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Abstract: Long-Range Wide Area Network (LoRaWAN) is a fast-growing communication system for
Low Power Wide Area Networks (LPWAN) in the Internet of Things (IoTs) deployments. LoRaWAN
is built to optimize LPWANs for battery lifetime, capacity, range, and cost. LoRaWAN employs
an Adaptive Data Rate (ADR) scheme that dynamically optimizes data rate, airtime, and energy
consumption. The major challenge in LoRaWAN is that the LoRa specification does not state how
the network server must command end nodes pertaining rate adaptation. As a result, numerous
ADR schemes have been proposed to cater for the many applications of IoT technology, the quality of
service requirements, different metrics, and radio frequency (RF) conditions. This offers a challenge
for the reliability and suitability of these schemes. This paper presents a comprehensive review
of the research on ADR algorithms for LoRaWAN technology. First, we provide an overview of
LoRaWAN network performance that has been explored and documented in the literature and then
focus on recent solutions for ADR as an optimization approach to improve throughput, energy
efficiency and scalability. We then distinguish the approaches used, highlight their strengths and
drawbacks, and provide a comparison of these approaches. Finally, we identify some research gaps
and future directions.
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1. Introduction

Increasingly, organizations in many industries are employing the Internet of Things (IoT) to
function more efficiently, to understand their customers better, to provide improved customer service,
enhance decision-making and boost the value of the business. This has resulted in a considerable
upsurge in the number of devices connected to the internet. A “thing” in the IoT, can be a patient
implanted with a heart monitor, smart home that automatically regulate heating and lighting, a farm
animal with a biochip transponder, a smart city or a smart factory monitoring industrial machines
searching for glitches, then automatically regulates to avoid breakdowns [1–4]. These devices need
to be capable of getting an Internet Protocol (IP) address assigned to them and possess the ability to
transfer data over a network. Low Power Wide Area Networks (LPWAN) is a novel kind of wireless
communication, attributed to low power, low bit rate and long-range communication technologies in
the unlicensed industrial, scientific and medical (ISM) frequency bands, configured in a star topology
network. This makes it suitable for many IoT applications that simply require transmission of small
data packets over long distances. LPWAN allows long-range transmission up to ten to forty kilometres
in rural environments and one to five kilometres in urban environments [5]. LPWAN is extremely
scalable and energy efficient [6]. In the LPWAN space there are contending technologies, for instance
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Sigfox, NB-IoT and Long-Range Wide Area Networks (LoRaWAN). A comparison of these LPWAN
technologies is found in [7]. In this review paper the focus is on LoRaWAN, which exhibits the attributes
of straightforward deployment, low power consumption, and long-distance coverage. LoRaWAN is
an open LPWAN standard that uses unlicensed spectrum. LoRaWAN is a key technology for the IoTs,
suitable for a variety of fixed and mobile IoT applications.

An essential LoRaWAN feature is the Adaptive Data Rate (ADR) scheme. The objective of this
scheme is to minimize energy consumption and maximize throughput by adjusting the data rate
dependent on the link budget for every end node in a LoRaWAN. ADR controls the transmission
parameters, namely Bandwidth (BW), Spreading Factor (SF), Transmission Power (TP) and Coding
Rate (CR). Optimizing the ADR increases the network capacity since data packets transmitted with
different SFs are orthogonal and therefore can be received concurrently, thus reducing airtime. ADR is
a mechanism that controls the uplink (UL) transmission parameters of LoRa devices depending on the
link budget. The ADR functionality needs to be enabled at the end node for it to be employed. In the
LoRa implementations found in the literature, ADR schemes are implemented and evaluated using
different approaches such as mathematical models, simulations, and testbeds. The major challenge
with the ADR algorithm is that the LoRa specification does not state the way the Network Server
(NS) should instruct end nodes regarding rate adaptation. This has resulted in a gap in terms of ADR
implementation as vendors keep their implementations private, consequently, many different ADR
schemes have been proposed. The surge in IoT deployments results in different quality of service (QoS)
requirements, metrics, and implementation approaches, which provide a challenge in the reliability
and suitability of the ADR schemes. The main contributions of this paper are as follows:

• An overview of the LoRaWAN system and its parameters are thoroughly reviewed
• An investigation of the existing ADR schemes that have been proposed in the public domain and

an evaluation of how these approaches address the challenges of ADR.
• A discussion of the strengths and drawbacks of the proposed schemes.
• Finally, the identification of research gaps and potential future direction.

The remainder of the paper is organized as follows: Section two presents a technology overview
of LoRaWAN, describing the LoRa physical layer and the LoRaWAN medium access control (MAC)
layer, the transmission parameters and how they apply to LoRaWAN network performance. Section
three provides a review of the adaptive data rate algorithms. Section four presents a comparison and
discussion of the ADR schemes. Section five explores research gaps and future direction. Section
six concludes this paper. Appendix A provides Table A1 which lists the acronyms that are used in
this paper.

2. Technology Overview

LoRaWAN protocol was first released in 2015 by the LoRa Alliance. The LoRaWAN functions
in an unlicensed sub-gigahertz ISM band (863–870 MHz band in Europe and 902–928 MHz in USA).
It uses the 125 KHz, 250 KHz and 500 KHz bandwidth and transmits payloads of up to 250 Bytes over
5–15 km. The system consumes low power and can last up to five to ten years in battery life [8,9]. LoRa,
represents “Long-Range”, a long-range wireless communications technology, endorsed by the LoRa
Alliance. The main objective of this technology is to be functional in long lasting battery-operated end
nodes, where energy efficiency is utmost priority. LoRa consists of two distinct layers, namely a physical
layer that uses the Chirp Spread Spectrum (CSS) radio modulation system and a MAC layer protocol
known as LoRaWAN. However, the LoRa communication system furthermore denotes a particular
access network architecture [10]. LoRaWAN is constructed to optimize deployment cost, capacity,
range, and battery lifetime in LPWANs. LoRa, the physical layer or modulation employed to generate
the long-range wireless connection, provides multiple transmission parameters. These parameters are
BW, SF, TP and CR. Varying these parameters affects network performance.
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The LoRa network comprises five main components: the end nodes also known as end devices,
the gateway, the NS, the Join Server (JS) and application servers connected in a star topology architecture.
The LoRa end node contains a wireless transceiver and sensor nodes that transmit data to multiple
gateways in its vicinity using LoRa radio frequency (RF) modulation. Gateways are powered by the
mains and have internet connectivity. They consist of a radio component with a transmitter and a
microprocessor for data processing. Every gateway in the network sends the received data packet
to the cloud-based NS which successively directs the packet to the appropriate application server.
If a network has multiple gateways, it is possible for all the gateways to receive data from the same
end node. Gateways can concurrently listen to several frequencies in every SF. Figure 1 shows the
LoRaWAN architecture.
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When an end node forwards a data packet to the gateway, it is known as an UL and when the
gateway forwards a data packet to the end node, it is called a Downlink (DL). End nodes broadcast
their data packets to every gateway in the vicinity and the gateways transmit the data to the NS. The NS
sends the data package to the correct application server where the end-user can process the data.
The NS receives the response from the application server and establishes which gateway will send the
message back to the end nodes. Two types of messages can be transmitted at any given time in any
LoRaWAN operation. These are unconfirmed messages, where the end nodes do not request a response
from the NS, and confirmed messages which request a response. For the end nodes to be deemed
active entities, they are required to first connect to the network and be allocated a series of parameters
that are essential for operation in a LoRaWAN through the JS. The LoRaWAN network contains two
major security elements, the join procedure and message authentication. This guarantees that only
authentic and certified end nodes are joined to authentic and bona fide networks. The implementation
of end-to-end encryption for application payloads that are exchanged between the end nodes and the
application servers is also provided by LoRaWAN as a security measure.

LoRaWAN is among a small number of IoT systems that implement end-to-end encryption.
The JS is responsible for secure device activation and key storage and management. It indicates to
the NS which application server should be connected to the end nodes and executes the encryption
key derivations for the network and application session. The network session key of the end node
is communicated to the NS, and the application session key to the corresponding application server.
LoRaWAN permits two kinds of end device activation, namely Over-the-Air Activation (OTAA) and
Activation by Personalization (ABP). The OTAA process permits end nodes to validate and secure
access to the network with security credentials. ABP is a simpler and less secure process which skips
the join procedure. The LoRaWAN protocol does not support direct communication between end
nodes [10]. Security is a huge challenge in IoT networks. The authors in [11] provided an extensive
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security risk analysis of the LoRaWAN v1.1 protocol and discussed numerous countermeasures to
the security risks outlined. They presented a “threat” catalogue, as well as propositions and analyses
regarding the magnitude, effect, and possibility of each threat. Other suggestions of improving the
network security have been suggested in [12–14].

