
sensors

Article

Modeling Car-Following Behaviors and Driving
Styles with Generative Adversarial
Imitation Learning

Yang Zhou 1,2, Rui Fu 1,*, Chang Wang 1 and Ruibin Zhang 1

1 School of Automobile, Chang’an University, Xi’an 710064, China; 2016022005@chd.edu.cn (Y.Z.);
wangchang@chd.edu.cn (C.W.); 2016022016@chd.edu.cn (R.Z.)

2 School of Vehicle Engineering, Xi’an Aeronautical University, Xi’an 710077, China
* Correspondence: furui@chd.edu.cn

Received: 6 August 2020; Accepted: 2 September 2020; Published: 4 September 2020
����������
�������

Abstract: Building a human-like car-following model that can accurately simulate drivers’
car-following behaviors is helpful to the development of driving assistance systems and autonomous
driving. Recent studies have shown the advantages of applying reinforcement learning methods in
car-following modeling. However, a problem has remained where it is difficult to manually determine
the reward function. This paper proposes a novel car-following model based on generative adversarial
imitation learning. The proposed model can learn the strategy from drivers’ demonstrations without
specifying the reward. Gated recurrent units was incorporated in the actor-critic network to enable the
model to use historical information. Drivers’ car-following data collected by a test vehicle equipped
with a millimeter-wave radar and controller area network acquisition card was used. The participants
were divided into two driving styles by K-means with time-headway and time-headway when
braking used as input features. Adopting five-fold cross-validation for model evaluation, the results
show that the proposed model can reproduce drivers’ car-following trajectories and driving styles
more accurately than the intelligent driver model and the recurrent neural network-based model,
with the lowest average spacing error (19.40%) and speed validation error (5.57%), as well as the
lowest Kullback-Leibler divergences of the two indicators used for driving style clustering.

Keywords: human-like car-following model; driving styles; generative adversarial imitation learning;
gated recurrent units

1. Introduction

With the process of urbanization and the rapid growth in the number of vehicles, car following
has become the most common driving behavior in daily driving. It is of great significance to build
a model that can accurately simulate drivers’ car-following behaviors. Car-following models have
been widely applied in microscopic traffic simulation, the tests of driving assistant systems, and other
fields [1–3]. In the future of autonomous driving, designing an autonomous vehicle that can achieve
human-like driving can also improve the riding comfort and trust of passengers [4,5].

Research on car-following modeling has lasted for more than half a century. The modeling
methods can be divided into two types: theoretical-driven methods and data-driven methods [6].
The former generally puts forward various hypotheses on drivers’ reactions based on the observation
of actual car-following behaviors and establishes mathematical relationships to express drivers’
car-following strategies. In the expression of theoretical-driven models, there are some parameters
representing the preferences of different drivers. Since the theoretical-driven models contain rather
few parameters, their expression ability is limited, thus the accuracy and generalization ability cannot

Sensors 2020, 20, 5034; doi:10.3390/s20185034 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s20185034
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/18/5034?type=check_update&version=2


Sensors 2020, 20, 5034 2 of 19

be ensured [7]. Therefore, in recent years, a large number of studies have used data-driven methods to
build car-following models [7–10].

The data-driven methods can directly use data to learn drivers’ control strategies and have
fewer assumptions on driving behavior. Data-driven models such as neural networks have stronger
expression ability and can be easily updated. Studies have shown that the data-driven car-following
models have better generalization ability than the theoretical-driven models [7,11]. In the related
research of data-driven models, directly applying learning methods to learn the map from states to
actions is referred to as behavior cloning (BC) [12]. Although the BC models have been proven to be
effective in some studies, they may suffer from the problem of cascading errors, which is very common
in sequential decision-making problems [13]. The error existing in the single time-step prediction will
accumulate and gradually increase in the sequential decision-making process, which may cause the
model to reach unseen states, making the model have even worse predictions. To avoid this problem,
some researchers have begun to use reinforcement learning (RL) methods [11,14].

RL assumes that human behavior maximizes the cumulative long-term rewards [15]. When the
reward is determined, the strategy learned by using RL algorithms can have the ability of long-term
planning and can avoid cascading errors [16]. However, the designing of the reward function in RL is
very hard, manually designing it is time-consuming, and an inappropriate reward function may even
lead to unexpected behaviors [17,18]. To overcome this issue, inverse reinforcement learning (IRL) has
been proposed [19]. Instead of modeling the strategy directly, the IRL method first learns the reward
function and then obtains the strategy by using RL.

The traditional IRL method often uses a linear representation of reward function, which may not
reflect drivers’ nonlinear intrinsic preferences [20]. Besides, it requires a lot of computation power as it
needs to solve the RL subprocess during training [21]. In this study, a recently proposed algorithm
called generative adversarial imitation learning (GAIL) was applied to model drivers’ car-following
strategies. The main contributions of this study are as follows: (1) a novel way to model drivers’
car-following behaviors was proposed. The proposed model uses a nonlinear function that uses neural
networks to automatically learn drivers’ rewards and strategies, and the training of the model does
not need to solve the RL subprocess, which can save a lot of computation power. Besides, a kind of
recurrent neural network (RNN) called gated recurrent units (GRU) is used in the proposed model
to fit drivers’ car-following policy, which is able to take advantage of the historical information for
time-sequence prediction. (2) The car-following data of drivers collected in real-world situations is used
to train and verify the proposed model and two other representative car-following models. Different
methods were compared in terms of replicating drivers’ car-following trajectories and driving styles.

The rest of the paper is organized as follows: Section 2 briefly reviews the related work and
backgrounds of this study. Section 3 presents the architecture of the proposed model and the algorithm.
Section 4 describes the experiments and data used in this study. Section 5 presents the details of model
training and validation. Section 6 presents the results and comparisons of different methods. The final
section presents the discussion.

