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Abstract: The tripole vector antenna comprises three orthogonal dipole antennas, so it could
completely capture all the electric field of the incident electromagnetic (EM) wave. Then, the electric
field information could be used to estimate the direction of arrival (DOA) of the EM wave if two
conditions are satisfied. One is that there exists only one single EM wave in space. The other is
that the EM wave is elliptically or circularly polarized. The new estimation method obtains two
snapshot vectors through the output of a tripole antenna and computes their cross-product vector.
Furthermore, the direction of the cross-product vector is used to estimate the DOA of the EM wave
directly. We analyze the statistical characteristics of the DOA estimation error to prove that the
new scheme is an asymptotic unbiased estimation. Furthermore, unlike the existing Multiple Signal
Classification (MUSIC)-based algorithms, the proposed approach only need one tripole vector antenna
instead of an antenna array. Meanwhile, the new method also outperforms existing MUSIC-based
algorithms in the term of computational complexity. Finally, the performance and advantages of the
proposed method are verified by numerical simulations.
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1. Introduction

The incident angle of the electromagnetic (EM) wave relative to the receiver is called direction of
arrival (DOA). In radar, communication, radio astronomy, telemetry, track and command, and other
fields [1–3], users always need to estimate the DOA of EM waves. For example, the DOA information
wave can be used in the beam control system of the receiver antenna, so that the main beam of the receiver
antenna can track the incident signal all the time. Different DOA estimation methods are adopted in
various application fields. Each method has its own advantages and keeps developing continuously.

Nowadays, the most traditional DOA estimation equipment is the interferometer, which estimates
the DOA according to the phase difference between EM waves received by adjacent antenna elements.
The phase difference is caused by the difference in distance between the radiation source and different
antenna elements, and it has a certain geometric relationship with the incident angle. However,
there are some shortcomings in DOA estimation of the interferometer. Firstly, the estimation accuracy
is not high because the algorithm is vulnerable to noise. Obtaining the phase difference is a key
step for interferometer. Common methods include zero-crossing detection, Fast Fourier Transform
(FFT) [4], and Hilbert orthogonal transformation [5] and so on. The zero-crossing detection uses
the approximation of the function near the zero point, i.e., sinx = x, to accurately determine the
zero-crossing position of the sample sequence. These positions can help to calculate the path difference
between the signals received by different antenna elements. Unfortunately, noise results in serious
uncertainty when estimating the zero point. In addition to noise, the estimation accuracy is also
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related to the sample frequency of the signal, which requires high performance of the hardware. FFT is
another way to estimate the phase difference between signals. The phase difference between the
two signals can be easily obtained by FFT and cross-correlation operation on the sample sequence.
Compared with zero-crossing detection, the FFT-based algorithm performs much better in anti-noise
and anti-harmonic interference, so it could achieve higher accuracy in the phase difference estimation.
The second shortcoming for the interferometer is that the estimation accuracy is closely related to the
array spacing. The shortest interval in an interferometer array is usually less than half a wavelength;
hence, the phase measured in this case is unique [6,7]. However, in broadband direction-finding
systems over a range such as 0.1–3 GHz or 2–8 GHz, the physical dimensions of the antenna element
are dictated by the lowest operating frequency, whereas the shortest interelement spacing is decided
by the highest frequency. This poses the problem of not being able to employ a short spacing of less
than half-wavelength [8,9]. However, if the baseline length exceeds the half-wavelength of the pulse
signal, the periodic ambiguity will be introduced into the phase measurement and its ambiguity is
2π. The combination of long baseline and short baseline is an effective method to solve the phase
ambiguity. Even so, the combination of multiple baselines greatly increases the complexity of the
system and requires more accurate calibration of the system. Thirdly, the interferometer can only aim
at a single signal in the main lobe, and cannot be used when multiple EM waves arrive at the antenna
at the same time. In this case, it means insufficient resolution.