2.1. LoRa

LoRa is the physical (PHY) layer of the LoRa technology which utilizes Chirp Spread Spectrum
modulation and Forward Error Correction (FEC) that trades-off data rate for sensitivity, within a
fixed BW. This combination enables long transmission ranges with low power characteristics as the
chirp signals use the available bandwidth immediately. This characteristic makes the chirp signals
robust from interference and noise. Each LoRa packet consists of a preamble of 10 chirps and six
synchronization chirps followed by the data. Multiple data bits (chips) can be modulated by one chirp.
The SF parameter determines the number of bits that are modulated. For instance, SF7 means a chirp
can be encoded with seven bits. Transmitting a data packet with a higher SF implies additional bits are
encoded into the chirp, resulting in additional Time on Air (ToA) and a reduced data rate, although it
enhances robustness to noise. Three other parameters are involved in LoRa modulation that is BW, TP,
and CR. Three bandwidth settings are available namely 125 KHz, 250 KHz and 500 KHz. The available
code rate settings are 4/5, 4/6, 4/7 or 4/8 [15]. These parameters together are used to calculate the data
rate, also known as the LoRa modulation bit rate Rb. Equation (1) expresses the relationship between
data transmission rate and CR, BW, and SF [16].

Rb = SF ∗
BW
2SF ∗CR, (1)

where:
SF = Spreading Factor
BW = Modulation Bandwidth
CR = Code Rate.
Tuning the parameters above results in a number of the end-to-end transmission characteristics

such as data rate, error correction capacity and communication range to be variable [17]. Although a
combination of SF, BW and CR are possible theoretically, practically, SF and BW are combined to form
the data rate, depending on the LoRaWAN regional parameters specification [9]. The specification
document specifies the different regulatory requirements of LoRaWAN depending on the location of
the deployment. In North America, for instance, there are 64, 125 kHz LoRa UL channels that have
been specified, centered on a 200 kHz raster. Eight 500 kHz UL channels as well as eight, 500 kHz DL
channels have also been specified. The gateways have the capacity of up to 64, 125 kHz UL channels
and eight 500 kHz UL and DL channels. In Europe, LoRaWAN defined ten channels, eight of which
have multiple data rates from 250 bps to 5.5 kbps. The specification also has one high data rate
LoRa channel at 11 kbps, and one frequency shift keying (FSK) channel at 50 kbps. The European
Telecommunications Standards Institute (ETSI) allows maximum output power in Europe of +14 dBM,
except the G3 band which allows +27 dBm. Duty cycle restrictions exist under ETSI but there are
no limitations on maximum transmission or ToA. As an example, the regional settings EU863-870
used in Europe and US902-928 used in North America have the data rates ranging from SF7BW125 to
SF12BW125 and SF7BW125 to SF10BW125, respectively. The ADR adjusts the data rate depending
on the available link budget. The larger the SF applied, the further the signal travels and the less
interference present at the receiver. With the bandwidth fixed at BW125 as given in the example,
lowering the SF increases the data rate, thereby minimizing the ToA for data packets making the
gateway more sensitive to noise. The end nodes that are nearest to a gateway transmit using the lowest
SF thereby prolonging the battery life because of the effect of ToA. More distant sensors transmit at
a higher SF but the data rate will be low. A compromise is made between battery power and range
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considering that a higher SF allows for gateways to connect to end nodes further away due to higher
reception sensitivity. Table 1 provides the characteristics of the LoRaWAN technology.

Table 1. Characteristics of LoRaWAN [18]. CSS: Chirp Spread Spectrum, FEC: Forward Error Correction.

Characteristic Description

Modulation CSS
Frequency Sub-GHz ISM: EU868, EU430, US918, AS433
Bandwidth 125 kHz and 250 kHz
Data rate 0.3–5 Kbps

Range 5 km (urban), 20 km (rural)
Maximum payload 250 bytes

Error correction FEC
Data transmission Half-duplex

Topology Star
Standardization LoRa-Alliance

2.2. LoRaWAN

The LoRaWAN MAC protocol is an open source protocol standardized by the LoRa Alliance which
operates above the LoRa physical layer. The LoRaWAN MAC layer specifies the MAC control process
which allows data transmission between several end nodes and gateways. The MAC protocol provides
LoRa end nodes with channel access, ADR, security and energy saving services [19]. The deployment
of thousands of end nodes requires extensive access to improve simultaneous transmissions and
circumvent packet collisions. The LoRaWAN MAC uses Aloha to coordinate the links, dividing airtime
among end nodes to handle packet collisions. The Aloha MAC permits end nodes to forward data
packets once they wake up and in the event of any collisions the exponential back-off is applied.
The LoRaWAN protocol is responsible for device class allocation. The LoRa specification defines three
device classes that the end nodes must operate in, Class A, Class B and Class C. The end node initiates
Class A communication which is fully asynchronous. The UL message can be transmitted at any
instant, followed by two short DL windows, providing a prospect for bi-directional communication.
After an end node has sent a confirmed message, the end node expects an Acknowledgement (ACK)
from the NS during the two pre-set timeslots known as “Receive Windows (RW)”. The gateway either
responds with the first RW or the second RW. Unconfirmed messages from the end nodes do not
receive acknowledgement from the NS. Periodic beacons are used to synchronise Class B devices to the
network, which opens DL ‘ping slots’ at programmed intervals. The network is provided the capacity
to transmit DL messages with a predetermined latency but results in added energy consumption in the
end node. Class A and B end nodes are largely battery-powered but Class A utilises less power than
Class B. Class B devices do not support Class C functionality. Class C devices, additional to the Class
A structure of UL followed by two DL windows, further reduce latency on the DL by maintaining
the end node receiver continuously listening for responses from the gateway. Because these devices
are continually listening, they consume more energy and hence need to be mains powered. Class C
devices do not support Class B functionality.

A LoRaWAN network will always use LoRa as its PHY layer. The LoRaWAN protocol is the
suitable MAC layer but different MAC layer protocols can be used. LPWAN requirements such as ACKs,
firmware updates, localisation, roaming, and security are all addressed in the LoRaWAN standard.

2.3. Transmission Parameters

LoRa end nodes are set up utilizing distinct SF, BW, CR and TP settings, resulting in several
permutation possibilities. The LoRaWAN network performance vastly depends on the configuration
of these parameters [20]. Determining the settings that curtail the cost of transmission energy whilst
sustaining the communication performance requirements is challenging. Configuring these parameters
helps to optimize the communication performance as these parameters have an effect on energy
utilization in end nodes. Therefore, it is vital that the battery powered end nodes select transmission
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parameters that are appropriate in a LoRa network. Poor choices could cause a hundred-fold briefer
end node lifetime, rendering numerous commercial applications unfeasible as a consequence [21].
Algorithms that can find each node’s optimum transmission parameter configuration are required for the
network. Achieving configurations that are optimum involves investigating links with varied settings.
LoRaWAN implementations employ static transmission parameter settings with high reliability.

2.3.1. Spreading Factor

SF is the chip rate divided by the symbol rate. It is the number of raw bits that can be encoded to a
symbol. As SF increases the signal-to-noise ratio (SNR) increases, resulting in an increase in sensitivity
and range. However, it results in an increase in the packet airtime. The expression 2SF denotes the
number of chips each symbol can hold [10]. The SF characterizes the relationship between the chip
rate and the baseband data rate. LoRaWAN SF values range from 7 to 12, which implies that an SF
value of 12 increases the strength of the communication signal by increasing the sensitivity of the
receiver-equipment but the data rate decreases as a result. Conversely, a reduction in the SF causes the
data rate to increase, but the message being forwarded requires a higher TP to be properly decoded at
the receiver. When the signal is weak, LoRa devices use a higher SF and using a higher SF implies a
longer ToA. The distance from the gateway also affects the SF. The further away the end node is from
the gateway the weaker the signal and therefore the higher the SF.