2. Related Work

2.1. Theoretical-Driven Car-Following Models

The development of theoretical-driven car-following models can be dated back to the 1960s.
Pipes [22] and Chandler, et al. [23] proposed the earlier General Motors models. Since then,
several different models have been proposed, such as the Gipps model [24], the optimal velocity
model [25], and the intelligent driver model (IDM [26]). The detailed development of theoretical-driven
car-following models can be found in [27,28].



Sensors 2020, 20, 5034 3 of 19

Among the mentioned models, IDM is one of the most widely used car-following models,
which has the formulations as presented in Equations (1) and (2). In this paper, IDM was calibrated
and compared with the proposed model.

at = amax

1−
(

vt

v f

)β
−

hdes
t
ht

β
 (1)

hdes
t = h jam + max(0, vt · THdes −

vt · ∆vt

2 ·
√

amax · acom
) (2)

where amax and acom are the maximum desired acceleration and comfortable deceleration, v f is the
maximum desired speed, THdes is the desired time headway, h jam is the minimum jam spacing, and β is
the acceleration parameter. vt, ht, hdes

t , ∆vt, and at refer to the speed, spacing, desired spacing, relative
speed, and acceleration at time t.

2.2. Behavior Cloning Car-Following Models

The earlier study using behavior cloning (BC) methods to model drivers’ car-following behaviors
was conducted by Jia et al. [29]. The authors of the study proposed a neural network with two
hidden layers that took inputs including speed, relative speed, spacing, and desired speed, and gave
the acceleration as the output. Chong et al. [30] proposed a similar BC model but with only one
hidden layer. The type of neural networks adopted in these studies is often called fully connected
neural networks (FCN), which normally takes only a single time-step of relevant information as
the input. For a sequential decision modeling problem like car-following, RNNs, which can use
historical information, have gained popularity in recent years. For example, in the study conducted by
Zhou et al. [10], an RNN model was proposed that was found to have better adaptability in oscillating
traffic circumstances compared to the FCN approaches. Li et al. [6] applied a more advanced type of
RNN called long short-term memory (LSTM) for modeling car-following. GRUs, which is a simpler
version of LSTM, were adopted in the study conducted by Wang et al. [7] for modeling drivers’
car-following behaviors. Except for neural networks, there are studies applying other learning methods
like Gaussian mixture models and hidden Markov models for modeling car-following behavior [31,32].
In this study, the RNN model proposed by Zhou et al. [10] was selected as a comparative method.

2.3. Reinforcement Learning

In the setting of RL, the Markov-decision process (MDP) is used to model a sequential
decision-making problem. An MDP can be defined as a tuple {S, A, T, R, γ}, where S denotes
the state space, A denotes the action space, T denotes the transition matrix, R denotes the reward
function, and γ denotes the discount factor. RL assumes an agent exists in the predefined environment.
At every time-step, the agent observes a state and takes an action following its policy, gets to the next
state according to the transition matrix, and it then receives a reward.

To solve an MDP using RL, the reward function must be specified, then the policy can be obtained
by applying value-based or policy-based algorithms [15]. As for the study applying RL for modeling
car-following, Zhu et al. [11] adopted a deep deterministic policy gradient model in which the reward
function was determined as speed discrepancies between the simulated trajectories and the test data.

In this study, the MDP for modeling car-following is defined as follows: at a certain time-step t,
the state includes the speed of the following vehicle denoted as vt, the spacing between the follower
and the leading vehicle denoted as ht and the relative speed between the follower and the leader
denoted as ∆vt. The action is the longitudinal acceleration of the follower denoted as at. A kinematic
model is adopted as the state transition matrix (Equation (3)). The reward does not need to be defined



Sensors 2020, 20, 5034 4 of 19

in this study because the proposed model can learn it from the data. The discount factor γ was set as
0.99 in this study.

v(t + 1) = v(t) + a(t) · dt
∆v(t + 1) = vlead(t + 1) − v(t + 1)

h(t + 1) = h(t) + ∆v(t)+∆v(t+1)
2 · dt

(3)

where dt is the simulation time interval which was set as 0.1 s in the present study, and vlead denotes
the speed of the leader that was externally inputted from the collected data.

2.4. Inverse Reinforcement Learning

The goal of IRL is to learn the reward function given a set of expert demonstrations.
Many approaches have been proposed to solve this problem [33]. The framework of maximum
entropy IRL (Max-Ent IRL) proposed in [34] has been accepted by many studies in recent years. In the
formulation of Max-Ent IRL, the probability of a trajectory is proportional to the sum of the exponential
rewards gained along the trajectory (Equation (4)). Therefore, trajectories with higher rewards become
exponentially more likely to happen, while trajectories with lower rewards can still happen but with
exponentially fewer probabilities. As proved in [35], the principle of maximum entropy can handle the
suboptimality of human behavior.

p(τ) ∼ exp

∑
s,a∈τ

r(s, a)

 (4)

where p(τ) denotes the probability of a certain trajectory, and r(s, a) denotes the return of
state-action pairs.

With the above formulation of trajectory distribution, the reward function represented by a
linear representation or by a neural network can be learned by maximizing the log-likelihood of
demonstrators’ trajectories. However, the Max-Ent-IRL typically requires expensive computational
power as it needs to solve the forward problem of finding an optimal policy with respect to the current
reward [21], making it difficult to apply to MDPs with high dimensional state space.

2.5. Generative Adversarial Imitation Learning

Since the basic ideas of IRL and generative adversarial nets (GANs) proposed by
Goodfellow et al. [36] have a lot in common [37], generative adversarial imitation learning (GAIL)
combines IRL with GANs, and extends Max-Ent-IRL by using the framework of GANs [38]. GAIL retains
the advantages of Max-Ent-IRL. At the same time, GAIL uses a surrogate reward and directly imitates
the demonstrator’s behavior through policy optimization. GAIL has the advantage of low computation
cost and can be better applied to complex problems. In the study conducted by Kuefler et al. [16],
GAIL was applied to model drivers’ behavior in highway driving using the next-generation simulation
(NGSIM) datasets. Comparing with this study, the present study used a different architecture of GAIL,
and different driving styles were modeled using the datasets after clustering.