In order to promote the resolution and realize the DOA estimation of multiple incident signals,
various methods based on antenna arrays have become the research hotspot in the last decades.
So far, several classes of DOA estimation techniques for incoherently distributed sources have been
developed, such as the subspace method and the parameter method. Multiple Signal Classification
(MUSIC) and Estimating Signal Parameter via Rotational Invariance Techniques (ESPRIT) are the most
important subspace methods [10–12]. Furthermore, the maximum likelihood (ML) algorithm [13,14]
and Covariance Matching Estimator (COMET) algorithm [15,16] are typical parameter estimation
approaches, which can obtain better estimation performance than subspace methods. However,
their computing load is also heavier. Meanwhile, DOA estimation methods based on antenna arrays
are facing two great challenges. First, the complexity of the algorithm is too high to implement from
an engineering perspective. In these technologies, most methods are proposed for uniform linear
arrays; therefore, the spectral peak search happens only on a two-dimensional plane, which makes
it impossible to estimate the elevation angle and azimuth angle simultaneously. Later, researchers
further developed these algorithms to make them suitable for planar arrays. In this way, the range of
the spectral peak search is extended to three-dimensional space, which means that the DOA of the
signal source can completely include both the elevation angle and azimuth angle. However, due to
multi-dimensional space spectrum search, a large amount of computational burden has always been a
problem that researchers need to solve [17]. In addition to the huge computation of the spectral peak
search, this kind of DOA algorithm involves various complex operations such as matrix eigenvalue
decomposition, which resulting in difficulties in the engineering implementation of programmable
devices, such as FPGA. Another challenge is that these antenna arrays generally have a large number
of elements and each element needs a corresponding radio frequency front-end channel, which makes
the hardware cost very high.

Different from the popular algorithms mentioned above, we use a tripole vector antenna to make
full use of the electric field of the EM wave and develop a fast DOA estimation algorithm for a single
signal. The tripole vector antenna is also known as a polarization sensitive antenna, which is different
from the traditional single polarization antenna because it can accurately sense the polarization
characteristics of EM waves [18]. The tripole vector antenna is proposed by R.T Compton [19,20], and it
is composed of three orthogonal dipole antennas. Document [21] proposed a DOA estimation method
based on polarization-spatial steering vector. It uses a tripole antenna but needs to know the elliptical
susceptibility of the polarized signal. In recent years, polarization-sensitive arrays have become the
focus of academic research, where each element is one tripole vector antenna. Researchers try to
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achieve higher performance through polarization-sensitive arrays in the fields of spatial spectrum
estimation and adaptive anti-jamming array. In fact, it is a signal processing method combining spatial
and polarimetry resources, which improves the array freedom degree of the receiver. For example,
the tripole antenna has been proposed as one possible choice of antenna construction to be used in
the low-frequency array (LOFAR) project [22]. The primary field of application for the project is
radio-based astrophysics.

Due to the structural characteristics of the tripole vector antenna, we only need to use one tripole
vector antenna to complete the DOA estimation of the EM wave if there is only one signal in space.
We map the sample data of the tripole vector antenna to the space rectangular coordinate system and
calculate the DOA by vector product according to the geometric relationship. The new method has
some obvious advantages over the other methods. First of all, the proposed DOA algorithm does not
need to solve equations such as the interferometer or search the spectral peak such as array signal
processing methods [23]; as a result, the signal processing process is much simpler. Secondly, the main
lobe of the tripole vector antenna is wide enough so that any signal impinging from the main lobe
area could be captured and no servo system is needed. Obviously, this reduces the cost of hardware
greatly. Thirdly, the DOA estimation method based on the tripole vector antenna is suitable for any
nonlinearly polarized EM wave without any polarization-matching problem between antennas and
EM waves, because it captures all the polarization information of EM waves. This is also the advantage
that other DOA estimation methods do not have. Similar to the interferometer, the new method also
has the disadvantage of insufficient resolution, but it can be solved by combining with other subspace
estimation algorithms.

The rest of this paper is as follows. Section 2 is a brief introduction of the received signal model.
Section 3 is the overall description of the method. The method complexity and error analysis are
discussed in Section 4. The experimental results of different methods are presented in Section 5.
Section 6 concludes the paper.