2.3.2. Bandwidth

In terms of LoRa modulation, bandwidth is a very crucial parameter. A LoRa symbol comprises
of 2SF chirps, that spread in the whole frequency domain. A chirp is a signal wherein the frequency
increases, called an up-chirp or decreases, known as a down-chirp. The LoRa symbol begins with a set
of up-chirps whose frequency increases with time. When it reaches the maximum frequency, it skips
back to its lowest frequency and starts over. The down-chirp is the inverse of the up-chirp which
starts at the maximum frequency and decreases with time. When it reaches the minimum frequency,
it skips back to the maximum frequency and the cycle starts over. BW is a range of frequencies within
a given transmission band [22]. High values of BW give higher data rates which implies a shorter
ToA. This results in reduced sensitivity because of the additional noise that is integrated. A lower
BW produces better sensitivity but achieves lowered data rates. Data transmission occurs at a chip
rate corresponding to the BW where a BW of 125 kHz corresponds to a chip rate of 125 kilo chips per
second (kcps). While the BW could be selected ranging between 7.8 kHz and 500 kHz, a standard
LoRaWAN functions at either 500 kHz, 250 kHz, or 125 kHz (BW500, BW250 and BW125) according to
the regional parameters [9].

2.3.3. Coding Rate

LoRa uses FEC error coding to improve the robustness of the wireless connection. This type of
error coding results in additional bits within the LoRa physical layer payload which is controlled
by the CR parameter. The LoRa modem uses CR to provide increased protection against bursts of
interference and decoding errors. LoRa permits CR settings to be either 4/5, 4/6, 4/7 or 4/8. Setting a
high CR value implies that there are more error correction bits which provide better protection for the
transmitted data. However, on the downside, it increases ToA which in turn decreases battery life.
Receivers which vary CR and hold SF and BW constant, can still communicate between them by using
an explicit header, since the CR of the payload resides in the packet header, that is encoded at CR 4/5
by default [17].

2.3.4. Transmission Power

In LoRaWAN networks, the power essential for the transmission of a data packet is adjustable as
appropriate. Lowering the transmission power will save the battery but shorten the signal range and
vice versa. The LoRa radio the TP is adjustable from −4 dBm to 20 dBm in notches of 1 dB. However,
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in real life deployments, the TP range is commonly restricted to between 2 dBm and 20 dBm because
of the hardware limitations. Additionally, if the TP levels greater than 17 dBm are experienced, only a
duty cycle of 1% can be utilised [21].

2.4. Adaptive Data Rate

An essential LoRaWAN feature is the ADR scheme which seeks to minimize battery usage and
maximize throughput by altering the data rate and TP for each end node in the LoRa network. Data
rate adaptation in a LoRaWAN allows easy scalability of the network by the addition of gateways.
Furthermore, the use of ADR significantly increases the capacity of such a network, since the data
packets that are transmitted using different SFs are orthogonal and can be transmitted concurrently [23].
An ADR scheme was developed into LoRaWAN to be able to manage the end nodes’ transmission
parameters to improve the packet delivery ratio (PDR). The ADR controls transmission parameter
settings for the UL data from the end node to the gateway. The ADR algorithm is responsible for
managing the data rate and transmission power of end nodes based on the link budget estimation in
the UL message and the maximum SNR required for accurately decoding data packets at the existing
data rate. In the case of fixed end nodes, the NS manages the ADR depending on the history of the
UL packets received, referred to as “Network-managed ADR or Static ADR”. The network based
ADR approach does not work for mobile end nodes because channel attenuation which occurs as
the device moves. Where mobile end nodes are concerned, ADR is performed “blindly” on the end
node side known as “Blind ADR”. LoRaWAN networks employ adaptive modulation techniques
with multiple channel multiple modem transceivers in the gateway to receive multiple messages
from the channels. Each specific signal uses a unique SF, with orthogonal separation provided by the
spread spectrum. This technique presents advantages in data rate management [24]. LoRaWAN’s
ADR scheme dynamically adapts the transmission parameters aiming to prolong battery life and
maximize throughput. This is done by varying the data rate and TP for each end node in the LoRa
network. ADR improves the data rate, ToA, and energy utilization. In LoRaWAN, varying the SF
adjusts the data rate of the end nodes, thus optimizing the throughput. Nevertheless, the ADR must be
utilized cautiously since the collision probability, that directly influences throughput, is affected by the
change in SF. The ADR algorithm was established for stationary end nodes and stable radio channel
environments [18]. The ADR scheme bases its choice of data rate on the past performance of each end
node. The LoRaWAN MAC layer contains four different commands for the ADR shown in Table 2.

Table 2. LoRaWAN Adaptive Data Rate (ADR) Commands. NS: Network Server, UL: uplink.

Command Description

ADR End node sets this bit requesting the gateway to control its data rate.
ADR = 1 NS will control the end nodes data rate
ADR = 0 NS will not control the end nodes data rate

ADRACKReq Allows end nodes to periodically receive confirmation that NS is receiving UL messages
ADRACKReq = 1 NS should respond to confirm receipt of UL data
ADRACKReq = 0 Confirmation of receipt of UL data not required.

LinkADRReq Transmitted by NS to request end node to change its transmit parameters
LinkADRAns Transmitted by nodes in response to LinkADRReq command

LinkADRAns = 1 Transmit parameters successfully set
LinkADRAns = 0 Command is discarded

Because end nodes have limited battery capacity, the performance of LoRaWAN networks is
affected by power consumption. The fact that the end nodes must accommodate specific data rates
further compounds the power limitation challenge because the SNR levels must be above certain
thresholds as well as the power levels. Additionally, the end nodes have to respond to the channel
conditions in the network. This means end nodes must have the ability to regulate the transmission
rates and power levels appropriately [25]. A LoRa gateway can listen for UL messages simultaneously
on every SF and BW permutation, whilst the end nodes are capable only of eavesdropping on a single
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fixed SF and BW sequence successively. An end node may use any set of transmission parameters to
communicate with the gateway without handshaking. Message transmission from gateways to end
nodes occurs on a programmable offset from the UL data rate in the first RW, and typically with the
highly robust setting, the lowest data rate in the second RW.

An end node notifies the gateway that it requires the use of ADR by configuring the ADR bit in the
frame header. Once ADR is configured, the NS uses LinkADRReq, the MAC command that controls the
end node’s data rate and TP. The end node will respond with the LinkADRAns command to indicate
acceptance or rejection of the new settings. The ADR algorithm comprises of an acknowledgement
system which is devised to permit end nodes to intermittently verify that the NS received the UL
message. If an ACK message is not received by the end node, the end node will switch to a lower data
rate in an attempt to regain connectivity. The permutations of the transmission parameters produce a
potential 6720 potential transmission settings of which the LinkADRReq command can only select from
a subset of eight data rate settings and six transmission power settings [18]. Even though LoRaWAN
stipulates a transmission parameter signalling scheme via the LinkADRReq command, there is no
description available of how the communication should be handled. The specification does not state
how the NS should instruct end nodes concerning adapting the data rate, when to change a setting,
or the order in which the settings should be changed [22]. The NS is left with the responsibility to
implement ADR. The end nodes also have the capability of managing the ADR transmission parameters
using the ADR system that is nested on the end node side. This means that, the ADR scheme can run
asynchronously at the NS side and the end node side.

As stated in the LoRaWAN standard, there are two parameters that have been specified, namely
ADR_ACK_LIMIT and ADR_ACK_DELAY. The default values for these parameters have been set to
64 and 32, respectively. For every UL packet that an end node transmits, ADR_ACK_CNT counter is
increased by one. Once the ADR_ACK_CNT becomes equal to ADR_ACK_LIMIT without any DL
response, the end node sets the ADRACKReq bit and waits for an ACK from the gateway for the
subsequent ADR_ACK_DELAY UL packets. In the absence of an ACK ahead of ADR_ACK_DELAY
UL message, the end node decreases the data rate, attempting to re-establish network connectivity.
In accordance with the latest release, end nodes initially increase TP to secure connectivity. If that
is inadequate, the end nodes then reduce the data rate as an element of the subsequent stage [26].
Figure 2 outlines the flow of the ADR scheme executed at the end node.Sensors 2020, 20, x FOR PEER REVIEW 9 of 25 
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3. Review of Adaptive Data Rate Algorithms

Having an exceptional ADR scheme gives vendors a competitive edge, as such they maintain
their applications confidential. Thankfully, there is an open source network manager that made its
ADR algorithm publicly available—The Things Network [27]. This algorithm is based on Semtech’s
recommended algorithm for rate adaptation. The LoRaWAN ADR is a scheme used to optimise
the network’s data rates, ToA and energy consumption. To maximize battery life of the end nodes
and global system capacity, the LoRaWAN NS controls the data rate and TP for all the end nodes
independently through an ADR scheme. Several data rate adaptation schemes have been propositioned
in literature that attempt to enhance communication performance. In literature ADR scheme has
been modified and implemented to meet different objectives in the LoRaWAN targeting network
performance metrics. We review the body of work that employs ADR to improve metrics such as
scalability, throughput, channel access, received signal strength (RSS) and energy efficiency.