3. The Proposed Model

The structure of the proposed model denoted as GAIL-GRU [16,39] is shown in Figure 1 which is
composed of two parts: (1) a generator that consists of an actor-critic structure and the car-following
environment, which generates the faked state-action pairs, and (2) a discriminator that functions as
classifying the generated state-action pairs and the actual state-action pairs obtained from the collected
data. Also, the discriminator outputs the reward signal for the car-following environment. In this
section, the two components of the model and the algorithm are introduced respectively.



Sensors 2020, 20, 5034 5 of 19

Figure 1. The structure of the proposed model generative adversarial imitation learning-gated recurrent
unit (GAIL-GRU).

3.1. The Generator

An actor-critic structure, which is the core component of the generator, was adopted as an agent
to interact with the car-following environment. As can be seen in Figure 2, the actor in the upper part
and critic in the lower part share the same feature extraction layer for reducing the parameters of
the model. As mentioned in Section 2, the RNN that can use historical information has been widely
applied in car-following modeling. Therefore, this study adopted a GRU in the feature extraction
layer in which the number of neurons was set to 60. After the feature extraction layer, FCN was
used to convert the output of GRU to a single value. Exponential linear units (ELUs) are used as
the activation function between each layer as ELUs have been proven to overcome the vanishing
gradient problem [40]. The inputs of the actor-critic is a time series state

{
st−N, st−N+1, . . . , st

}
t in which

the sequence length N was set to 10. The actor outputs the policy of the agent which is represented
by a normal distributionN(µt, σ), and the critic outputs the value Vt which represents the expected
long-term reward of the input state.

Figure 2. The architecture of the actor-critic structure.

The proximal policy optimization (PPO) algorithm proposed in [41] was used to update the
parameters of the actor-critic networks (Equations (5)–(9)). The PPO algorithm is a policy-based RL
algorithm, which uses actor-critic as its basic architecture. The PPO algorithm can effectively solve the
problems of high variance and difficult convergence in the training of a policy-based RL algorithm



Sensors 2020, 20, 5034 6 of 19

by limiting the range of policy updates in every single step, avoiding the excessive change of policy,
and making the policy improve steadily.

L(θ) = Êt
[
LCLIP

t (θ) − c1LVF
t (θ) + c2E[πθ](st)

]
(5)

LCLIP
t (θ) = Êt

[
min(

πθ(at|st)

πθold(at|st)
Ât, clip(

πθ(at|st)

πθold(at|st)
, 1− ε, 1 + ε)Ât

]
(6)

LVF
t (θ) =

∑
t′>t

γt′−trt′−Vθ(st)

2

(7)

clip(x, a, b) =


ai f x ≤ a

xi f a < x < b
bi f x ≥ b

(8)

Ât =
∑
t′>t

γt′−trt′−Vθ(st) (9)

where L(θ) is the loss function of the actor-critic networks; LCLIP
t (θ) denotes the loss for the actor and

LVF
t (θ) denotes the loss for the critic; Vθ(st) denotes the value of state st; Ât denotes the advantage

value of state st; θ is the parameters of the actor-critic networks; Êt denotes the expectation operation;
c1, c2, ε are all parameters which all set to 0.5, 0.01, and 0.2, respectively; πθold(at|st) is the last output of
the actor; and E[πθ](st) denotes the entropy of policy πθ.

3.2. The Discriminator

The discriminator is an FCN with two hidden layers as depicted in Figure 3. Each hidden layer
has 64 neurons. ELUs were used as the activation function except for the last layer, which used the
sigmoid function. The input of the discriminator is state-action pairs, and the output is the probability
of the input belonging to each category. The generated state-action pairs and the actual state-action
pairs were marked as 1 and 0, respectively. The cross-entropy loss function commonly used in the
binary classification problem, as shown in Equation (10), was used to update the parameters of
the discriminator.

L(ω) =
1
N

∑
i

−

[
yi
· log

(
Dω

(
si, ai

))
+ (1− yi) · log

(
1−Dω

(
si, ai

))]
(10)

where L(ω) is the loss of the discriminator networks, N is the number of the training samples, yi is the
label of sample i,

(
si, ai

)
is the ith state-action pair, and Dω

(
si, ai

)
denotes the output of the discriminator

parameterized by ω.

Figure 3. The architecture of the discriminator.



Sensors 2020, 20, 5034 7 of 19

The discriminator also provides the reward signals for the car-following environment.
The state-action reward r(st, at) that denotes the return of taking action at in the state st is determined
by Equation (11). It can be inferred that when the generated state-action samples get closer to the actual
samples, the output of the discriminator for the generated samples becomes closer to 0, and the reward
becomes higher. Therefore, the reward signal provided by the discriminator is actually encouraging
the agent to act more similarly to the demonstrator.

r(st, at) = − log(Dω(st, at)) (11)

3.3. The Proposed Algorithm

The proposed algorithm is showed presented in Algorithm 1 below. The machine learning
package PyTorch (Facebook, Menlo Park, CA, USA) was used for implementing the proposed model.
The Adam optimizer [42] was used for training the model. In every training episode, the discriminator
was trained for more times than that of the actor-critic networks to facilitate the convergence of the
entire model [43].