2. Signal Model

The tripole vector antenna is composed of three identical and mutually perpendicular linearly
polarized dipole antennas centered at the same position [19–21], as shown in Figure 1. Each linearly
polarized dipole antenna can only receive the electric field component in its polarization direction
and has an output feed point. The polarization direction of the dipoles in a tripole are respectively
parallel to the three coordinate axes of the space rectangular coordinate system, which ensures that no
matter which direction the EM wave is incident from, and no matter what polarization the EM wave
is, all the energy of the EM wave can be received by the tripole vector antenna. So, there will be no
polarization-matching problem. In addition, since all three feed points are concentrated at the same
location, phase shifts between units will not occur in a tripole vector antenna.
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In the coordinate system shown in Figure 1, we suppose that the DOA of an elliptically polarized
EM wave signal is incident from a certain direction. Once the signal reaches the antenna, its electric
field will be simultaneously received by the three orthogonal dipoles of the antenna. We name the
three poles of the antenna as x, y, z, hence the signal received by the antenna can be expressed as

x(n) = Ex(n) + nx(n)
= Exm cos(ωnTs + ϕx) + nx(n)

(1)

y(n) = Ey(n) + ny(n)
= Eym cos

(
ωnTs + ϕy

)
+ ny(n)

(2)

z(n) = Ez(n) + nz(n)
= Ezm cos(ωnTs + ϕz) + nz(n)

(3)

where Exm, Eym, and Ezm and φx, φy, and φz are the amplitudes and initial phases of the electric field
components in the x, y, and z directions. nx(n), ny(n), and nz(n) are independent white Gaussian noise
in the x, y, and z directions. n is the sample number, Ts is the sample period, and ω is the angular
frequency of the EM wave.

3. DOA Estimation Algorithm

3.1. Principle of Algorithm

For an elliptically polarized EM wave, according to the signal model, in the antenna coordinate
system, the electric field of the received signal can be expressed as

E(n) = x(n)ex + y(n)ey + z(n)ez (4)

where E(n) is the electric field of the received signal, and ex, ey, and ez are unit direction vectors in the
x, y, and z directions respectively.

According to the definition of elliptically polarized electromagnetic waves, the electric field vector
E(n) is orthogonal to the propagation direction, and its trajectory is elliptical when viewed from the
direction of propagation. Obviously, the output vector of the tripole vector antenna is equal to the
electric field vector E(n) at the origin of the coordinate. In addition, the plane of the trajectory must
be perpendicular to the incident direction of the EM wave. According to the definition of the vector
operation, the cross-product of two non-parallel vectors is perpendicular to the plane where they
are located. Therefore, we can calculate the direction vector of the incident EM wave through these
two snapshots. Of course, this also applies to circular polarization, because circular polarization is
only a special case of elliptical polarization.

3.2. Caculation of Direction Vector

In the space rectangular coordinate system as shown in Figure 2, without considering noise,
the electric field trajectory is an ellipse in the plane α. Two continuous sample snapshots of the tripole
vector antenna are taken to describe two electric field vectors p1 and p2 at two different moments,
which are

p1 =
[

Ex(2k) Ey(2k) Ez(2k) ]
T

(5)

p2 =
[

Ex(2k + 1) Ey(2k + 1) Ez(2k + 1)
]T

(6)

where symbol “T” means transposition. 2k and 2k + 1 are two continuous sample indexes.
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Apparently, as shown in the Figure 2, the angle between p1 and p2 is certainly less than π and
greater than 0 because of the Nyquist sample theorem. Therefore, these two vectors are not on the
same line. According to vector operation principle, the normal vector of the plane α can be represented
by the cross product of p1 and p2, which is

m(k) = p1 × p2 =
[

mx my mz
]T

(7)

where
mx = Ey(2k)Ez(2k + 1) − Ez(2k)Ey(2k + 1) (8)

my = Ez(2k)Ex(2k + 1) − Ex(2k)Ez(2k + 1) (9)

mz = Ex(2k)Ey(2k + 1) − Ey(2k)Ex(2k + 1). (10)

Obviously, the vector m is orthogonal to the plane α, since it is the cross-product of p1 and p2.
Then, the direction of the vector m is parallel to the DOA of the EM wave, and that means we can
estimate the DOA by computing the angle of vector m. From the engineering point of view, we only
consider incident EM waves from the upper hemisphere. Therefore, for incident EM waves from the
lower hemisphere, all coordinates of vector m are inverted before the DOA estimation.

