionally, raw data
(without features) is used as inputs for deep learning classifiers.
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Figure 8. Domain of used features.

Figure 9 shows the usage percentage of various algorithms for feature extraction computed in the
31 papers shown in Table 8. We found that FFT, SFFT, and DFT are the most commonly used tools for
characteristic extraction in the frequency domain (27.9%). AR is used less frequently to estimate the
spectrum (4.7%). WT and DWT appear in 23.3% of the systems in our sample. These algorithms are
applied to obtain features in the time-frequency domain. Likewise, data from channel or electrode
specific locations are less frequent (4.7%). Researchers also use statistics and computed parameters in
the time domain (9.3%), normalized mutual information NMI (2.3%), ERS (2.3%), and ERD (2.3%).
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We observed an increasing presence of algorithms embedded in neural networks like RBN, DBN,
TensorFlow functions, and LSTM (4.7%) that are used to extract signal features automatically from
raw data. This approach yields a good enough classifier performance, probably because it preserves
information and avoids the risk of removing essential emotion-related signal features.

3.5. Feature Selection

It is worth noting that 61.3% of the systems presented in Table 8 do not use a feature selection
method. Table 9 lists the systems that utilized feature selection algorithms. Interestingly, virtually
every system uses a different algorithm except for the methods minimum redundancy maximum
relevance (mRMR) and recursive feature elimination, which are utilized for two different schemes.

Table 9. Systems in Table 8 using feature selection algorithms.

Feature Selection Algorithm Reference

mRMR [80,126]
PCA [38]
LDA [128]

Max Pooling [79]
Genetic Algorithm [118]

SDA [75]
Fisher-score [80]

SFEW [80]
Sparse group lasso [96]
Correlation matrix [132]
Information gain [132]

Recursive feature elimination [132,133]
Best classification performance for channel selection [137]

3.6. Classifiers

Figure 10 shows that most classifiers were linear (48%) and neural networks (41%); a few papers
used nearest neighbors (7%) and ensemble methods (5%). Consequently, it is worth mentioning
that the following algorithms have become increasingly popular for EEG-based emotion recognition
applications:
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• Linear classifiers, such as naïve Bayes (NB), logistic regression (LR), support vector machine
(SVM), linear discriminant analysis (LDA) (48% of use); and

• Neural networks like multi-layer perceptron (MLP), radial basis function RBF, convolutional neural
network (CNN), deep belief networks (DBN), extreme learning method (ELM), graph regularized
extreme learning machine (GELM), long short term memory (LSTM), domain adversarial neural
network (DANN), Caps Net, and graph regularized sparse linear regularized (GRSLR) (41% of
use).

• Ensemble classifiers like random forest, CART, bagging tree, Adaboost, and XGBoost are less
used (5%). The same situation occurs with the kNN algorithm despite their consistently good
performance results, probably because it works better with a simpler feature vector (7%).Sensors 2020, 20, x FOR PEER REVIEW 34 of 44 
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Figure 10. Classifiers’ usage.

During our considered period, this review did not find studies that applied non-linear Bayesian
classifiers as hidden Markov models (HMM).

3.7. Performance vs. the Number of Classes-Emotions

The performance of almost all systems was evaluated using accuracy, except for two systems in
which one used area under the curve (AUC), and the other one presented an F1 measure. Unfortunately,
EEG datasets are usually unbalanced, with one or two labeled emotions more numerous than the
others, which is somewhat problematic for this approach. Thus, this situation could lead to biased
classifications. Moreover, EEG datasets are typically unbalanced, and performance measures should
be calculated to contextualize their outcomes. In our view, this is why such results are not entirely
comparable among different studies.

In Figure 11, we present the relationship between systems and the number of classified emotions.
Most systems use the VA or VAD spaces and classify each dimension as a bi-class (for instance, valence
positive and negative; arousal high-value and low value) or tri-class problem (for example, valence
positive, neutral, and negative; arousal and dominance high-value and low-value).
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Arousal and valence have the highest usage percentages (25.8%). On the other hand, 16.1%
categorized valence with three classes: Positive, neutral, and negative. Then, 9.7% classified three
discrete emotions like sadness, love, and anger. Moreover, lastly, 6.5% ranked valence as two classes
(positive and negative), four discrete emotions (happy, sad, fear, and relaxed), one discrete emotion
(disgust), or emotions located in one of four quadrants of the VA space (high valence-high arousal,
high valence–low arousal, low valence–high arousal, and low valence–low arousal).

Classifier performance should be evaluated, taking into account that accuracy would be inversely
proportional to the number of detected emotions. In other words, classification accuracy should be
higher than a random classification process (equal chance for each class). Thus, as classification classes
increase, a random classification process would yield a lower accuracy. For instance, a two-class
random classification process would be 50% accurate. Likewise, three classes would imply a 33%
classification accuracy for a random classification process, and so on. Therefore, such accuracy metrics
should provide the classification performance benchmark for our evaluations.