Algorithm 1: Algorithm for modeling drivers’ car-following behaviors

Input: The collected state-action pairs of drivers denoted as D
Output:
1: The strategy of drivers denoted as π
2: Algorithm begins:
3: Randomly initialize the parameters of the discriminator and the actor-critic networks as θ0 and ω0.
4: For i = 0 to N, repeat the following steps
5: Using the policy πi output by the actor-critic parameterized by ωi to interact with the car-following
environment, record the interaction history as the generated state-action pairs DGi

6: Update the parameters of the discriminator for three times from θi to θi+1 with the generated samples DGi

and the actual samples D using the Adam rule and the loss L(ω).
7: Use the updated discriminator parameterized by θi+1 to provide rewards (Equation (11)) for the
environment, update the parameters of the actor-critic networks from ωi to ωi+1 using the Adam rule and the
loss L(θ).
8: Algorithm end

4. Data Description

4.1. The Experiments

Data from two field tests conducted in Huzhou City in Zhejiang Province and Xi’an city in Shaanxi
Province in China were used in this study. The driving route included urban roads and expressways,
as shown in Figure 4. The urban section is part of the Huzhou section of national highway 104
(where the speed limit is 70 km/h) and part of the east third ring road and south third ring road of
Xi’an (where the speed limit is 100 km/h), and the highway section is the Huzhou-Changxing section
of the G25 highway (where the speed limit is 120 km/h) and the Xiangwang-Lantian section of G40
highway (where the speed limit is 120 km/h).

A total of 42 drivers participated in the experiment. All of the subjects were male, the average age
was 40.3 years old and the standard deviation was 5.1. The participants’ driving experiences ranged
from 2 to 30 years with the average being 15.2 years and the standard deviation was 7.5. During
the test, all of the subjects were asked to drive the test vehicle according to their personal driving
styles, and they were only told the starting and ending positions. It took 90–110 min for the subjects to
complete the entire test.

The test data were collected by a test vehicle equipped with a variety of sensors as exhibited in
Figure 5. Among them, the millimeter-wave radar can collect the motion states of the surrounding
vehicles during driving including the spacing and relative speed with the targets. The detection angle



Sensors 2020, 20, 5034 8 of 19

is ±10◦ and 64 targets around the test vehicle can be tracked at the same time. The speed of the test
vehicle was collected from the CAN acquisition card. All of the recorded data were sampled at 10 Hz.
During the tests, the real-time pictures of drivers’ faces, as well as the front, back, and sides of the
vehicle, were captured by the video monitoring system of the vehicle, which facilities the verification
of uncertain car-following periods.

Figure 4. Driving scenarios in (a) Huzhou city and (b) Xi’an city.

Figure 5. The test vehicle and related equipment.

4.2. Car-Following Periods Extraction

In this study, the rules for determining a car-following period implemented in a previous study
were adopted [44]. The details include the following: (1) the test vehicle should follow the same leading
car throughout the entire period; (2) the distance between the test vehicle and leading vehicle should
be less than 120 m; (3) the test vehicle and leading vehicle should be in the same lane; and (4) the



Sensors 2020, 20, 5034 9 of 19

length of the car-following periods should be greater than 15 s. A program was designed to filter the
data segments that meet the above criteria, and then the filtered segments were checked by manually
playing back the video recorded by the front camera of the test vehicle. The checking procedure
includes the confirmation of the validation of every period and the determination of the starting point
and the endpoint of each car-following period. Finally, a total of nearly one thousand car-following
periods were extracted from the collected data. The extracted car-following data included the speed of
the ego vehicle, the spacing from the leading vehicle, and the relative speed between the ego vehicle
and leading vehicle which were all measured by the instrumented vehicle.

Two steps were taken to process the extracted data. First, all of the data were processed by a
moving average filter to eliminate the noise in the data [45], where the length of the sliding window
was set as 1 s. Second, because acceleration is also needed to train the model, this study adopted a
Kalman filter for estimating acceleration because simply differentiating the speed cannot achieve an
accurate estimation of the acceleration [46]. Figure 6 shows the speed in one car-following period
randomly selected from the dataset. Figure 7 depicts the results of the acceleration estimated from the
raw signal using the two different approaches mentioned above. It can be observed that the estimation
results of the Kalman filter in blue is smoother and more accurate than that of differentiating the speed
in red.

Figure 6. The speed in one car-following period.

Figure 7. The comparison of different methods for estimating acceleration from the raw signal.

4.3. Driving Style Clustering Based on K-Means

Because the proposed model is based on RL, it assumes that the agent that should be modeled has
certain kinds of preferences or rewards. Every individual driver may have different preferences during
car-following. However, in the literature of driving-behavior research, it is common to cluster drivers
into different driving styles such as aggressive or conservative. Drivers belonging to one group may
have similar preferences. So, in this study, instead of using the car-following data of each participant



Sensors 2020, 20, 5034 10 of 19

to train the proposed model, K-means was initially applied to cluster the participants into different
driving styles. The data from the different groups were then used for model training.

There are many indicators that can be used to characterize the driving style of drivers in
car-following. Except for basic kinematic indicators, such as spacing, speed, or relative speed,
time-based variables such as time headway (TH) and time-to-collision (TTC) have also been accepted
for characterizing driving styles [47,48]. In the study conducted by Liu et al. [49], mean TH and mean
TH when braking were adopted as features to classify drivers into different driving styles. In the
present study, different combinations of the above-mentioned features were selected as the inputs for
the K-means algorithm, the silhouette coefficient was used to evaluate the quality of the clustering
results [50]. Before carrying out clustering, the car-following dataset was first normalized to eliminate
the influence of dimension. Finally, mean TH and mean TH when braking were determined as feature
vectors for clustering as the combination achieved the highest silhouette coefficient among all other
choices. According to the value of the silhouette coefficient, the number of clusters was also determined
to be two. Figures 8 and 9 present the comparison of mean TH and mean TH when braking of the
two groups of drivers after clustering. T-tests showed that the conservative group, which consisted
of 16 drivers, maintained a significantly higher mean TH (t = 6.748, p < 0.001) and mean TH when
braking (t = 7.655, p < 0.001) than the aggressive group, which consisted of 26 drivers.

Figure 8. The comparison of mean time headway (TH) for the two driving styles.