3.3. Noise-Free Angle Estimation Algorithm

For convenience, we assume temporarily that the received signal contains no noise. According
to Figure 2, the elevation angle θ0 (θ0 ∈ [0, π/2]) is the angle between the vector m and the z axis.
The azimuth angle φ0 is the angle between the projection of m in the xy plane and the x axis. If this
projection is in quadrant 1 or 2, then φ0 ∈ [0, π], and if it is in quadrant 3 or 4, then φ0 ∈ [−π, 0].
From Figure 2, the elevation angle θ0 should satisfy.

cosθ0 =
mz√

m2
x + m2

y + m2
z

(11)

The value of Equation (11) is always not negative because we only consider EM waves coming
above the xy plane; thus, the estimated elevation angle θ0 can be calculated by the inverse cosine
function, which is

θ̂0 = arccos

 mz√
m2

x + m2
y + m2

z

. (12)
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On the one hand, when θ̂0 = 0, it is obvious that the vector m is parallel to the z axis, which means
it is meaningless to estimate azimuth, so we stop estimating. On the other hand, when θ̂0 , 0, the vector
m is not parallel to the z axis, hence

m2
x + m2

y , 0. (13)

Similarly, according to the relationship between the projection of vector m onto the xy plane and
the x axis in Figure 2, it can be known that

cosφ0 =
mx√

m2
x + m2

y

. (14)

Furthermore, according to the definition of azimuth, the estimated value of azimuth is

φ̂0 =


arccos

 mx√
m2

x+m2
y

 my ≥ 0

−arccos

 mx√
m2

x+m2
y

 my ≤ 0

. (15)

3.4. Actual Angle Estimation Algorithm

The implementation of the algorithm is shown in Figure 3. In order to decrease the effect
of noise, we can take the average value with multiple estimates. Obviously, the calculation of
the anti-trigonometric function in Equations (12) and (15) are the most complex calculation steps in
the whole estimation algorithm, and these steps are also the most sensitive to noise. Therefore,
when calculating the vector m, taking the average value with K sample snapshots is an effective action
to reduce the influence of noise, because this operation is before the calculation of anti-trigonometric
functions. Then, the estimated value of m is

¯
m =

1
K

K∑
k=1

m(k) =
[

mx my mz
]T

. (16)

Correspondingly, DOA estimates are modified to

θ̂0 = arccos

 mz√
m2

x + m2
y + m2

z

 (17)

φ̂0 =


arccos

 mx√
m2

x+m2
y

 my ≥ 0

−arccos

 mx√
m2

x+m2
y

 my ≤ 0

. (18)
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4. Performance Analysis

4.1. Probability Distribution of Estimated Angles

Since there is noise in the snapshot, the estimated angles θ̂0 and φ̂0 are considered as random
variables. In order to find out the Probability Density Function (PDF), the PDFs of mx, my, and mz need
to be calculated first.

Considering noise components in received signals, we plug Equations (1)–(3) into Equations (8)–(10)
respectively, and obtain mx, my, and mz with noise. Since the three variables have the same structure,
only the PDF of mx is analyzed. For mx, which can be expanded as

mx = mx0 + Px + Qx (19)

where
mx0 = y(2k)z(2k + 1) − z(2k)y(2k + 1) (20)

Px = ny(2k)nz(2k + 1) − nz(2k)ny(2k + 1) (21)

Qx = ny(2k)Ez(2k + 1) + nz(2k + 1)Ey(2k)
−nz(2k)Ey(2k + 1) − ny(2k + 1)Ez(2k)

. (22)

Obviously, mx0 is ideal value without noise, but Px and Qx have noise. Apparently, noise snapshot
nx, ny, and nz are Gaussian random variables with a mean 0 and variance σ2

x, σ2
y, and σ2

z respectively.
Since Qx is the sum of multiple independent Gaussian random variables, Qx is also a random

variable of Gaussian distribution. According to Equation (22), it is not difficult to find out the mean
and variance are respectively:

E[Qx] = 0 (23)
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D[Qx] = σ2
Qx

= σ2
yE2

z(2k + 1) + σ2
zE2

y(2k)
+σ2

zE2
y(2k + 1) + σ2

yE2
z(2k)

. (24)

Therefore, the PDF of Qx is:

fQx(Qx) =
1

√
2πσQx

exp

− Q2
x

2σ2
Qx

. (25)

In order to obtain the PDF of Px, two related theorems are given in advance.

