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Abstract: Monitoring what application or type of applications running on a computer or a cluster
without violating the privacy of the users can be challenging, especially when we may not have
operator access to these devices, or specialized software. Smart grids and Internet of things (IoT)
devices can provide power consumption data of connected individual devices or groups. This research
will attempt to provide insides on what applications are running based on the power consumption
of the machines and clusters. It is therefore assumed that there is a correlation between electric
power and what software application is running. Additionally, it is believed that it is possible to
create power consumption profiles for various software applications and even normal and abnormal
behavior (e.g., a virus). In order to achieve this, an experiment was organized for the purpose of
collecting 48 h of continuous real power consumption data from two PCs that were part of a university
computer lab. That included collecting data with a one-second sample period, during class as well
as idle time from each machine and their cluster. During the second half of the recording period,
one of the machines was infected with a custom-made virus, allowing comparison between power
consumption data before and after infection. The data were analyzed using different approaches:
descriptive analysis, F-Test of two samples of variance, two-way analysis of variance (ANOVA)
and autoregressive integrated moving average (ARIMA). The results show that it is possible to
detect what type of application is running and if an individual machine or its cluster are infected.
Additionally, we can conclude if the lab is used or not, making this research an ideal management
tool for administrators.

Keywords: smart grid; power consumption; IoT; machine learning; security; privacy; descriptive
analysis; F-Test of two samples of variance; two-way analysis of variance (ANOVA); autoregressive
integrated moving average (ARIMA); malware detection

1. Introduction

Unwanted applications cause many hurdles on easily accessible computers in the lab.
Some common hurdles, such as slowness of the computers and security risks are caused due to
unwanted background processing. Sometimes the machines maybe used remotely or at certain times
(e.g., while a lab is closed) run applications that are not supposed to. It is common for users to use the
computational power of company machines for personal benefits at the expense of their organization
(e.g., cryptocurrency mining, hosting applications, etc.). In some cases, privacy rules may make
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it difficult to conduct active monitoring of what applications the users are running. Furthermore,
users may use their personal machines in order to avoid detection since the administrators will have
no access to these machines. However, organizations have full access to their smart power grid
and they have every right to monitor the power consumption for the various computer/clusters or
even rooms [1]. Smart grids have a number of advantages such as unit/cluster power consumption
monitoring, automatic control by including hardware and software monitoring and controlled
applications [2]. Additionally, it is possible to monitor the power consumption in real time [3].

This research will attempt to detect if a machine and a cluster of machines is infected by unwanted
applications, such as a virus. It will also attempt to predict what applications/types of applications are
running on the machine based on power consumption data. Finally, we can detect possible occupancy
with is traditionally done by use of multiple sensors and applications [4]. The novelty of this work can
be summarized by the following objectives:

(1) Detect if a node and/or a cluster is infected;
(2) Differentiate between different types of applications;
(3) Detect occupancy of a node and/or a cluster.

This is not the first attempt to use power consumption data in order to produce diagnostics.
Several researchers have focused on the use of power consumption data and used machine learning
algorithms to analyze them. Some of the applied research in this field has focused on various
applications in different domains such as smartphones, computers and home electricity.