3.1. Scalability

In LoRaWAN networks, ADR control is enabled to keep network connectivity by providing
numerous data transmission rates. The condition of the RF connection is determined through the
receive status of the ACK packet in LoRaWAN through link errors. This, however, does not indicate a
congested network but may result in inefficiencies in transmitting data due to long transmission delays.
Since congestion is not considered a connectivity problem, decreasing the data rate by substituting the
modulation system is inappropriate. In [28] the authors developed an ADR scheme that attempts to
preclude extraneous data rate management using logistic regression. The proposed scheme recognises
the congestion levels of the network by learning and then applying the result to control the data rate.
The method uses data rate, RSS, and number of connections at the gateway as characteristics for
learning. Evaluation of these attributes provides the congestion estimation. When the congestion is
projected, the proposed algorithm revises the back-off time rather than reducing the data rate, adjusting
latency instead of reducing throughput. This results in an improvement in the accuracy of data rate
control and network efficiency. The NS performs the learning and delivers the results to the end nodes
to predict congestion. The computation for learning is done in a centralised machine. The strength of
this approach is that it considers the level of congestion in the network unlike the legacy ADR scheme.
The drawback of this approach is that the process demands an ACK DL message for each transmission.
Because DL traffic has a negative effect on UL throughput, the PDR decreases as a result [29]. Future
research could look at studying distributed learning of the end nodes. Other methods of optimization
could be applied for predicting congestion.

Framework for LoRa (FLoRa) was developed in [30], wherein the authors dynamically manage
link parameters for scalable and efficient network operations. The authors developed a non-proprietary
scheme for end-to-end LoRa simulation in OMNeT++. They considered a distribution of SFs on the
average SNR values from several uplink packets received at the gateway as opposed to the highest
SNR used in the standard ADR scheme. They use comprehensive simulations to demonstrate that
ADR effectively increases the PDR, maintaining low energy utilization under stable RF conditions.
Their results showed that adjusting channel conditions had a severe effect on the performance of
the ADR scheme, hence the modification of the link quality indicator, and the introduction of a
transmission policy to increment TP at the end nodes. The proposed ADR scheme achieved at least
thirty percent better PDR compared to the standard ADR scheme in the cases of moderate variable
channel conditions. The proposed scheme showed that appropriately configuring SFs and TPs could
boost the network capacity and reduce energy utilization, based on the overall knowledge of the
network. It implements an ADR algorithm wherein end nodes could dynamically update their SF and
TP. Although the proposed algorithm shows significant increase in reliability and energy efficiency,
there is a drawback. Waiting for twenty frames in order to adjust the scheme may be too long. For dense
networks, link-based adaptation is inadequate. Future work could consider incorporating collision
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probability and the distribution of parameters in the network. Balancing the link budget for every link
and PDR of the entire network could further improve scalability.

Reynders et al. [31] proposed a MAC layer protocol RS-LoRa which distributes SFs and TPs
to reduce the capture effect and inter-SF collisions and improve network reliability and scalability.
They introduced a two-step lightweight scheduling method that divides end nodes into clusters,
where identical TPs are applied in each cluster to diminish the capture effect. First, the end nodes
get recommended by the gateway’s coarse-grained scheduling to apply distinct SFs and RSS to allow
concurrent transmission, therefore reducing packet collisions. The gateway broadcasts beacons to
the end nodes before the nodes can send any packets. Depending on the coarse-grained information
supplied by the gateway, the end nodes select the parameter combination and channel that best suits
the nodes. Using this approach, reliability of the network is improved by reducing packet error rate
(PER) up to twenty percent compared to standard LoRaWAN using NS-3 simulation. Improved
network reliability improves network scalability which in turn contributes to an improvement in the
throughput. Network performance improves significantly when there are many end nodes in the
network to the tune of one thousand, for example. Although the light-scheduling approach improves
reliability and scalability, there is an introduction of additional energy consumption as the end nodes
need to listen for the beacon from the gateway before sending a packet. The approach does not
eliminate packet collisions entirely because uplink messages could still collide with beacons from other
gateways. Because the approach uses Aloha, it also means collisions cannot be eliminated. Future
work could look at using a different MAC protocol to improve PER.

The authors in [32] modified the standard ADR algorithm to produce an expansion of the network
scalability, fairness between nodes, PDR and robustness to dynamic channel conditions. The algorithm
facilitates the system to optimize SF and TP for each end node with the purpose of increasing reliability
of communication and optimizing energy usage at the end nodes. The authors recommend varying
data rates before increasing TP, averaging of SNR history, and accounting for hysteresis. With empirical
evaluation of the relationship between PER and SNR the authors find a channel model which they
subsequently applied in MATLAB simulations. Certain alterations of the algorithm, enable the
achievement of improved error performance in rough channels resulting in the reduction in the amount
of retransmissions and DL commands from the NS. The algorithm decreases the data rate before
increasing TP whenever a given fixed threshold is exceeded. They introduce variable hysteresis into
the algorithm which mitigates against the effect of collisions and duty cycle limitations. The proposed
algorithm reduces the number of data messages in the UL as well as the MAC command messages in
the DL and achieves superior error performance in poor condition channels. This enables the extension
of the network range. The drawback of this algorithm is that the simulation model used does not
consider large complex networks.

A model that optimizes attenuation and collisions in order to optimally allocate the SF was
proposed in [33]. The model aims to optimize the quantity of end nodes distributed in the network
whilst assigning SFs that maximize transmission quality. They consider physical capture and imperfect
SF orthogonality whilst ensuring a specified probability of successful transmission to every end node
within the network. The approach considers an authentic propagation model which considers physical
capture that could surface at the gateways. They consider inter-SF and intra-SF interference for each
node as a potential for packet collisions. However, it assumes that the density of the end nodes
within the gateway range is uniform, which is not realistic. End nodes covering areas of several
square kilometres would be highly non-uniform. This mathematical model needs to be validated by
simulation to quantify the gains of appropriate SF allocations regarding PDR in a realistic environment.

Bor et al. proposed a dynamic transmission scheme and made the network denser by adding
more gateways. They experimentally observed the capture effect of LoRa, that, where signals with
the same SF are transmitted simultaneously, the strongest signal suppresses the weaker signals
when the difference in power is adequately large. They developed a LoRa simulator (LoRaSim)
and analysed the LoRa scalability threshold in fixed settings. They modelled the capacity of such
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networks by introducing the Data Extraction Rate (DER) metric, modelling uplink behaviour and
proposed a mathematical model for transmission range, dependent on the experimental data gathered.
They concluded that the network with a single gateway and moderate transmission parameters did
not scale well, whilst those with dynamic adaptation of transmission parameters or multiple gateways
tended to scale better. They found that network scalability increases when the parameters configuration
minimizes the ToA. This model, however, overestimates link attenuation of LoRa signals in free space.
The model needs on-site measurements which are difficult to obtain since most of the area of coverage
comprises of conventional connections, classified as connections with dynamic temporal link attributes.
Although the use of multiple gateways outperforms existing results, optical placement of the gateways
consistent with the category of application would further improve the performance.

Finnegan et al. [34] presented significant improvements aimed at the end node and gateway
that decrease the convergence time for LoRa nodes to attain optimum data rate. They extended the
LoRaWAN component in NS-3 by including the ADR, thus allowing the simulation of lifelike LoRaWAN
networks by implementing novel improvements in this module. The simulations demonstrate a
significant decrease in convergence time for the end nodes due to the modifications. This leads to an
increase in global PDR for the network in a dynamic network environment. The authors presented an
evaluation of the behaviour of the standard ADR scheme and proposed a new variant of the scheme
with improvements that enhance performance in all cases whilst maintaining the ability to be efficiently
integrated into an existing LoRaWAN network.