Figure 9. The comparison of mean time headway (TH) when braking for the two driving styles.

Figure 10 shows the changes for mean acceleration for the two groups of drivers in different ranges
of relative speed during car-following. The aggressive drivers kept higher acceleration compared to



Sensors 2020, 20, 5034 11 of 19

the conservative drivers in all the ranges except in the range of 2–4 m/s. Table 1 presents the descriptive
statistics of car-following data from the two groups of drivers. The conservative drivers maintained a
lower mean speed and acceleration, with a larger mean spacing compared to the aggressive drivers.
It can be seen that the two groups of drivers exhibited distinct driving styles.

Figure 10. Rule of changes for acceleration in different relative speed ranges for the two groups
of drivers.

Table 1. Descriptive statistics of the two groups of drivers in car-following.

Type Spacing (m) Speed (m/s)

Mean Min Max Mean Min Max

Aggressive 34.15 2.27 120.00 18.57 2.50 33.70
Conservative 42.79 3.91 119.90 17.47 1.49 34.84

Type Acceleration (m/s2) Relative Speed (m/s)

Mean Min Max Mean Min Max

Aggressive −0.01 −3.14 1.64 −0.42 −12.45 5.80
Conservative −0.04 −1.80 1.40 −0.52 −8.85 5.02

5. Model Training and Evaluation

5.1. Simulation Setup

The initial state s0 which included the speed, spacing, and relative speed of the following vehicle,
was externally input from the empirical data to enable the RL agent to interact with the car-following
environment. Following this, the RL agent chooses an action based on its policy at ∼ π(at

∣∣∣st) , and the
future states of the following vehicle were updated by the state-transition matrix st+1 = T(st+1

∣∣∣at, st) .
The simulation for every car-following period terminated when it reached its maximum time-step.

5.2. Evaluation Matrix

5.2.1. Root Mean Square Percentage Error

As suggested in [51], this study used the root mean square percentage error (RMSPE) of spacing
and speed between simulation results and actual data to evaluate the performance of car-following
models. The evaluation matrices are as follows:



Sensors 2020, 20, 5034 12 of 19

RMSPE(v) =

√√√√√√√√√√√√√√ N∑
i=1

(vsim
i − vobs

i )
2

N∑
i=1

(vobs
i )

2
(12)

RMSPE(h) =

√√√√√√√√√√√√√√ N∑
i=1

(hsim
i − hobs

i )
2

N∑
i=1

(hobs
i )

2
(13)

where RMSPE(v) and RMSPE(h) denote the RMSPE of speed and spacing, respectively; vobs
i , hobs

i
denote the empirical speed and spacing in ith time; and vsim

i , hsim
i denote the simulated speed and

spacing in ith time.

5.2.2. Kullback-Leibler Divergence

Kullback-Leibler (KL) divergence is a measure of the difference between two distributions that can
be calculated by Equation (14). When the value of the KL divergence is smaller, the two distributions
become more similar. The car-following models should produce a similar distribution of representative
features with the drivers’ demonstrations. Because this study used mean TH and mean TH when
braking to divide the drivers into two different driving styles, the similarity between the distribution
of the simulated mean TH and mean TH when braking and the empirical distributions were measured
by calculating the KL divergence to evaluate the performance of car-following models in reproducing
drivers’ driving styles.

KL(P, Q) =
∑

P(x) log
P(x)
Q(x)

(14)

where P, Q denotes two distributions.

5.3. Cross-Validation

K-Fold cross-validation was adopted in this study to evaluate the generalization ability of
car-following models. Specifically, k was determined to be 5 in this study due to the scale of the dataset.
The dataset of aggressive and conservative drivers was equally divided into 5 groups. As illustrated
in Figure 11, every fold was taken as the test set, and the remaining four folds were taken as the
training set. The procedure was repeated five times, and then the average performance of RMSPE was
calculated for the training sets and the test sets.

Figure 11. Five-fold cross-validation.

5.4. Models Investigated

As mentioned in Section 2, the representative theoretical-driven model IDM and recent behavior
cloning model RNN were chosen to be compared with the proposed model.



Sensors 2020, 20, 5034 13 of 19

5.4.1. IDM

The parameters of IDM were calibrated with the objective of minimizing the RMSPE of spacing as
Equation (15). A large penalty of the crash was also added in the objective function, as no collision was
observed in the collected data. In this paper, the population size and the maximum iteration times of
the genetic algorithm (GA) are set to 100. In order to reduce the influence of the randomness of GA on
the calibration of IDM, the GA algorithm is repeated 12 times, and the final result is the combination of
parameters with the minimum error.

c(IDM) = RMSPE(h) + λ · ncrash (15)

where RMSPE(h) denotes the RMSPE of spacing, ncrash denotes the number of crashes when applying
the calibrated IDM model for simulation, and λ is the parameter for the crash penalty.

5.4.2. RNN Based Model

In accordance with another study [10], an RNN with 60 neurons for its hidden layer was built.
The model takes a time sequence of 1 s as the input. The gradient descent algorithm was used to train
the model with the cost function defined as follows.

c(RNN) = RMSPE(v) + RMSPE(h) (16)

where RMSPE(v) and RMSPE(h) denotes the RMSPE of speed and spacing respectively.

6. Results

The performances of the proposed model GAIL-GRU, the theoretical-driven model IDM, and the
recent behavior-cloning model RNN for replicating the car-following trajectories of the drivers with
different driving styles on the training sets and test sets are presented in Figures 12 and 13, respectively.
As can be observed, GAIL-GRU outperformed the other two models as it achieved the lowest training
error and test error for speed and spacing in both datasets. The RNN model has the highest training
error and test error among the three models. For IDM, even though it exhibited a similar performance
with GAIL-GRU on the training sets, it failed to generalize to the same level as GAIL-GRU on the
test sets.

Figure 12. Mean and standard deviation of the root mean square percentage error (RMSPE) on the
training sets for the three models.