Luckett et al. [5] proposed a new method for detecting any root-kit behavioral process. They were
able to achieve high accuracy and high training speed due to the small size of the data set. Their data
was collected from the computer processor power consumption with sample period of five minutes,
then various machine learning algorithm were used and tested the method on more than one operating
system to ensure that it will have high accuracy. An experiment conducted by Jimenez et al. [6]
focused on collecting the power consumption data of the computer processing unit with the network
data. They then used ten machine learning techniques to analyze and classify if a computer was
infected or not. They used a software to generate high utilization to add more features to avoid wrong
alarms. They successfully detected malwares using both network and power data using the Random
Forest algorithm. Another experiment proposed by Loanes et al. [7] aimed to evaluate and detect
the abnormal state of the power grid by measuring the power losses information and observe the
deviation between the normal and abnormal state using neural networks techniques. The proposed
monitoring and detecting method used real world data and also simulated data. This method was able
to detect the abnormal behavior. Mehrotra et al. [8] proposed a method to classify the applications
running in the smartphone using the power consumption data. This method classified the applications
into three categories: low, medium and high. Their dataset was collected by installing an application
in the smartphone to collect the consumption data. Then all data were divided into three types
based on the power consumption. Classification was conducted by using five different techniques.
Their method was applied on 77 applications and managed to successfully classify them as low,
medium and high based on their power consumption. Kurniawan et al. [9] developed a detection
method for Android smartphone operating system. The method was based on generating a dataset
with sample period of one minute from the power consumption, the temperature of the battery and
network traffic of the mobile. An application was used to log all the power data related to the battery.
The researchers then classified the data, using four different machine learning algorithms. Their method
achieved an accuracy of 85.6% with the Support Vector Machine (SVM) algorithm. According to
Zeffere et al. [10], no access is needed to identify and detect the malwares. In their work, they proposed
a methodology that detects the abnormal activities by analyzing the energy usage of an Android
smartphone. Their dataset was generated by using a software which collects the consumption data
with a sample period of 250 ms. Two techniques were used to classify the data and detect the malwares.
This method detected malwares with 87% accuracy. Abykoon et al. [11] suggested a method which can
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identify what is the device connected to the power using the data of power consumption and machine
learning techniques. Their dataset was collected with a sample period of five minutes. Classification in
this research was using different supervised and unsupervised techniques. Each device had a unique
signature that can be used to classify what type of device it is. However, in some cases and due to the
similarities, more training was required in order to achieve high accuracy.

Prediction of the needed power is important to ensure the stability of the power. Moon et al. [12]
proposed a method that predicts the needed power using machine learning techniques. Their data were
collected for one year with a 15-min sample period. In their model, they used two machine learning
algorithms: Artificial Neural Networks and Support Vector Regression. The results of their approach
show that Artificial Neural Networks had better accuracy than the Support Vector Regression. In many
cases, the usage of the power differs between home use and industrial use, especially in terms of the rates
and prices. Organizations such as electricity companies are trying to identify the behavior of the used
power in order to ensure stable network and also differentiate between residential and commercial usage.
Shao et al. [13] developed an energy consumption prediction model using Support Vector Machines
to provide an estimation of the power consumption. Their dataset was collected by installing four
sensors to measure the power, temperature, water flow and humidity. High accuracy prediction of the
power consumption was successfully achieved and it included predictions such as possible high-power
consumption during holidays at hotels and resorts. A method proposed by Gajowniczek et al. [14]
attempted to identify if it is a household usage or not. Their dataset was provided by an electricity
company for more than four thousand households with a thirty-minute sample period. They used
different machine learning algorithms but they concluded that Support Vector Machine produced the
best results with higher accuracy compared to the other algorithms. Markovič et al. [15], from the
strategies of designing the electricity network, used classification techniques to predict the amount of
power that will be needed in the future in order to avoid rebuilding the infrastructure. They collected
a dataset of one year of power usage and they created different user profiles to classify the household
users. Iqbal et al. [16] proposed an IoT based architecture capable of exploring electrical devices in
smart homes, using sensors, load balancing and data processing. This architecture was tested on six
hours of dataset and was proven successful. Data-driven models were used by Bourdeau et al. [17]
to predict power consumption with different machine learning techniques and also used different
techniques for data preprocessing. This is because it is mainly affecting the accuracy of the prediction
results. Input data origin and variables of the dataset also affected the accuracy of the prediction results.
The data were analyzed and divided into eight different types: building characteristics and operation
information, deep-learning-based time series, mathematical characteristics, past time-steps/data points,
time-related indicators, occupancy, indoor environment, and outdoor environment. The researchers
concluded that different machine learning techniques were different for each scenario, with each of
them having its own advantages and disadvantages.

Croce et al. [18] developed a new technique to monitor power consumption for smart buildings in
which user privacy is respected. The architecture was designed as a distributed peer-to-peer to monitor
power consumption, and connected with the nearest node, giving multiple peer-to-peer connections.
Instead of using individual data, they clustered them to preserve privacy. However, the method
had other features such as load control, energy prediction, and voltage stabilization. In this research,
ready residential building datasets were used, and the sample period was of one week.