Theorem 1. If two independent random variables x and y obey the Gaussian distribution with mean 0 and
variance σ2

x, σ2
y the PDF of the variable z = xy is:

fz(z) = g(z) =
K0

(
|z|
σxσy

)
πσxσy

(26)

where the function K0 is the modified Bessel function of the second kind of order 0.

Theorem 2 [22]. If the PDFs of two independent random variables x and y are fx(x) and fy(y) respectively,
the PDF of the variable z = x + y is:

fz(z) =
∫ +∞

−∞

fx(t) fy(z− t)dt. (27)

Looking back to Equation (21), function Px is the difference of two independent components,
and each independent component is the product of two independent Gaussian variables. Hence,
using Theorems 1 and 2, we can get the PDF of the variable Px:

fPx(Px) =

∫ +∞

−∞

g(t)g(t− Px)dt =
1

2σzσy
exp

(
−|Px|

σzσy

)
. (28)

According to Equation (19), and using Theorem 2 again, we can get the PDF of variable mx;
similarly, we can get PDFs of my, mz.

fmx(mx) =
∫ +∞

−∞
fPx(t) fQx(mx −mx0 − t)dt

=
∫ +∞

−∞

1
2
√

2πσQxσzσy
exp

(
−

(mx−t−mx0)
2

2σ2
Qx

−
|t|
σzσy

)
dt

(29)

fmy

(
my

)
=

∫ +∞

−∞
fPy(t) fQy

(
my −my0 − t

)
dt

=
∫ +∞

−∞

1
2
√

2πσQyσzσx
exp

(
−
(my−t−my0)

2

2σ2
Qy

−
|t|
σzσx

)
dt

(30)

fmz(mz) =
∫ +∞

−∞
fPz(t) fQz(mz −mz0 − t)dt

=
∫ +∞

−∞

1
2
√

2πσQzσxσy
exp

(
−

(mz−t−mz0)
2

2σ2
Qz

−
|t|
σxσy

)
dt

(31)

According to Equation (24), similarly, we can define σ2
Qy

, σ2
Qz

as follows

σ2
Qy

= σ2
xE2

z(2k + 1) + σ2
zE2

x(2k) + σ2
zE2

x(2k + 1) + σ2
xE2

z(2k) (32)

σ2
Qz

= σ2
xE2

y(2k + 1) + σ2
yE2

x(2k) + σ2
yE2

x(2k + 1) + σ2
xE2

y(2k). (33)
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In order to simplify Equations (29)–(31), we replace exp(−|t|) with a function, which fits well with
the original function. This alternative function is

h(t) = a1e
−t2
b1 + a2e

−t2
b2 (34)

where a1 = 0.4652, b1 = 0.5524, a2 = 0.4396, b2 = 1.911, and max |exp(−|t|) − h(t)| is less than 0.03,
which means these two functions fit well.

In this way, Equations (29)–(31) can be replaced as:

fmx(mx) = a1
4σ2

Qx
σ2

zσ
2
y

√
σ2

zσ
2
y+2b1σ

2
Qx

b1
exp

(
−

2b1σ
2
Qx
σ2

zσ
2
y

σ2
zσ

2
y+2b1σ

2
Qx

(mx −mx0)
2
)

+ a2
4σ2

Qx
σ2

zσ
2
y

√
σ2

zσ
2
y+2b2σ2

Qx
b2

exp
(
−

2b2σ
2
Qx
σ2

zσ
2
y

σ2
zσ

2
y+2b2σ

2
Qx

(mx −mx0)
2
) (35)

fmy

(
my

)
= a1

4σ2
Qy
σ2

zσ
2
x

√
σ2

zσ
2
x+2b1σ

2
Qy

b1
exp

(
−

2b1σ
2
Qy
σ2

zσ
2
x

σ2
zσ

2
x+2b1σ

2
Qy

(
my −my0

)2
)

+ a2
4σ2

Qy
σ2

zσ
2
x

√
σ2

zσ
2
x+2b2σ

2
Qy

b2
exp

(
−

2b2σ
2
Qy
σ2

zσ
2
x

σ2
zσ

2
x+2b2σ

2
Qy

(
my −my0

)2
) (36)

fmz(mz) = a1
4σ2

Qz
σ2

xσ
2
y

√
σ2

xσ
2
y+2b1σ

2
Qz

b1
exp

(
−

2b1σ
2
Qz
σ2

xσ
2
y

σ2
xσ

2
y+2b1σ

2
Qz

(mz −mz0)
2
)

+ a2
4σ2

Qz
σ2

xσ
2
y

√
σ2

xσ
2
y+2b2σ

2
Qz

b2
exp

(
−

2b2σ
2
Qz
σ2

xσ
2
y

σ2
xσ

2
y+2b2σ2

Qz

(mz −mz0)
2
) . (37)

In order to get PDFs of θ̂0 and φ̂0, we quote two more related theorems.