The authors in [35] employed SF allocation as a tool to increase LoRa network capacity. They defined
an optimization problem for SF allocation by maximizing Packet Success Probability (PSP) to maximise
end node connectivity. In their scheme, the authors consider both inter- and intra-SF interference and
when assigning the SF allocation. The interference considerations are incorporated through the capture
effect when the signal of interest maintains a Signal-to-Interference (SIR) which surpasses a certain
threshold. The propositioned approach controls the SF distribution dependent on the assignment
distances resulting from the solution of the optimization problem instead of the coverage distances
derived from the physical layer LoRa sensitivities. The authors use stochastic geometry to determine
the average system PSP. They assign SFs to end nodes with two considerations: (a) the received power
from the end node must surpass the receiver sensitivity threshold for the allotted SF, and (b) the SIR
for the end node must similarly eclipse the accurately decoded SIR threshold for that SF. Although
the complexity is high for multiple variables, the global optimization solver can be used to solve
the problem.

A method to improve the capacity of Mesh LoRa networks using network clustering which is
based on SF was proposed in [36]. They used a Tree-Based SF Clustering Algorithm (TSCA) which
allocates nodes to numerous subnets. They use the LoRa transmission parameter selection to create
mesh networks. The approach is rooted at the gateway in which every tree is a subnet with a different
SF to enable simultaneous transmissions. TSCA balances the traffic load to avoid bottlenecks at the
subnet using a SF capacity estimation considering the number of nodes, data rates and hop count of
the subnets. Minimizing the number of hops and the delay is the objective, since higher SF values
result in more airtime, leading to an increase in the end-to-end delay. According to the authors, their
results showed an improved performance in contrast with the SF allocation in a single-hop LoRaWAN
network. Future research could involve a faster approach in predicting connectivity that would utilise
the quickest data rate for the connectivity prediction of all the SFs.

3.2. Throughput

ADR can be used to improve network throughput by improving DER. [37] propose two algorithms
of incremental complexity EXPLoRa-SF and EXPLoRa-AT. EXPLoRa-SF is a heuristic which attempts to
equally distribute SFs to the end nodes in the gateway’s radio range, only restricted by their Received
Signal Strength Indicator (RSSI) values and relevant thresholds. EXPLoRa-AT on the other hand,
propagates impartial allotment of the ToA between the end nodes in the network. The proposed
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scheme does not configure the SF on the basis of distance and received power measurement, but instead
considers the quantity of linked end nodes, enabling the equalisation of the ToA of the packets in
each SF. EXPLoRa-AT guarantees equalisation of the RF channel utilization by the end nodes by
leveraging the use of multiple SFs in order to have orthogonal sub-channels. The two algorithms
combine SF orthogonality and radio range visibility to expand the density of end nodes with concurrent
transmission in the grid, reducing collisions, improving DER and ultimately improving throughput.
The ordered waterfalling technique is used for even distribution of channel load between the end nodes
in the system. For dense networks, the algorithms substantially improve data rates and robustness.
Simulation of EXPLoRa-SF and EXPLoRa-AT in “LoRaSim” has a superior performance compared
to the standard ADR. These two algorithms are implemented using one gateway. The drawback of
this approach is that it is designed under the assumption that end nodes transmit with the uniform
data rate and payload. The work in [38] attempts to address this drawback. There are circumstances
where the assigned SF in EXPLoRa-SF does not adhere the restrictions stipulated in LoRaWAN that
degrade performance. Additionally, the proposed approach in [37] does not support implementation
with multiple gateways which is an open gap for future research.

A contention-aware ADR scheme, developed by [39] traces the distribution of end nodes for every
SF and seeks to expand the number of gadgets utilizing low SFs. The authors attempt optimization of
throughput in networks where the same SF can be used by a huge number of end nodes. The scheme
uses constrained optimization and defines the total throughput as an objective function with respect
to the quantity of end nodes utilizing specified SFs. The authors develop the theoretic optimum
throughput which could be accomplished by changing only the data rate of the end nodes. They adopt
the gradient projection method to solve the constrained optimization problem, which enables the
gateway to effectively obtain the optimum configuration subject to the constraints, irrespective of
the number of end nodes implemented in the system. When numerous end nodes have analogous
link quality, specifically in relation to the partial use of the SF, the propositioned approach achieves
significantly better throughput than the existing scheme due to the load balancing effect. The strength
of the approach is factoring in the contention issue in optimising ADR. Although this approach
improves throughput, the transmission success ratio of the end nodes declines, so if reliability is more
important than throughput in an application, this approach would not be sufficient. For future research,
a more comprehensive evaluation and efficient solution for the SF update via DL is an area that is open.
An optimization technique can be developed that considers the transmission success ratio at the same
time, thus extending the solution to the multi-objective optimization problem.

A Fair Adaptive Data Rate algorithm (FADR) that calculates data rate and TP assignment with
the purpose of achieving fairness in data rate and reducing collisions between the end nodes is
propositioned in [40]. The algorithm uses RSSI values in its computations while deciding SF and
TP allocations to maximize DER among all end nodes. The authors propose a “region concept” to
assign SFs depending on the RSSI, and within the regions they are allotted SFs corresponding to the
proportions provided. The fairness of resource distribution is accomplished by the proposed power
allocation scheme, which aims to optimize the RSSI of the end nodes, allocating low TP to the end
nodes with a weak signal and high TP to end nodes with a weak signal. They achieve uniform DER for
all the end nodes notwithstanding the distance from the gateway and maintain the end node’s lifespan
by applying low TP levels reducing power consumption by twenty two percent compared to standard
ADR. The authors showed that by incrementing the number of end nodes in the network, the fairness
index between end nodes decreases. This would favour communication from end nodes nearer to the
gateway in comparison with those further away. This approach is therefore only feasible in extremely
small networks whose end nodes are positioned near the gateway. Using different propagation models
in the simulation is worth investigating.

A mathematical model whose numerical analysis results in a closed form formula that maximizes
throughput whilst complying with transmission duty cycle (TDC) regulations was proposed in [41].
Their model mitigates against strict restrictions imposed on duty cycle of ISM bands in some regions
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and improves transmission and power efficiency in the end nodes. The approach presents two
meta-heuristics to solve an optimization problem by computing the transmission policy. An optimal
transmission policy means optimal selection of BW, SR, CR and TP. By considering band utilisation
and power utilisation efficiency together, the highest achievable throughput of end nodes is calculated
and optimized regarding a series of possible transmission parameters, hence achieving the optimal
transmission policy. The authors resolve the convolution of LoRaWAN networks by modelling the
core status of end nodes applying the Markov model. In so doing, they develop a closed-form formula
for node performance which is optimized mathematically with classic maximization algorithms.
This method increases performance by over thirty three percent compared to the standard ADR scheme
and is indicated to be able to operate in hardware constrained IoT devices. The strength of this approach
is that the model is based on an optimal policy derivation theory, which gives the approach the ability
to statistically predict the performance of the end nodes in the LoRaWAN network. The drawback
is that it is a complex combinatorial optimization problem which cannot be solved directly. Future
research could investigate the use of a simpler optimization approach.

Reinforcement Learning (RL) based approach is used in [42] wherein they derive efficient ways of
disseminating updated transmission configurations to maximize throughput while mitigating against
TDC limitations. The authors mathematically model the average throughput per end node as a function
of the packet generation behaviour of the end nodes such that the optimal transmission parameters are
obtainable. They use the RL-based algorithm to update the configuration of individual end nodes to
maximize the accumulated throughput per end node. They then analyse the behaviour of the LoRa nodes
focusing on when and how packet collision may occur. Centred on this analysis, they mathematically
depict the performance of LoRaWAN as a function of the transmission characteristics of the constituent
nodes. The results show a significant improvement in throughput per node compared to standard
ADR algorithm. The strength of this approach is that it takes into consideration the fact that IoT
networks are heterogenous, that send packets at different packet rates and varying payloads. In the
model they consider randomly distributed end nodes and the capture effect. Instead of just maximising
LoRa performance, they update transmission parameters of the overall network configurations.
This approach improves throughput but did not look into its effect on power consumption. Further
study on how this approach can be used to aggregate transmission settings from different gateways in
a single updating packet in a LoRa system with multiple gateways is open for research.