A new method was proposed by Zhang et al. [19] to monitor power consumption and then to
store and analyze these data using machine learning. By utilizing the central processing unit (CPU),
the consumption changed. Validation was completed by testing and simulating an attack that was
intended to make a change on the CPU in order to create and simulate an utilization, and then the
method could efficiently detect the change of power consumption with high accuracy and privacy.
The authors used different simulation techniques and then analyzed and verified that the method is
achieving high accuracy.
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Youngjun and Young [20] proposed a new sensor that can measure high surges. Protection
from surges is an advantage of this sensor in which it will represent the duration and lifetime of the
protection with the help of an application that is used along with the sensor. The main idea of this
research is to ensure that power is stable without any extra surge that affects the electrical device and
will be damaged if it exceeds the normal limits. In this research, the sensor was designed as hardware
with a small liquid-crystal display (LCD) screen in a small plastic enclosure box. The experiment was
implemented using a surge simulator to increase the current for testing the sensor.

Blazakis et al. [21] discussed a new detection method for analyzing the power consumption
data and then identify if there was any user that was not authorized and returned to fraud activity.
An existing dataset was used in this research, which was generated from a real usage of more than five
thousand houses for the duration of almost two years and the sample period for the dataset is half an
hour. The results showed that this method has a successful detection rate compared to other methods,
and almost in every scenario the method detected the unauthorized usage of the electricity. More than
ten scenarios were tested to verify the success of this method.

Analysis and comparison of power consumption in different buildings were proposed by
Cibinskiene et al. [22]. The importance of the energy savings and how to reduce energy consumption,
especially in workplaces concerning previous researches to ensure continuity of the energy were
studied. The regression analysis proved that saving energy will make a difference if the behavior of
the staff focused on saving energy goals, and behavior was the most effective part for changing power
consumption at residential or workplaces.

Jooseok Oh [23] discussed the use of smart technologies under the Internet of things that can
save energy. Once home users can monitor and see the consumption of each device in their home,
they will get more knowledge about the consumption of different devices, and this knowledge helps
to shut down the devices that consume a lot of power and are not used, such as heating devices and
air conditioners. A study was done by Jooseok to give Internet of things devices and training to
home users to see if they can reduce usage and achieve power consumption. Home users successfully
reduced the power consumption with the help of the Internet of things and the smart plugs, and this
confirms that if users can see the real monitoring of the home appliances, they will manage their usage
efficiently by using a timer and scheduling the time to start and stop.

Threats of Internet of things (IoT) devices have been highlighted by Myridakis et al. [24]. In this
research, the dataset from the IoT devices was used with a detection system along with the difference
in power current from the power supply to identify if there was an attack. One of the advantages is
that this technique has the lowest costs. The experiment included a device that is simulated to be
attacked by changing the hardware as an attacker change. The results of the experiment concluded
with successful identification of security attack for the smart IoT devices as it is designed with basic
features that may have an attack due to the simplicity.

Moradzadeh et al. [25] proposed a technique to monitor and analyze the power consumption
data for the disaggregation and for calculating the expected power needed for the future for specific
devices. The dataset was drawn from real data for power consumption captured for home electrical
usage. The sample of the dataset was two days. Using the machine learning technique dataset was
analyzed and validated the concept of the power consumption data, we can estimate the total needed
power for each electrical device.

Forecasting electricity consumption using autoregressive integrated moving average (ARIMA)
among industries at Guangdong province in China was performed [26] Three ARIMA models were
considered to forecast electricity consumption. The research showed that ARIMA (1,1,1) provided
results which are precise and could predict effectively. Similarly, variation in energy consumption
for South Africa was predicted using ARIMA, Nonlinear Grey Model (NGM) and NGM-ARIMA
models [27].

In order to achieve our objectives, we collected real power consumption data from a computer
cluster of two machines as well as the consumption data from each machine, of a university computer
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lab for 48 h, using power monitoring sensors. In parallel, we obtained data from these machines
regarding what applications are running during the experiment. During the last 24 h, we infected one
of the machines with a custom virus (described in Section 2) in order to observe the variations in the
power consumption. Upon completion, the three datasets were merged into one and processed using
different machine learning techniques for the purpose of identifying associations between what was
happening in the machines/cluster and the power consumption.

Making predictions based on power consumption profiles for applications is challenging due to
the nondeterministic nature of the problem. A machine is running multiple applications and each
application can consume different amount of power at different times based on activities. Attempting
to speculate what is happening in a cluster of multiple computers adds additional complexity to
the problem.