Although the results of the performance of the systems depend on many factors, it is possible to
find some relationship between the number of classes, the type of emotions classified, and the accuracy
obtained (Figure 12). The best results are obtained with two classes, either as discrete emotions
or as positive or negative values in a dimensional space. The second-best value is found for the
recognition of one negative discrete emotion like dislike or disgust. The result that the classification of
one emotion does not obtain the best performance value could be explained by the fact that in our
review, we observed that negative emotions are more challenging to classify and tend to yield smaller
performance values.

Comparing approaches and results obtained through different BCI-based systems is complex.
This is because each system uses diverse experimental methods for emotion elicitation, protocols
to detect EEG signals, datasets, extraction and selection of features, classification algorithms, and
generally speaking, each implementation has different settings. Ideally, systems should be tested under
similar conditions, but that scenario is not yet available. However, we can perform a comparative
analysis to extract trends, bearing in mind such limitations.
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4. Future Work

Datasets developed for specific applications use passive methods to provoke emotions, such as
IAPS, IADS, music videos, and film clips. Public databases, such as DEAP and SEED, use emotion
elicitation through music videos and film clips, respectively. Few studies implement active emotion
methods for provoking emotions, such as video games and flight simulators.

Going forward, we expect the generation of datasets that use active elicitation methods because
these techniques simulate “real life” events better, and are more efficient at emotion induction. However,
the implementation of such types of studies requires a significantly more complex experimental setup.

Furthermore, the study of individual emotions has been recently trending. Some works include
fear detection, an analysis that has applications in phobia investigation, and other psychiatric disorders.
It is worth mentioning that our survey found that negative emotions are more challenging to detect
than positive ones.

We did not find in the literature the EEG-based emotion recognition of mixed feelings that combine
positive and negative affects sensed at the same moment, for instance, bittersweet feelings. These mixed
emotions are interesting because they are related to the study of higher creative performance [141].

Feature extraction and selection are EEG-based BCI system components, which are continuously
evolving. They should be designed based on a profound understanding of the brain’s biology and
physiology. The development of novel features is a topic that can contribute significantly to the
improvement of results for emotion recognition systems. For instance, time-domain features are
combined with frequency, time-frequency characteristics, channel location, and connectivity criteria.
The development of novel feature extraction methods includes asymmetry discoveries in different
functioning brain segments, new electrode locations that provide more information, connectivity
models (between channels), and correlations needed for understanding functionality.

These evolving features contend that EEG signals and their frequency bands are related to multiple
functional and connectivity considerations. The study of the relationship between EEG and biological
or psycho-emotional elements should improve going forward. Improved features could better capture
individual emotion dynamics and also correlate characteristics across individuals and sessions.

A particularly interesting trend in feature extraction is to use deep neural networks. These systems
receive raw data to avoid loss of information and take advantage of the neural networks functioning to
obtain relevant features automatically.
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The overall reported system accuracy results range from 53% to 90% for the classification of
one or more emotions. However, there likely is a gap between real-world applications performed in
real time, which presents enormous challenges compared to experiments conducted in a laboratory.
Some authors suggest that training datasets should be generated on a larger scale to overcome those
challenges. Indeed, we believe it is reasonable that larger datasets could catalyze the research in this
field. It is worth mentioning that a similar dynamic played out in the area of image recognition, which
experienced a rapid expansion due to the generation of massive databases. Nevertheless, this effort for
EEG datasets would likely require collaboration between various research groups to achieve emotions
triggered by active elicitation methods.

Overall, we believe systems should be trained with larger sample sizes (and samples per subject),
plus the use of real-time data. With such improved datasets, unsupervised techniques could be
implemented to obtain comprehensive models. Moreover, these robust systems might allow for
transfer learning, i.e., general models that can be applied successfully to particular individuals.

5. Conclusions

EEG signals are reliable information that cannot be simulated or faked. To decode EEG and
relate these signals to specific emotion is a complex problem. Affective states do not have a simple
mapping with specific brain structures because different emotions activate the same brain locations, or
conversely, a single emotion can activate several structures.

In recent years, EEG-based BCI emotion recognition has been a field affecting computing that
has generated much interest. Significant advances in the development of low-cost BCI devices with
increasingly better usability have encouraged numerous research studies.

In this article, we reviewed the different algorithms and processes that can be part of EEG-based
BCI emotion recognition systems: (1) Emotion elicitation, (2) signal acquisition, (3) feature extraction
and selection, (4) classification techniques, and (5) performance evaluation. For our survey of this topic,
we mined different databases and selected 60 studies carried out under a computer science perspective
to gain insight into state of the art and suggest possible future research efforts.

As seen in this review, computational methods still do not have standards for various applications.
Researchers continuing to look for new solutions in an ongoing effort. The study of the relationship
between brain signals and emotions is a complex problem, and novel methods and new implementations
are continuously presented. We expect that many of the existing challenges will soon be solved and
will pave the way for a vast area of possible applications using EEG-based emotion recognition.
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