Theorem 3 [22]. If u = g(x, y, z), and z(u, x, y) is the inverse function of u on z, u has continuous partial
derivative to x, y, z, the joint PDF of x, y, z is f (x, y, z), hence the PDF of u is

g(u) =
∫ +∞

−∞

∫ +∞

−∞

f (z(u, x, y), x, y)
∣∣∣∣∣ ∂z
∂u

∣∣∣∣∣dxdy. (38)

Theorem 4 [22]. If u = g(x, y), andy(u, x) is the inverse function of u on y, u has continuous partial derivative
to x, y, the joint PDF of x, y is f (x, y), hence the PDF of u is

g(u) =
∫ +∞

−∞

f (y(u, x), x)
∣∣∣∣∣∂y
∂u

∣∣∣∣∣dx. (39)

If we define the joint PDF of random variables (mx, my, mz) is f 1(mx, my, mz), then

f1(x, y, z) = fmx(x) fmy(y) fmz(z). (40)

Replacing mx, my, and mz with x, y, and z, according to Equation (12) and Theorem 3, the PDF of
the estimated elevation angle θ̂0 can be obtained as

fθ
(
θ̂0

)
=

∫ +∞

−∞

∫ +∞

−∞

f1
(
x, y, z

(
x, y, θ̂0

))∣∣∣∣∣∣∣ ∂(x, y, z)

∂
(
θ̂0, x, y

) ∣∣∣∣∣∣∣dxdy (41)
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where ∣∣∣∣∣∣ ∂z
∂θ̂0

∣∣∣∣∣∣ =
√

x2 + y2

sin2 θ̂0
. (42)

So,

fθ
(
θ̂0

)
=

∫ +∞

−∞

∫ +∞

−∞

fmx(x) fmy(y) fmz

(√
x2 + y2 cot θ̂0

) √
x2 + y2

sin2 θ̂0
dxdy. (43)

In the same way, if the joint PDF of random variables (mx, my) is

f2(x, y) = fmx(x) fmy(y), (44)

according to Equation (15) and Theorem 4, the PDF of the estimated azimuth φ̂0 can be obtained as

fφ
(
φ̂0

)
=

∫ +∞

−∞

f2
(
x, y

(
x, φ̂0

))∣∣∣∣∣∣ ∂y

∂φ̂0

∣∣∣∣∣∣dx (45)

where ∣∣∣∣∣∣ ∂y

∂φ̂0

∣∣∣∣∣∣ = |x| sec2 φ̂0. (46)

Hence

fφ
(
φ̂0

)
=

∫ +∞

−∞

fmx(x) fmy

(
x tan φ̂0

)
|x| sec2 φ̂0dx (47)

after simplification,

fφ
(
φ̂0

)
= sec2 φ̂0

2∑
i=1

2∑
j=1

qi j
(
φ̂0

)(
2−Φ

(
−µi j

σi j

)
−Φ

(
µi j

σi j

))
(48)

where Φ(x) =
∫ x
−∞

exp(−t2)
√

2π
dt and

qi j
(
φ̂0

)
= ri j exp

(
si j

(
my0 − tan φ̂0mx0

)2
){ i = 1, 2

j = 1, 2
(49)

ri j =
aia j

8πσQxσQyσ
2
zσyσx

√√√√
π

 2biσ2
Qx
σzσy

σzσy + 2biσ2
Qx

+
2b jσ2

Qy
σzσx

σzσx + 2b jσ2
Qy

tan2 φ̂0

 (50)

µi j =
biσ

2
Qx
σy

(
σzσx + 2b jσ

2
Qy

)
mx0 + b jσ

2
Qy
σx

(
σzσy + 2biσ

2
Qx

)
my0 tan φ̂0

biσ2
Qx
σy

(
σzσx + 2b jσ2

Qy

)
+ b jσ2

Qy
σx

(
σzσy + 2biσ2

Qx

)
tan2 φ̂0

(51)