The three models trained by the same data from the aggressive dataset were used for simulation
to illustrate and compare the characters of the three models in reproducing drivers’ car-following



Sensors 2020, 20, 5034 14 of 19

trajectories. The simulation results of spacing for three car-following periods randomly selected from
the dataset are presented in Figure 14. As can be seen, the proposed GAIL-GRU tracks the empirical
spacing more closely than the IDM and RNN methods. The simulation results of RNN and GAIL-GRU,
which all make use of historical information, are similar in the first 10 s or so, but the deviation from
the empirical data becomes increasingly larger for RNN as the simulation continues.

Figure 13. Mean and standard deviation of the root mean square percentage error (RMSPE) on the test
sets for the three models.

Figure 14. The simulation of spacing by different models. (a–c) are the simulation results of spacing for
the three car-following periods randomly selected from the datasets.



Sensors 2020, 20, 5034 15 of 19

Figures 15 and 16 present the comparison of the KL divergence for mean TH and mean TH when
braking, respectively. As can be seen, the GAIL-GRU model can produce the closest distribution to
the empirical data of the two indicators which were used to cluster the drivers into two different
driving styles.

Figure 15. The Kullback-Leibler (KL) divergence of mean time headway (TH) for different models.

Figure 16. The Kullback-Leibler (KL) divergence of mean time headway (TH) when braking for
different models.

7. Discussion

The present study demonstrated that the proposed GAIL-GRU model can replicate human-like
car-following behaviors and driving styles more accurately than the theoretical-driven model IDM
and the behavior-cloning model RNN. Compared with IDM, the proposed model used the actor
neural network which consists of two hidden layers including a GRU network and a fully connected
network, to fit drivers’ car-following policies, while IDM only contains six parameters to be calibrated.



Sensors 2020, 20, 5034 16 of 19

Significantly more parameters were contained in the proposed model, accounting for a better fitting
ability and generalization ability compared to the IDM.

Compared with RNN, the proposed model also used a kind of RNN to represent drivers’ strategies,
and the length of the input was also set to be 1 s. However, the RNN model has a higher error for
replicating car-following trajectories. From the simulation results of spacing for three car-following
periods, it can be seen that the RNN experienced the problem of cascading errors, while the proposed
model did not have this problem. The reason for this is that the RNN only learns the state-action
relationships during training. When the input for RNN is not included in the training data, the output
of RNN may deviate from drivers’ actual control actions. The proposed model is based on RL,
the strategy output by the proposed model has the objective of maximizing the accumulative rewards,
which award behavior similar to the demonstrator. Therefore, the strategy obtained by the proposed
model can be extended to unseen states.

Comparing RNN with IDM, the error of the BC model is higher than the theoretical-driven model,
which seems to be inconsistent with previous studies [7,11]. However, it must be noted that the RMSPE
of RNN has large variances. In the five-fold cross-validation tests, RNN achieved a comparatively low
error with IDM in some of the validation, while obtaining a much higher error in others. It seems that
the performance of RNN is largely dependent on the division of training and test data. This issue has
also been mentioned in the study conducted by Wang et al. [7], which pointed out that the selection of
training data has a great impact on the performance of purely data-driven BC car-following models.
The five-fold cross-validation methods adopted in this study can eliminate the influence of dataset
division on the performance of car-following models, which can help to make a more reliable evaluation
of the actual performance of the model in real applications.

The proposed model borrows the idea of GANs. In the fields of computer vision, GANs have
been proven to be able to generate life-like images to the original image in recent years. In this study,
the proposed model is demonstrated to be able to generate car-following strategies and driving styles
closest to the drivers. It can be seen that the training process of the proposed model is very similar to
that of GANs. The essence of the training process is the process of mutual confrontation between the
generator and the discriminator. The training of the discriminator makes the discriminator distinguish
the category of the samples more accurately. However, the training of the generator produces samples
more similar to drivers’ actual behaviors, so as to cheat the discriminator. After training, the samples
generated by the generator can be perfectly close to the distribution of the real samples, while the
discriminator cannot correctly tell the difference between the generated samples from the actual
samples. The proposed model can output the strategy that is identical to the drivers’ actual behaviors.

This study also had some important limitations. First, the car-following behaviors modeled
in this study could only represent a small group of drivers. A broader sample is needed in future
studies. Secondly, this study did not consider the influence of vehicles in adjacent lanes on drivers’
car-following behaviors. These factors will be fully considered in future research to obtain a more
accurate description of drivers’ behaviors.

Author Contributions: Conceptualization, Y.Z. and R.F.; methodology and conducting experiments, Y.Z. and
C.W.; data analysis, R.Z.; funding acquisition, C.W.; writing Y.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was jointly supported by the National Key R&D Program of China under Grant
2019YFB1600500, the Changjiang Scholars and Innovative Research Team in University under Grant IRT_17R95,
the National Natural Science Foundation of China under Grants (51775053, 51908054), the Natural Science
Foundation of Shaanxi Province under Grants (2020JQ-908,2020JQ-910), and the Key Laboratory of Transport
Industry of Management, Control and Cycle Repair Technology for Traffic Network Facilities in Ecological Security
Barrier Area (Inner Mongolia Transport Development Research Center) under Grant 2019KFJJ-004.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2020, 20, 5034 17 of 19

References

1. Brackstone, M.; McDonald, M. Car-following: A historical review. Transp. Res. Part F Traffic Psychol. Behav.
1999, 2, 181–196. [CrossRef]

2. Peng, H. Evaluation of driver assistance systems-a human centered approach. In Proceedings of the 6th
International Symposium on Advanced Vehicle Control, Hiroshima, Japan, 9–13 September 2002.

3. Simonelli, F.; Bifulco, G.N.; De Martinis, V.; Punzo, V. Human-Like Adaptive Cruise Control Systems through
a Learning Machine Approach. In Applications of Soft Computing; Springer: Berlin/Heidelberg, Germany,
2009; pp. 240–249.