The rest of the paper is structured in the following way: Section 2 explains the experiment and
data collection process in detail. Section 3 analyzes the data using various approaches. Section 4
concludes the work while providing directions for future research in this area.

2. Materials and Methods

This section explains the materials and methods relevant to each of the three proposed
research objectives.

2.1. Experimentation Setup

In order to answer the research questions presented in the introduction, we generated our own
dataset, which included various system characteristics that were collected while using the system with
and without viral infection. The dataset associated what application was running and its corresponding
power consumption. Both software and hardware solutions were utilized for this purpose.

The experiment utilized a computer cluster consisting of two Dell 9020 Desktop machines with
dedicated NVIDIA GeForce 210 GPU cards. The machines were connected to three power consumption
measurement sensors. Each machine and the cluster were connected to one SONOFF POW R2 sensors
with the ESPurna firmware [28]. All machines and sensors were identical. A Raspberry Pi3 with
NodeRed [29] acted as a MQTT broker server that will collect real-time data every second from the
SONOFF sensors. The Sensors were connected to the Pi3 via Wi-Fi. Figure 1 illustrates the topology
schematic of the experiment used for data collection and Figure 2 shows the connectivity between
the devices.
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Figure 2. Experiment device connectivity.

The various devices participating in the experiment as well as their connectivity is illustrated in
Figure 2. Table 1 presents the schedule of the applications that were executed during the experiment.
As it can been seen from Table 1, various applications were run for different times segregated from
each other. The different run durations (e.g., an application running for one hour and another one for
30 min) increases the difficulty of the analysis but it represents a more realistic usage.

During the second day at 11:30 AM, we infected desktop number 2 with a virus generated by the
Virus Maker tool [30] and continued running the applications as normal. The Virus Maker tool has
the ability to add multiple behaviors to infected files. However, in this experiment we were mainly
interested in behaviors that potentially have impact to the power consumption. Such behaviors include,
“random activity”, “infinity message boxes”, “opening of random files” and “slowing down of the
computer”. Figure 3 shows the options selected during the generation of the virus.
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During the experiment, three different datasets were generated: one from the sensor of the cluster
and one from the sensor of each desktop. The files were merged to one unified dataset that was
used in this research. The dataset (see supplementary files) contains eleven fields. The first field
indicates the date and time of the recording. The second and fifth represent the IDs of the running
applications of desktop 1 and 2. Fields three and seven contain the current (I) measured (in amperes)
of the two desktop computers every second respectively. Fields four and eight contains the value of
the power consumption (in Watts) of the two of the desktops every second. The sixth field, which is of
Boolean type, represents the presence (1) or absence (2) of a virus. The current and power consumption
of the cluster of the two computers every second, is shown in fields nine and ten. The dataset as
described here shows that there are various parameters, like current and power, obtained from the
cluster. These indicators are obtained from various nodes of the cluster in order to precisely identified
the application and the presence or absence of the virus.

Table 1. Application execution schedule.

# Application Name/Action/Process
1st Day 2nd Day

Start Time End Time Start Time End Time

1 Start of Experiment 05:01 05:35
2 Open the virus on desktop 2–Sensor 2 - - 08:00
3 NetBeans 08:00 09:00 08:05 09:00
4 Idle 09:00 09:10 09:00 9:10
5 MS Word 9:10 10:00 9:10 10:00
6 Idle 10:00 10:07 10:00 10:07
7 YouTube 240p 10:07 10:20 10:07 10:20
8 YouTube 360p 10:21 10:35 10:21 10:35
9 YouTube 1080p 10:36 10:50 10:36 10:50

10 YouTube 1440p 10:51 11:15 10:51 11:15
11 YouTube 4K 11:15 11:25 11:15 11:25
12 Idle 11:25 11:30 11:25 11:30
13 MS Excel 11:30 12:00 11:30 12:00
14 Idle 12:00 13:35 12:00 13:35
15 3D Builder (Paint 3D) 13:35 14:20 13:35 14:20
16 Idle 14:21 14:40 14:21 14:40