Channel attenuation and data collision are classified as reasons for packet loss in [42]. The authors
formulated an ADR selection scheme with enhanced loss differentiation which selects a reasonable data
rate that maximizes throughput. The solution comprises three parts: prediction of channel attenuation,
data collision probability and a data rate controller. They establish a channel attenuation model which
they use to determine packet loss probability by channel attenuation. They then find the probability
of data collision due to interference. A simulation model is established to investigate the correlation
between the number of end nodes and the packet loss ratio (PLR) in the LoRa network using one
gateway. They use MATLAB simulation to analyse and validate the performance of the technique.
The proposed scheme showed reduced packet loss and improved DER compared to the standard ADR
scheme and EXPLoRa. In this approach the authors only considered a situation where the nodes report
periodically. Future work could look at event-driven applications as a consideration.

A concept of network slicing was introduced in [43]. The LoRaWAN network is partitioned into
several virtual networks, termed network slices, to efficiently assign network resources to support
specific QoS requirements for every slice. Within the IoT, every end node demands specific QoS
requirements regarding delay and reliability determined by the type of IoT application being run.
The authors use various network slicing strategies with different SF distributions to evaluate the
network performance and optimise SF allocation for each slice. They propose an adaptive dynamic
inter-slicing algorithm wherein the BW is reserved on each LoRaWAN gateway using Maximum
Likelihood Estimation (MLE). They then improve that algorithm by considering each gateway
individually, reserving its BW after utilising MLE on the end nodes within its range (intra-slicing
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algorithm). They compared the two adaptive dynamic slicing propositions to a standard fixed
slicing strategy in which the gateway’s BW is reserved uniformly among all the slices. Their results
indicated an improvement in the optimisation of ADR due to an efficient coordination of resources.
The strength of this approach is the provision of isolation of end nodes and its ability to maximize the
efficiency of resource allocation in each LoRaWAN slice. The drawback is that energy consumption
in the adaptive dynamic network slicing algorithm is increased compared to the static and dynamic
configuration. The authors extended this work in [44] by taking into consideration some smart
city applications representative of different QoS classifications and used a slice-based SF and TP
configuration optimization. They proposed a new slicing optimization method called TOPG that
is formulated on the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
and Geometric Mean Method (GMM). Their suggested scheme sets the LoRa SF and TP parameters
efficiently to improve the performance of every slice in terms of QoS, reliability and energy utilization.
The results showed that TOPG outperforms static and dynamic configuration strategies, highlighting
its effectiveness in the provision dynamic slice-based configurations and improving the performance
of LoRa slices with regard to reliability and the percentage of end nodes that fulfilled their throughput
and delay requirements.

The joint SF assignment and transmit power allocation algorithm has been investigated in [45].
They consider both co-SF and inter-SF interferences for the improvement of throughput fairness.
In theory, there is a dramatic decrease in performance levels when orthogonality conditions are not
met under the same SF conditions and communication channel. The authors formulated a joint SF
and TP distribution problem to maximize the minimum UL throughput of the end nodes, dependent
on co-SF and inter-SF interferences and power constraints. They based their strategy of SF allocation
on the matching theory. Once the end nodes have been allocated SFs, optimization of the power
distribution parameters is performed so as to maximize the minimal throughput achieved on each SF.
The authors addressed the intractability of the joint SF and power distribution problem by splitting it
into two subproblems: SF allocation under fixed TP, and TP distribution under fixed SFs. They use
both linear and quadratic approximation to make the non-linear inequalities in the feasibility problem
tractable. Their simulation results showed that in spite of severe co-SF and inter-SF interferences,
the propositioned algorithms outperform standard algorithms, jointly with regards to minimum end
node data rates, user fairness, and average end node throughput. The two propositioned linear and
quadratic approximation methods to tackle the non-linear feasibility problem for TP distribution
produced efficient TP solutions, resulting in significant energy conservation, whilst further improving
minimal throughput and user fairness.

3.3. Energy Efficiency

Authors in [20] evaluated the performance of LoRaWAN under different scenarios using computer
simulation and testbeds. They investigate the network performance regarding PDR, mean energy usage
per transmission and mean energy utilization due to packet collision per node. They show that the LoRa
network performance is enormously reliant on to the configuration of SF, CR, and BW. The experiments
show the access strategy of pure Aloha has limitations which affect performance. The short-coming
could be mitigated by the randomization of BW selection and node-specific optimization to maximize
data rate in relation to its channel conditions and contention severity. They conduct several experiments,
the first which considers robustness and uplink data rate which they evaluate with and without
the capture effect. In the second experiment they incorporate multiple frequency randomisation to
minimize the collisions. In this experiment, they adopted the slowest case from Experiment one.
The results show that the frequency randomization that was introduced is capable of increasing the
PDR of the slowest case. In the final experiment they contrast two simple optimizations. The first
optimization, Opt1, sets the parameters in every end node so as to minimizes ToA, which is determined
by its distance from the gateway. The second optimization, Opt2, sets the parameters in every end
node so that it minimizes its ToA and energy consumption. In other words, Opt2 attempts to minimize
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the energy utilization of the solution attained by the Opt1. The results show that optimization can
yield a higher PDR and lower energy consumption. Interference from other ISM frequency users was
not considered in this approach but could be a crucial factor which affects the performance. This could
be interesting for future research. It could also be noteworthy to examine the effect of the different
classes of the end nodes and their DL transmissions including the presence of multiple gateways in
the vicinity.

In [46] the authors aim to optimally transmit data with a high PDR whilst maintaining a low
energy utilization. They introduce integer linear programming models to establish the optimum
allocation of the parameters by considering the distribution of the end nodes and the impact of
transmissions from the surrounding end nodes. They split the optimization into two phases. First,
they optimize the SF such that the collisions in the SF with the most traffic are marginal, and the
collisions in every SF is balanced for all gateways to guarantee reliable communication within the
network. As the problems in consideration are non-linear, they are converted into tractable integer
linear programming models. Secondly, they optimize the TP to minimize the energy consumption
in the network. After obtaining the optimum configuration, they analyse the solutions by means of
extensive network simulations and compare them to different state of the art algorithms. The results
illustrate that the optimal configurations consistently perform better, achieving a greater PDR and
nominal energy utilization across different scenarios. The approach can guarantee that a significant
proportion of end nodes communicates reliably with a high PDR. All the network end nodes share
the improved PDR, thus guaranteeing an unbiased distribution of RF resources to all the end nodes.
The strength of this approach is that the models are general, thus allowing network configuration with
single or multiple gateways, along with different spatial configurations of LoRa devices. Commercially
available solvers can be used to solve the optimization model within a short space of time. This means
that even for huge and dense networks with thousands of devices, the proposed model can be readily
employed by service providers to establish the optimum setting of the LoRa parameters. The dynamic
reconfiguration of the LoRa parameters could be an open area for research. More accurate path loss
parameters could be estimated using linear regression on measured data instead of sourced data [47]
used in the experiments. The deployment environment of the network highly affects the actual path
loss parameters.

An ADR scheme that efficiently optimizes the PER fairness within a LoRaWAN cell was developed
in [48]. The authors achieved this by optimising the TP and SF for every end node whilst circumventing
near-far problems by allotting outlying end nodes to different channels. End nodes are arranged by
their pathloss and divided into uniform clusters whose number is equivalent to the number of available
channels. Every cluster is allocated a distinct channel and inside the clusters the proportion of end
nodes employing the SFs is relative to s/2s, corresponding to the solution of the optimization problem
to minimize the maximal collision probability among all the SFs. The algorithm calculates the optimal
SF allocation to utilize in order to minimize the collision probability. The scheme optimally assigns SFs
and distinct power levels to nodes within a LoRaWAN cell such that the signals do not interfere with
each other. This scheme improves the PER for end nodes further from the gateway. Simulations of this
approach implemented in NS-3 demonstrate that the PER can be reduced by up to fifty percent for end
nodes further away from the gateway in a moderate contention scenario. The overall network PER
is reduced by 42%. The approach reduces operating expenditure by reducing energy consumption
providing wide network coverage which in turn reduces the number of gateways. The scheme uses
uniform distribution of the end nodes around the gateway and all the end nodes can use all SFs and
TPs, that is, all end nodes in the network are capable of reaching the gateway with each SF and each TP
configuration. This does not function in actual networks where specific end devices can only utilise a
subset of the configuration parameters determined by the distance from the gateway. Further study
could investigate randomly distributed end nodes. They consider unacknowledged traffic in this work.