4. Kuderer, M.; Gulati, S.; Burgard, W. Learning driving styles for autonomous vehicles from demonstration.
In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA,
USA, 26–30 May 2015; pp. 2641–2646.

5. Sim, G.; Min, K.; Ahn, S.; Sunwoo, M.; Jo, K. Deceleration Planning Algorithm Based on Classified Multi-Layer
Perceptron Models for Smart Regenerative Braking of EV in Diverse Deceleration Conditions. Sensors 2019,
19, 4020. [CrossRef] [PubMed]

6. Li, Y.; Lu, X.; Ren, C.; Zhao, H. Fusion Modeling Method of Car-Following Characteristics. IEEE Access 2019,
7, 162778–162785. [CrossRef]

7. Wang, X.; Jiang, R.; Li, L.; Lin, Y.; Zheng, X.; Wang, F. Capturing Car-Following Behaviors by Deep Learning.
IEEE Trans. Intell. Transp. Syst. 2018, 19, 910–920. [CrossRef]

8. Hao, S.; Yang, L.; Shi, Y. Data-driven car-following model based on rough set theory. In IET Intelligent
Transport Systems; Institution of Engineering and Technology: London, UK, 2018; Volume 12, pp. 49–57.

9. Papathanasopoulou, V.; Antoniou, C. Towards data-driven car-following models. Transp. Res. Part C Emerg.
Technol. 2015, 55, 496–509. [CrossRef]

10. Zhou, M.; Qu, X.; Li, X. A recurrent neural network based microscopic car following model to predict traffic
oscillation. Transp. Res. Part C Emerg. Technol. 2017, 84, 245–264. [CrossRef]

11. Zhu, M.; Wang, X.; Wang, Y. Human-like autonomous car-following model with deep reinforcement learning.
Transp. Res. Part C Emerg. Technol. 2018, 97, 348–368. [CrossRef]

12. Codevilla, F.; Santana, E.; López, A.M.; Gaidon, A. Exploring the limitations of behavior cloning for
autonomous driving. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
Seoul, Korea, 27 October–2 November 2019; pp. 9329–9338.

13. Ross, S.; Bagnell, D. Efficient reductions for imitation learning. In Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 661–668.

14. Gao, H.; Shi, G.; Xie, G.; Cheng, B. Car-following method based on inverse reinforcement learning for
autonomous vehicle decision-making. Int. J. Adv. Robotic Syst. 2018, 15, 1729881418817162. [CrossRef]

15. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
16. Kuefler, A.; Morton, J.; Wheeler, T.; Kochenderfer, M. Imitating driver behavior with generative adversarial

networks. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA,
11–14 June 2017; pp. 204–211.

17. Abbeel, P.; Ng, A.Y. Apprenticeship learning via inverse reinforcement learning. In Proceedings of the
Twenty-First International Conference on Machine Learning, Banff, AL, Canada, 4–8 July 2004; p. 1.

18. Zhang, Q.; Zhu, M.; Zou, L.; Li, M.; Zhang, Y. Learning Reward Function with Matching Network for
Mapless Navigation. Sensors 2020, 20, 3664. [CrossRef]

19. Ng, A.Y.; Russell, S.J. Algorithms for inverse reinforcement learning. Icml 2000, 1, 2.
20. Wulfmeier, M.; Ondruska, P.; Posner, I. Maximum entropy deep inverse reinforcement learning. arXiv 2015,

arXiv:1507.04888.
21. Finn, C.; Levine, S.; Abbeel, P. Guided cost learning: Deep inverse optimal control via policy optimization.

In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016;
pp. 49–58.

22. Pipes, L.A. An Operational Analysis of Traffic Dynamics. J. Appl. Phys. 1953, 24, 274–281. [CrossRef]
23. Chandler, R.E.; Herman, R.; Montroll, E.W. Traffic dynamics: Studies in car following. Oper. Res. 1958, 6,

165–184. [CrossRef]
24. Gipps, P.G. A behavioural car-following model for computer simulation. Transp. Res. Part B Methodol. 1981,

15, 105–111. [CrossRef]

http://dx.doi.org/10.1016/S1369-8478(00)00005-X
http://dx.doi.org/10.3390/s19184020
http://www.ncbi.nlm.nih.gov/pubmed/31540382
http://dx.doi.org/10.1109/ACCESS.2019.2949305
http://dx.doi.org/10.1109/TITS.2017.2706963
http://dx.doi.org/10.1016/j.trc.2015.02.016
http://dx.doi.org/10.1016/j.trc.2017.08.027
http://dx.doi.org/10.1016/j.trc.2018.10.024
http://dx.doi.org/10.1177/1729881418817162
http://dx.doi.org/10.3390/s20133664
http://dx.doi.org/10.1063/1.1721265
http://dx.doi.org/10.1287/opre.6.2.165
http://dx.doi.org/10.1016/0191-2615(81)90037-0


Sensors 2020, 20, 5034 18 of 19

25. Bando, M.; Hasebe, K.; Nakanishi, K.; Nakayama, A. Analysis of optimal velocity model with explicit delay.
Phys. Rev. E 1998, 58, 5429–5435. [CrossRef]

26. Kesting, A.; Treiber, M. Calibrating Car-Following Models by Using Trajectory Data: Methodological Study.
Transp. Res. Record 2008, 2088, 148–156. [CrossRef]

27. Panwai, S.; Dia, H. Comparative evaluation of microscopic car-following behavior. IEEE Trans. Intel. Transp.
Syst. 2005, 6, 314–325. [CrossRef]

28. Saifuzzaman, M.; Zheng, Z. Incorporating human-factors in car-following models: A review of recent
developments and research needs. Transp. Res. Part C Emerg. Technol. 2014, 48, 379–403. [CrossRef]

29. Jia, H.; Juan, Z.; Ni, A. Develop a car-following model using data collected by “five-wheel system”.
In Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems, Shanghai,
China, 12–15 October 2003; Volume 341, pp. 346–351.