17 Copy Large Files 1st Half
From USB to PC 14:40 15:05 14:40 15:05

18 Idle 15:05 15:40 15:05 15:40

19 Copy Large Files 1st Half
From PC to USB 15:40 16:00 15:40 16:00

20 Idle 16:01 16:10 16:01 16:10

21
Game (The great unknown Houdini’s

castle) (Game Crashed at Desktop
2–Then Opened again with no issue)

16:11 16:50 16:11 16:50

22 Idle 16:51 17:00 16:51 17:00
23 Fusion 360 17:00 17:41 17:00 17:41
24 Idle 17:41 18:00 17:41 18:00
25 MS PowerPoint 18:00 18:30 18:00 18:30
26 Idle 18:31 18:35 18:31 18:35
27 Web Browsing 18:36 19:00 18:36 19:00
28 Idle 19:00 05:35 19:00 05:35
29 End of Experiment 05:35 05:35

2.2. Proposed Methodology

The steps involved in the proposed methodology from preprocessing stage to the implications of
various factors, along with time-series is described in this section. In order to achieve the objective 1
(“detect if a node and/or a cluster is infected”), descriptive analysis in the form of mean and standard
deviation were used. To further emphasis our findings, variances of these measures were compared
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using an F-test. Objective 2 (“differentiate between different types of applications”), which is related
to different applications, was analyzed using two-way ANOVA to understand whether there is an
interaction between the virus and variety of applications. Furthermore, objective 3 (“detect occupancy
of a node and/or a cluster), which is related to the occupancy of the node/cluster, can be predicted or
identified using time-series based ARIMA method.

2.2.1. Preprocessing

The obtained dataset is obtained from sensors, where outlines or invalid data is possible.
The preprocessing of the dataset was performed manually by removing certain outlines or mistakes
introduced during the data collection process, such as nonarrival of data from a sensor, negative
values, etc.

2.2.2. Descriptive Analysis

Various salient features such as mean and standard deviation were used to compare the factors
involved in our experimentation. In order to validate the variance in the given factor, F-test and
ANOVA are performed as described in Sections 2.2.3 and 2.2.4

2.2.3. Comparing Power Consumption with and without Virus

We studied the difference in variances between the power values when the virus is present or
absent. Such an analysis is critical to recognize whether the interval (upper and lower bound) of
power consumption for any specific application overlaps during the presence or absence of virus.
Nonoverlapping of intervals with appropriate significance level will provide the necessary confidence
to recognize the presence or absence of the virus. This was analyzed using a two samples of variances
F-test with standard 95% significance level.

2.2.4. Implications of Three Factors

Virus, application and power: having studied the differences in power consumption and the
respective variances between different applications, with and without the running of the virus,
we wished to see the implications of the factors involved in this study. Two-way ANOVA was
used to analyze the dataset. As we have two factors (virus and application ID) involved, and the
dependent variable is power. Data obtained from various sensors are analyzed further to validate the
following hypotheses.

1. Mean values of the observations due to one factor (presence or absence of virus) are the same.
2. Mean values of the observations due to another factor (difference in applications: multimedia

related, office related, idle) are the same.
3. There is no interaction between the two factors (presence/absence of virus and variety

of applications).

2.2.5. Time Series

In order to perform ARIMA [31], the following three parameters need to be obtained:

• p: The number of previous/lagged Y values considered in our model for each time point. p indicates
autoregressive component;

• d: The number of differences considered in our model to follow stationarity;
• q: The number of previous/lagged error values considered in our model for each time point.
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Autocorrelation functions (both complete and partial), named as ACF and PACF, were used to
obtain these parameters. Meanwhile, automatic forecasting algorithms could be used to identify the
parameters for ARIMA. Akaike’s information criterion (AIC) was used to select the appropriate model.

AIC = L∗
(
θ̂, x̂0
)
+ 2q (1)

where q represents the number of parameters in θ plus the number of free states in x0, θ̂ and x̂0 are the
estimates of θ and x̂0.

The choice of AIC, shown in Equation (4), over other measures like MSE (mean square error) or
MAPE (mean absolute percentage error) was justified because AIC considers the likelihood instead of
one-step forecasts. Also, AIC was suitable for the selection among additive and multiplicative models.