Modulation and Coding Schemes (MCS) affect the transmission duration of the data frames.
Data delivery time is dependent on network performance which impacts on energy consumption.



Sensors 2020, 20, 5044 16 of 25

For example, [49] considers failures in attempts to transmit triggered by arbitrary noise in the channel.
The authors develop a precise analytical model of the data delivery time, dependent on the network
set up. They show that their model can be used in the MCS (SF, BW, CR) the election process to fulfil
heterogenous QoS requirements of different types of traffic. They presented a precise mathematical
model of transmitting data which allows estimating performance indices such as PLR payload and
delivery time distribution. The strength of this approach is that it considers heterogenous network
with various types of traffic and QoS requirements. Furthermore, the proposed model allocates MCSs
such that QoS requirements are fulfilled. The algorithm has a drawback in that it does not consider
inter-SF interference which is vital for huge network loads. The model can be improved to not only
improve the packet loss ratio in the network, but in addition the PLR distribution and to take into
account the non-orthogonality of SFs in the model.

In [50] the authors develop an approach that improves the QoS of the LoRaWAN network by
reducing data collisions and energy consumption, and increasing the DER. They use the Mixed Integer
Linear Programming (MILP) optimization method to generate optimum settings for SF and Carrier
Frequecy (CF) parameters. LoRaSim simulation is employed to demonstrate the effectiveness of the
approach for different network scales. For their model, the authors assumed that BW and CR are fixed
in computing ToA while they varied CF and SF to maximize the success probability. Three evaluation
metrics were used to assess the network performance, namely, DER, number of collisions and network
energy consumption. Simulation results demonstrated that MILP optimized the assignment of SF and
CF pairs with over six percent increase in DER compared to the standard LoRaWAN ADR and number
of collisions thirteen times smaller. The network energy consumption became almost three times lower
than the equal-distribution and random dynamic allocation strategies. The strength of their approach
is that it has backward compatibility with the standard ADR scheme, implying they are implementable
in off-the-shelf LoRa devices. Future work could entail extending the optimization approach to longer
transmission distances and a bigger number of gateways.

The authors in [51] present a performance improvement technique through SF distributions for
LoRa networks. They formulate the optimization problem for the SF distribution to maximize the
packet reception probability (PRP) under a constraint for the mean energy utilization of each end
node. This makes provision for the network performance to improve under the constraint for each end
node by solving this optimization problem. The authors develop a technique to solve the formulated
problem based on a distributed genetic algorithm, which is a metaheuristics technique. The technique
improves the network performance by assigning the SFs to end nodes under the constraint for the
average energy consumption of each end node. The assumption is that the end nodes are static and
their number in the network does not change. The PRP is derived while considering the imperfect
orthogonality of the SF in LoRa networks. Their results showed that the PRP performance of their
proposed technique is superior and uses less average energy utilisation for all end nodes compared to
the existing schemes. Future work could involve energy consumption per node rather than an average
for all the end nodes.

4. Comparison and Discussion

In this paper, we performed a comprehensive analysis of solutions that have been developed to
optimize ADR algorithms. The proposed optimization techniques address specific challenges such as
scalability [28,30–36], throughput [37–45] and energy efficiency [20,46–51]. Our analysis distinguished
the approaches used and highlighted the challenges and performance in the studies considered. Table 3
shows a summary of the comparison of the reviewed literature. The analysis of the literature shows
that existing ADR schemes use different algorithms with different computational complexities to
optimize the data rate, depending on the different goals such as RSS, congestion, capture effect and
channel contention. Computational complexity refers to the amount of resources required to run the
algorithm, particularly time and memory requirements expressed as a function n→ f(n) , where n
is the size of the input and f(n) is the worst-case complexity, or the average-case complexity. In [44]
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the adaptive slicing and SF-TP configuration algorithm has a constant complexity of O(1) for the
static algorithm owing to its simplicity. However, the overall complexity of the proposed dynamic
adaptive slicing and SF-TP algorithm and TOPG algorithm is O

(
n2
)
. Complexity is minimised in TOPG

due to the server reducing the search space to SF values that acknowledge the guaranteed bit rate
threshold. The computation time is reduced without a significant effect on QoS performance. In [45]
the running time of the developed SF-Allocation algorithm is upper bounded by O

(
NM + Q2 + M2

)
.

The complexity of the matching algorithm is not a constraint in an actual LoRaWAN because the
algorithm operates on the NS whose computational capacity is expansive. In [48] the number of end
nodes was capped at 1000 because of the restricted memory of the computer. All the transmission
parameter needed to be broadcast to the end nodes resulting in a O

(
n2
)

memory consumption. In [50]
the Approximation Algorithm maintains a linear complexity time O(n) = 111n + 57 in the worst-case.
The algorithm is designed to function in the LoRaWAN Application Layer and end nodes with a time
complexity that is equivalent to the ADR scheme, so that the proposed optimization algorithm does
not cause any substantial computation overhead, neither in the end nodes nor in the NS. Generally,
the operation of the algorithm uses less than 20 kB of memory, 4 kB on average and 20 kB being the
worst-case. This is insignificant since most commercial off-the-shelf end nodes contain no less than
128 kB of flash memory [52].

The algorithms used to improve scalability in LoRaWAN were discussed in [28,30–36]. The strength
of the approach in [28] is that it considers the level of congestion in the network unlike the legacy
ADR scheme. The drawback of this approach is that the process demands an ACK DL message for
each transmission. Although the proposed algorithm in [30] shows significant increase in reliability
and scalability, there is a drawback. Waiting for twenty frames in order to adjust the scheme may
be too long. For dense networks, link-based adaptation is inadequate. Future work could consider
incorporating collision probability and the distribution of parameters in the network. Balancing the link
budget for every link and PDR of the entire network could further improve scalability. In [31] although
the light-scheduling approach improves reliability and scalability, there is an introduction of additional
energy consumption as the end nodes need to listen for the beacon from the gateway before sending a
packet. The approach does not eliminate packet collisions entirely because uplink messages could still
collide with beacons from other gateways. Because the approach uses Aloha, it also means collisions
cannot be eliminated. The proposed algorithm in [32] reduces the number of data messages in the UL,
as well as the MAC command messages in the DL, and achieves superior error performance in poor
condition channels. This enables the extension of the network range. The drawback of this algorithm
is that the simulation model used does not consider large complex networks. The use of a Tree-Based
SF Clustering Algorithm (TSCA), which allocates nodes to numerous subnets in [36], vastly improves
scalability as is the characteristic of mesh networks. In our opinion, the algorithm in [35] is the
best approach in improving scalability as the proposed solution outperforms the equal-interval and
equal-area based SF distribution schemes in terms of average network PSP.
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Table 3. Comparison of Adaptive Data Rate Techniques.

Ref Objective Optimization Approach Testbed Simulation Mathematical Model Channel Contention RSS PDR Coverage Computational Complexity

[20] Energy Efficiency Machine Learning
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ADR schemes that maximize throughput maximizing solutions for the ADR scheme were
discussed in [37–45]. The ordered waterfalling technique used in [37] for even distribution of channel
load between the end nodes in the system by equally distributing SFs and then channel utilization.
This algorithm is designed under the assumption that end nodes transmit with the uniform data rate
and payload which is not practical. When we compare it to [39] which uses the gradient projection
method we find that their approach also uses the load balancing approach but factors in the contention
issue in optimising ADR making it a better scheme in maximizing throughput. The algorithm in [40]
uses all four transmission parameters to maximize the DER and attempts to fairly allocate data rates.
The algorithm works with nodes close to the gateway, making the solution suitable only for small
networks. The algorithm in [42] it takes into consideration the fact that IoT networks are heterogenous,
that send packets at different packet rates and varying payloads. In the model they consider randomly
distributed end nodes and the capture effect. Instead of just maximizing LoRa performance, they update
transmission parameters of the overall network configurations. Network slicing brings an interesting
dimension in ADR optimization which sets the LoRa SF and TP parameters efficiently to improve
the performance of every slice in terms of QoS. In our opinion the algorithm in [45] provides the best
approach for maximizing throughput, outperforming standard algorithms, jointly with regards to
minimum end node data rates, user fairness, and average end node throughput.