30. Chong, L.; Abbas, M.M.; Medina, A. Simulation of Driver Behavior with Agent-Based Back-Propagation
Neural Network. Transp. Res. Record 2011, 2249, 44–51. [CrossRef]

31. Lefèvre, S.; Carvalho, A.; Borrelli, F. A Learning-Based Framework for Velocity Control in Autonomous
Driving. IEEE Trans. Autom. Sci. Eng. 2016, 13, 32–42. [CrossRef]

32. Wang, W.; Xi, J.; Hedrick, J.K. A Learning-Based Personalized Driver Model Using Bounded Generalized
Gaussian Mixture Models. IEEE Trans. Veh. Technol. 2019, 68, 11679–11690. [CrossRef]

33. Arora, S.; Doshi, P. A survey of inverse reinforcement learning: Challenges, methods and progress. arXiv
2018, arXiv:1806.06877.

34. Ziebart, B.D.; Maas, A.L.; Bagnell, J.A.; Dey, A.K. Maximum entropy inverse reinforcement learning.
In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, Chicago, IL, USA, 13–17 July
2008; pp. 1433–1438.

35. Ziebart, B.D.; Bagnell, J.A.; Dey, A.K. Modeling interaction via the principle of maximum causal entropy.
J. Contrib. 2010. [CrossRef]

36. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems,
Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.

37. Finn, C.; Christiano, P.; Abbeel, P.; Levine, S. A connection between generative adversarial networks, inverse
reinforcement learning, and energy-based models. arXiv 2016, arXiv:1611.03852.

38. Ho, J.; Ermon, S. Generative adversarial imitation learning. In Proceedings of the Advances in Neural
Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 4565–4573.

39. Fernando, T.; Denman, S.; Sridharan, S.; Fookes, C. Learning temporal strategic relationships using generative
adversarial imitation learning. arXiv 2018, arXiv:1805.04969.

40. Clevert, D.-A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear
units (elus). arXiv 2015, arXiv:1511.07289.

41. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms.
arXiv 2017, arXiv:1707.06347.

42. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
43. Yu, L.; Zhang, W.; Wang, J.; Yu, Y. Seqgan: Sequence generative adversarial nets with policy gradient.

In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9
February 2017.

44. Zhu, M.; Wang, X.; Tarko, A.; Fang, S.E. Modeling car-following behavior on urban expressways in Shanghai:
A naturalistic driving study. Transp. Res. Part C Emerg. Technol. 2018, 93, 425–445. [CrossRef]

45. Thiemann, C.; Treiber, M.; Kesting, A. Estimating Acceleration and Lane-Changing Dynamics from Next
Generation Simulation Trajectory Data. Transp. Res. Record 2008, 2088, 90–101. [CrossRef]

46. Welch, G.; Bishop, G. An Introduction to the Kalman Filter; University of North Carolina: Chapel Hill, NC,
USA, 1995.

47. Boer, E.R. Car following from the driver’s perspective. Transp. Res. Part F Traffic Psychol. Behav. 1999, 2,
201–206. [CrossRef]

48. Mata-Carballeira, Ó.; Gutiérrez-Zaballa, J.; del Campo, I.; Martínez, V. An FPGA-Based Neuro-Fuzzy Sensor
for Personalized Driving Assistance. Sensors 2019, 19, 4011. [CrossRef] [PubMed]

49. Liu, T.; Fu, R.; Ma, Y.; Liu, Z.; Cheng, W. Car-following Warning Rules Considering Driving Styles. China J.
Highw. Transp. 2020, 33, 170–180.

http://dx.doi.org/10.1103/PhysRevE.58.5429
http://dx.doi.org/10.3141/2088-16
http://dx.doi.org/10.1109/TITS.2005.853705
http://dx.doi.org/10.1016/j.trc.2014.09.008
http://dx.doi.org/10.3141/2249-07
http://dx.doi.org/10.1109/TASE.2015.2498192
http://dx.doi.org/10.1109/TVT.2019.2948911
http://dx.doi.org/10.1184/R1/6555611.v1
http://dx.doi.org/10.1016/j.trc.2018.06.009
http://dx.doi.org/10.3141/2088-10
http://dx.doi.org/10.1016/S1369-8478(00)00007-3
http://dx.doi.org/10.3390/s19184011
http://www.ncbi.nlm.nih.gov/pubmed/31533318


Sensors 2020, 20, 5034 19 of 19

50. Aranganayagi, S.; Thangavel, K. Clustering categorical data using silhouette coefficient as a relocating
measure. In Proceedings of the International Conference on Computational Intelligence and Multimedia
Applications (ICCIMA 2007), Sivakasi, Tamil Nadu, 13–15 December 2007; pp. 13–17.

51. Punzo, V.; Montanino, M. Speed or spacing? Cumulative variables, and convolution of model errors and time
in traffic flow models validation and calibration. Transp. Res. Part B Methodol. 2016, 91, 21–33. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.trb.2016.04.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Theoretical-Driven Car-Following Models 
	Behavior Cloning Car-Following Models 
	Reinforcement Learning 
	Inverse Reinforcement Learning 
	Generative Adversarial Imitation Learning 

	The Proposed Model 
	The Generator 
	The Discriminator 
	The Proposed Algorithm 

	Data Description 
	The Experiments 
	Car-Following Periods Extraction 
	Driving Style Clustering Based on K-Means 

	Model Training and Evaluation 
	Simulation Setup 
	Evaluation Matrix 
	Root Mean Square Percentage Error 
	Kullback-Leibler Divergence 

	Cross-Validation 
	Models Investigated 
	IDM 
	RNN Based Model 


	Results 
	Discussion 
	References