Nonseasonal ARIMA(p,d,q) is given as:

φ(B)
(
1− Bd

)
yt = c + θ(B)εt (2)

where {εt} is white noise, B is backshift operator, φ(B) and θ(B) are polynomials of order p and
q respectively.

Seasonal ARIMA (p,d,q)(P,D,Q)m is given as:

Φ(Bm)φ(B)(1− Bm)D(1− B)dyt = c + Θ(Bm)θ(B)εt (3)

where m is the seasonal frequency, Φ(Bm) and Θ(Bm) are polynomials of order P and Q respectively.

AIC = −2 log(L) + 2(p + q + P + Q + k) (4)

where L is the maximum likelihood of the model fitted to the differenced data (1− Bm)D(1− B)dyt.

3. Results and Discussion

3.1. Preprocessing

Before proceeding towards analyzing the obtained dataset, certain preliminary preprocessing
revealed that, out of the 16 applications, along with an idle condition, all except one application was
tested with both the presence and absence of virus. The application which represents opening the
virus file could not be performed in the absence of the virus. The summary of the dataset collected
is provided in Table 2. As an example, the number of records obtained from inactive virus scenario
with an idle condition (application ID of zero) was 55630, while that of active virus scenario was 47929.
In order to make the comparison effective, randomized selection of records for each application was
performed. All the records were made equal to the record size of 494, which was the minimum record
size available in the original dataset. The application number was 16, which means opening of the
virus file was removed during the preprocessing stage.

Table 2. Summary of dataset.

Original Dataset Preprocessed Dataset

Application ID Inactive Virus Active Virus Application ID Inactive Virus Active Virus

0 55,630 47,929 0 494 494
1 3123 3235 1 494 494
2 2624 2869 2 494 494
3 771 704 3 494 494
4 736 889 4 494 494
5 846 884 5 494 494
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Table 2. Cont.

Original Dataset Preprocessed Dataset

Application ID Inactive Virus Active Virus Application ID Inactive Virus Active Virus

6 1216 1173 6 494 494
7 597 494 7 494 494
8 1626 1715 8 494 494
9 2576 2674 9 494 494
10 1160 1179 10 494 494
11 1410 1416 11 494 494
12 2338 2029 12 494 494
13 2387 1934 13 494 494
14 1524 1823 14 494 494
15 1475 1282 15 494 494
16 0 126

3.2. Descriptive Analysis

As shown in Table 3, descriptive analysis of the obtained data was performed to find the average
and standard deviation of current and power values obtained from all the three sensors. In order to
make sure that there was no other factor involved in this analysis, data analyzed here were taken only
from a computer. The objective of this task was to compare the average and standard deviation between
two computers running the same application(s) but with and without the virus running on them.
Outcome analysis revealed that the average and standard deviation of current and power differed
when the virus was running. For example, when the virus was active, application ID 2 consumed
an average power of 61.78 W while that of the inactive virus consumed 43.69 W. The range due to
average +/- standard deviation are quite apart each other. This basically confirms that there was a clear
difference in power consumption when virus was active or inactive in a system. Also, this could help
in recognizing whether a computer is currently being used or not. In terms of power consumption,
the applications consume higher to lower power in this order: multimedia and design applications,
Microsoft Office applications and an idle condition.

Table 3. Descriptive analysis.

Application
ID

AVE (No
Virus):

Current

STDEV
(No

Virus):
Current

AVE
(Virus):
Current

STDEV
(Virus):
Current

AVE (No
Virus):
Power

STDEV
(No

Virus):
Power

AVE
(Virus):
Power

STDEV
(Virus):
Power

0 0.274250333 0.028103 0.347148 0.020521 41.65125 7.485862 60.35578 4.995615
1 0.30206212 0.040198 0.279725 0.032956 49.17003 10.83542 43.31901 8.913672
2 0.282293826 0.029435 0.351423 0.019544 43.69131 7.785045 61.7839 5.003486
3 0.294744488 0.027763 0.349382 0.016515 47.10895 7.176698 60.8821 4.130037
4 0.338485054 0.282622 0.352319 0.018267 47.13043 9.747805 61.50731 4.612483
5 0.310338061 0.027774 0.347696 0.017278 51.02364 7.14727 60.18891 4.235889
6 0.328525493 0.02398 0.351409 0.018236 55.54605 6.243444 60.99829 4.507483
7 0.336469012 0.045425 0.360682 0.014323 59.01173 12.08047 63.31984 3.612988
8 0.276551661 0.028898 0.374414 0.015795 42.26999 7.718847 66.68105 3.88115
9 0.285190606 0.031642 0.346214 0.017018 44.44293 8.223566 59.27786 4.086996