The challenge of conserving energy in LoRaWAN networks is a QoS in the ADR algorithms
in [20,46–51]. In [20] they first optimize every end node to minimise the ToA, which is determined by
its distance from the gateway, searching for optimal gateway location ensuring all nodes are connected.
They then use the results of the first optimisation to do a second optimisation that minimizes energy
consumption. Although the results show that optimisation can yield higher PDR and lower energy
consumption, interference from other ISM frequency users was not considered in this approach, yet it
could be a crucial factor which affects the performance. In [46] they also optimise two parameters,
first they optimise SF allocation to ensure reliable communication and then optimise TP to minimise
energy consumption in the network. The approach guarantees that a significant proportion of end
nodes communicates reliably with a high PDR. All the network end nodes share the improved PDR
thus guaranteeing an unbiased distribution of RF resources to all the end nodes. It is a better approach
compared to [20] because the models are general, thus allowing network configuration with single or
multiple gateways, along with different spatial configurations of LoRa end nodes. It is a more practical
approach. In [48] The scheme uses uniform distribution of the end nodes around the gateway and all
the end nodes can use all SFs and TPs, that is, all end nodes in the network are capable of reaching the
gateway with each SF and each TP configuration. This does not function in actual networks where
specific end devices can only utilise a subset of the configuration parameters determined by the distance
from the gateway. In [49] they use an optimisation approach with three transmission parameters, SF,
TP and CR, to develop an analytical model for heterogenous network with various types of traffic and
QoS requirements. The algorithm has a drawback in that it does not consider inter-SF interference
which is vital for huge network loads. The model can be enhanced to improve the packet loss ratio in the
network and energy consumption. In [50] they optimise the ADR scheme using SF and CF to maximise
the success probability while fixing BW and CR to compute ToA, improving the DER, thus conserving
energy. Out of all these schemes whose objective is energy efficiency, the most promising solution in
our opinion, is [51] The technique improves the network performance by assigning the SFs to end
nodes under the constraint for the average energy consumption of each end node.

The study of ADR in LoRaWAN networks reveals that common objectives for the proposed
algorithms are scalability, throughput, and energy efficiency. Testbeds, simulations, and mathematical
models are employed to develop and evaluate ADR algorithms and schemes. The mathematical models
use machine learning and mathematical optimization to optimize the ADR schemes. Various ADR
algorithms draw in different metrics that influence the standard transmission parameters where others
consider coverage, channel access/ contention, RSS, PDR and so on, as shown in Table 3. There are
trade-offs between achieving high data rates or energy consumption and the performance metrics
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required. Many schemes use a single gateway in their proposed solutions as it is a simple and straight
forward network. Most of the literature reviewed evaluated their ADR schemes using the simulation
tools such as NS-3, MATLAB, OMNET++, FLoRa and LoRaSim. The algorithms are mostly simulation
based as testbeds prove to be very expensive.

5. Research Gaps and Future Direction

The research conducted showed that the ADR algorithms that have been analysed prioritize
different performance metrics and hence provide various solutions. Data packet collision and
transmission duty cycle are issues that are common in many of the ADR schemes. Most approaches
implement their ADR schemes using a single gateway. Research gaps and future work that were
identified in the literature reviewed are as follows:

5.1. Machine Learning

In the solutions that use machine learning, the NS performs the learning and delivers the results
to the end nodes to predict some metric being monitored, for instance network congestion, using
centralised machine learning. This approach centralises the training data on one machine, the NS.
This can create a bottleneck in collecting training data. Future work may include using distributed
learning of the nodes rather than centralised learning. Distributed machine learning enables end nodes
to collaboratively learn the prediction model whilst keeping all the training data on the end node and
reducing learning error. Future work could also include the use of different optimization methods for
predicting the network metric under scrutiny.

5.2. Transmission Policy

Because of its implementation in the ISM license-free frequency band, LoRa deployments are
bound by strict legal protocols, especially where no listen-before-talk schemes are utilized. ISM bands
are regulated by the TDC to determine the maximum time the band can be occupied per hour.
For example, in Europe, the ETSI TR 103,526 documents rule that, for the 868.0–868.8 MHz band,
the maximum allowable TDC is one percent. This implies that, IoT devices may not occupy the ISM
band for more than thirty-six seconds per hour, prohibiting the transmission of new packets when this
limit is attained. Schemes that mitigate against strict restrictions imposed on duty cycle of ISM bands
are an open area for research.

5.3. Perfect Orthogonality

LoRa uses orthogonal SFs. These allow the network to preserve the battery life of the end nodes
linked to the network by adaptive optimization of each end node’s power setting and data rate.
Many ADR algorithms assume perfect orthogonality and do not consider inter-SF interference which
is vital for huge network loads. Inter-SF interference decreases network performance considerably,
especially for high SFs where packets have a higher ToA. The models can be improved to not only
improve the packet loss ratio in the network, but in addition, the PLR distribution and to take into
account the non-orthogonality of SFs in the model.

5.4. Homogenous End Nodes

Majority of the proposed ADR schemes consider homogenous end devices which transmit fixed
payloads. In actual deployments, IoT networks are heterogenous, that send packets at different packet
rates and varying payloads. Further study can include implementing ADR schemes in networks that
are heterogenous and determining the power consumption in such networks.
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5.5. Mathematical Models

Mathematical models are common in optimizing ADR schemes. The models help in studying the
different metrics and predicting the behaviour and then solving the optimization problem. The models
can solve the problem of collision and duty cycle limitations for example. However, most models
consider simple single gateway networks and do not support implementation with multiple gateways.
Future work would entail optimising the placement of the multiple gateways and incorporating large
complex networks in the models. Additionally, some models use complex combinatorial optimization
problems which cannot be solved directly. Future work would be to find simpler optimization methods.

5.6. Uniform Distribution of End Nodes

The assumption that an ADR scheme uses uniform distribution of the end nodes around the
gateway and that all the end nodes can use all SFs and TPs suggests that all end nodes in the network
are capable of reaching the gateway with every SF and every TP setting. This does not function in
actual networks where specific end devices can only utilize a subset of the configuration parameters
determined by the distance to the gateway. Further study could investigate randomly distributed
end nodes.

Different optimization models are implemented in the ADR schemes. Where machine learning
algorithms are utilized, one could use fuzzy logic or mathematical optimization and vice versa.
Algorithms that consider network congestion, packet collision probabilities, the use of multiple gateways
could improve the ADR. Different propagation models, randomly distributed end nodes, packet loss
ratio and non-orthogonality of SFs are issues to be considered in the models to improve performance.

6. Conclusions

The LoRa specification does not state the way the NS should instruct end nodes pertaining to data
rate adaptation. This has resulted in a gap in terms of ADR implementation as vendors keep their
implementations private. Because of this, new ADR schemes are always still developing. Considering
the strength and weaknesses of existing ADR schemes paves way for more efficient and effective
algorithms. This paper reviewed the ADR schemes that have been proposed in the public domain
and classified the solutions. We discussed the impact of the ADR solutions on the performance of
LoRaWAN networks. There are numerous ADR schemes that have been proposed in literature that
used different techniques to accomplish desired optimization goals depending on the objective of the
scheme responding to specific performance needs and applications. The study revealed that although
the transmission parameters are standard, the methods and considerations for ADR to improve network
performance are countless. We identified the gaps in literature and propose future work on ADR
optimization. Although existing solutions achieved promising performances, they are not optimal,
therefore there it is essential to find efficient solutions. To this end, ADR algorithms can be improved
to increase the energy efficiency and performance of energy-constrained end nodes.
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Appendix A

Table A1. Acronyms used in this paper.

Acronym Description

ACK Acknowledge
ADR Adaptive Data Rate
Bps Bits per second
BW Bandwidth
CF Carrier Frequency
CR Code Rate
CSS Chirp Spread Spectrum
DL Downlink

DER Data Extraction Rate
FEC Forward Error Correction
IoT Internet of Things
JS Join Server

LoRa Long Range
LoRaWAN Long Range Wide Area Network

LPWAN Low Power Wide Area Network
MAC Medium Access Control

NB-IoT Narrow band Internet of Things
NS Network Server

OTAA Over-the-Air Activation
PDR Packet Delivery Ratio
PER Packet Error Rate
PLR Packet Loss Ratio
RF Radio Frequency
RW Receive Window
SF Spreading Factor

SNR Signal to Noise Ratio
ToA Time on Air
TDC Transmission Duty Cycle
TP Transmission Power
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