10 0.304116379 0.030956 0.355818 0.020229 49.19138 7.936956 61.79389 4.938064
11 0.299434043 0.029658 0.352472 0.019252 48.02128 7.655155 60.73729 4.650185
12 0.342401625 0.025261 0.353526 0.020993 58.9337 6.272336 61.61656 5.078656
13 0.289771261 0.030464 0.374752 0.023172 45.81232 8.066154 66.72285 5.671899
14 0.282875328 0.029596 0.350807 0.018327 43.95276 8.015767 61.19748 4.584067
15 0.300162712 0.035122 0.345573 0.017133 48.56271 9.288857 59.97738 4.294064
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3.3. Comparing Power Consumption with and without Virus

A sample of variance comparison for idle (no application) and application 15 is provided in
Table 4. The comparison of F-critical with F (F ratio) value and the p-value with alpha, rejects the
null hypothesis that their variances are the same. For example, in the case of idle condition, when no
application was running, the F-critical value was 1.0123 and the F (F ratio) value was 2.6722. As the
F-critical value is smaller than F (ratio) value, we conclude that the variances between the power with
and without virus running is not the same. Also, p-value is smaller than the default alpha value of 0.05.
Similar results are obtained from other applications as well.

Table 4. F-Test of two samples of variance.

Variance of Power in Idle Condition Variance of Power with Application 3

Variable 1 Variable 2 Variable 1 Variable 2

Mean 39.93072 60.02728 Mean 58.67635 60.01577
Variance 112.9857 42.28129 Variance 42.94666 18.63846

Observations 72,354 72,354 Observations 1205 1205
df (Degrees of Freedom) 72,353 72,353 df (Degrees of freedom) 1204 1204

F (F ratio) 2.672238 F (F ratio) 2.304196
P(F< = f) one-tail 0 P(F< = f) one-tail 1.53 × 10−46

F-Critical one-tail 1.012305 F-Critical one-tail 1.099489

3.4. Implications of Three Factors

Table 5 reveals the outcome of two-way ANOVA analysis. For the presence or absence of virus,
when we compare F-Critical with F (F ratio), F-Critical (3.84) is smaller compared to F (F ratio) (2603.69),
thus we reject the null hypothesis that the mean of the observations due to presence or absence of virus
is not the same. Also, the obtained p-value is much smaller than that of alpha (0.05). This confirms our
idea that the power consumption is affected due to running of virus program in a computer.

With regards to the variety among the applications, the F-critical (3.84) is smaller than the F
(F ratio) value (302277.3). Thus, we reject the null hypothesis that the mean values of the applications
are the same. It is clear that, from our study, the application is running at any point of time could easily
be identified.

Similarly, the third hypothesis, which indicates that there is no interaction between virus and
applications, is also rejected. Here, there is a clear indication that the impact of virus depends on the
respective application. Thus, the rate of change in power consumption varies from one application to
other, when the virus is executed.

In summary, the following is determined:

1. Viruses have an impact on the power;
2. A variety of applications impact the power consumption of the system;
3. There is an interaction between the virus and the application with regards to the impact on

the system.

Table 5. Two-way ANOVA.

ANOVA

Source of
Variation

SS (Sum of
Squares)

df (Degrees
of Freedom)

MS (Mean
Squares) F (F Ratio) p-Value F-Critical

Virus 150,880.9 1 150,880.9 2603.692 0 3.841753
Application 17,516,617 1 17,516,617 302277.3 0 3.841753
Interaction 104,200.9 1 104,200.9 1798.154 0 3.841753

Within 1,831,878 31,612 57.94883
Total 19,603,577 31,615
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A similar two-way ANOVA was performed after grouping the applications into nine groups like
idle, programming, multimedia, design, general, etc. The outcome of such an analysis is provided in
Table 6. Similar to the outcome in Table 5, Table 6 also rejects the null hypothesis. This confirms the
impact of virus on power along with the respective group of application being executed.

Table 6. Two-way ANOVA.

ANOVA

Source of
Variation

SS (Sum of
Squares)

df (Degrees
of Freedom)

MS (Mean
Squares) F (F Ratio) p-Value F-Critical

Virus 2429.457 1 2429.457 39.57663 3.21 × 10−10 3.841853
Application 17,168,455 1 17,168,455 279679.6 0 3.841853
Interaction 2429.457 1 2429.457 39.57663 3.21 × 10−10 3.841853

Within 1,448,467 23,596 61.38615
Total 18,621,781 23,599

3.5. Time Series

Having collected the data for two days while applying various activities with and without the
virus, a time-series-based analysis was also performed. Time series is composed of trend, seasonal and
cyclic components. Before performing ARIMA (autoregressive integrated moving average) on the time
series, the assumption of stationarity was evaluated. An augmented Dickey–Fuller test was performed
to test for stationarity. The results reveal the dataset, power consumption data specifically, follows
stationarity, with a p-value of 0.01, which is less than the alpha value of 0.05. Smooth moving average
was performed over the given power data. Averaging over a time period of 20 min returns the trend of
the curve as in Figure 4.
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Figure 4. Smooth moving average with n = 1200 (20 min).

The upward trend at a certain time indicates the impact of running a virus on the power
consumption. Decomposition of the time-series into trend, seasonal, and random components
reveals that there is generally a trend component in the obtained time-series data. Excluding trend,
the seasonality is not prevalent in the dataset. Also, the random component does not seem to highly
impact on the data. Figure 5 shows the decomposition of additive time series.
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Based on our experimental analysis, ARIMA (2,0,0) (1,1,0) [60] with drift was found to be the most
suitable model. This model obtained an AIC of 792012.8. The value of p was 2, which indicates the
relationship between an observation with that of the one preceding the one immediately preceding
it. The zero value of d indicates that the integrative component was absent. The value of zero for q
indicates no relationship between an error and the ones preceding it. The presence of seasonality in the
model indicates repetitions of the same events. In our analysis, the repetitions or seasonality depends
on the time at which certain applications or the virus were executed. As in real time such an event
varies from one situation to another, the seasonality value indicated by the proposed model was not
significant in this study.

Forecasting for a time period of 3000 s was done using the selected model as shown in Figure 6.
Plot shows that the pattern is expected to remain in the same level with the upper and lower bound
tending to vary.
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3.6. Outcomes from the Analysis

Overall, this study has provided the following insights:

1. Descriptive analysis: Average and standard deviation of power consumption varied while
running any specific application, with or without virus;

2. F-Test of two samples of variances: variances of power consumption varied with the presence or
absence of virus;

3. Two-way ANOVA: The interaction between the presence or absence of virus and the specific
application running does impact the power consumption on the computer. Power consumption
of the computer also varied due to the type of the application and whether the virus was running
or not;

4. Time-Series: Time series analysis on the dataset reveals that the power consumption can be
represented with ARIMA model using autoregression.

4. Conclusions

This paper presented a methodology for detecting potentially infected computers and cluster of
computers connected on a smart grid by analyzing their power consumption data. The research used
data of a cluster of two computers connected to power measurements sensors. The data were analyzed
using descriptive analysis, two-way ANOVA and ARIMA. The results showed that the presence/absence
of virus and its interaction with variety of applications does affect the power consumption. We were
able to detect infected nodes and clusters. Additionally, we can detect what type of application is
running on the machine. It is possible to accurately detect physical or remote occupancy of the lab as
there is a significant variation of the power usage. All these points make this work useful for facility
management, lab administrations and many more. This research can be generalized to any context
with the proposed experiment architecture capable of facilitating individualistic data acquisition,
hence allowing the system to produce diagnostics. The main limitation of this work lies with the
number of executed applications during the experiment and the limited number of nodes and duration.
However, the aim of this research was to test the feasibility of such an approach, something that was
proven based on the above results. Future work will mainly focus on enhancing the dataset to overcome
the above limitations. Additionally, we will detect normal and abnormal behaviors, for example,
massive sudden power consumption from a PC that is currently used is a suspicious behavior.

Supplementary Materials: The dataset is available online at http://www.mdpi.com/1424-8220/20/18/5075/s1.
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