σi j =
1
2

√√√√√√√√√ (
σzσy + 2biσ2

Qx

)(
σzσx + 2b jσ2

Qy

)
biσ2

Qx
σyσz

(
σzσx + 2b jσ2

Qy

)
+ b jσ2

Qy
σxσz

(
σzσy + 2biσ2

Qx

)
tan2 φ̂0

(52)

si j =
2bib jσ

2
Qx
σ2

Qy
σzσyσx

biσ2
Qx
σy

(
σzσx + 2b jσ2

Qy

)
+ b jσ2

Qy
σx

(
σzσy + 2biσ2

Qx

)
tan2 φ̂0

. (53)
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Clearly, Φ(x) is a cumulative distribution function of the standard normal distribution with an
integral. For the sake of simplicity, we use function I(x) to replace Φ(x) if max|Φ(x) − I(x)| is less
than 0.01,

I(x) =
1

1 + exp(−1.701x)
. (54)

Hence,

fφ
(
φ̂0

)
= sec2 φ̂0

2∑
i=1

2∑
j=1

qi j
(
φ̂0

)(
2− I

(
−µi j

σi j

)
− I

(
µi j

σi j

))
. (55)

4.2. Statistical Characteristics of Angle Estimatior

The statistical characteristics of angle estimators are the main indicators to measure the estimation
performance. In order to analyze the statistical characteristics of angle estimates, we first study the

distribution characteristics of the vector
¯

m, which is obtained by Equation (16). According to Section 4.1,

the estimated
¯

m is symmetrically distributed in space about the accurate value m0; as a result, the mean

value of
¯

m should be equal to the accurate value m0, namely

E[mx] = mx0 (56)

E
[
my

]
= my0 (57)

E[mz] = mz0. (58)

Meanwhile, let σ2
mx, σ2

my and σ2
mz as the variance of mx, my, and mz and σ2

mx, σ2
my and σ2

mz as the
variance of mx, my and mz according to the relationship among variables above, we can obtain

σ2
mx =

σ2
mx
K

(59)

σ2
my =

σ2
my

K
(60)

σ2
mz =

σ2
mz
K

. (61)

Obviously, when the number of snapshots K tends to infinity, σ2
mx, σ2

my and σ2
mz are all close to 0.

According to above conclusion, using Chebyshev’s theorem, the following inequalities
are established:

P
{∣∣∣mx −mx0

∣∣∣ ≥ ε1
}
≤
σ2

mx

ε2
1

(62)

P
{∣∣∣my −my0

∣∣∣ ≥ ε2
}
≤

σ2
my

ε2
2

(63)

P
{∣∣∣mz −mz0

∣∣∣ ≥ ε3
}
≤
σ2

mz

ε2
3

(64)

where ε1, ε2, and ε3 are arbitrary positive numbers.
Clearly, the probability for mx, my and mz deviate from mx0, my0, and mz0 tends to 0 respectively if

the number of snapshots K is very large. Combining Equations (16) and (17), we can get

lim
K→∞

arccos

 mz√
m2

x + m2
y + m2

z

 = arccos

 mz0√
m2

x0 + m2
y0 + m2

z0

 = θ0 (65)
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
lim

K→∞
arccos

 mx√
m2

x+m2
y

 = arccos

 mx0√
m2

x0+m2
y0

 = φ0
(
my ≥ 0

)
lim

K→∞
− arccos

 mx√
m2

x+m2
y

 = arccos

 mx0√
m2

x0+m2
y0

 = φ0
(
my ≤ 0

) . (66)

Therefore, we can conclude that our algorithm is an asymptotic unbiased estimation, and the
estimated value will become closer to the true value as the number of snapshots increases.

4.3. Analysis of Algorithm Complexity

MUSIC is a DOA estimation method based on subspace, which uses eigenvalue decomposition to
the covariance matrix and searches peaks by spatial spectrum. Its advantage is that D different signals
can be estimated at the same time. However, the disadvantage is that the N-element array must be
used and results in heavy computation load, where N > D.

The computation load of the interferometer algorithm is relatively small, but the amount of
operation increases significantly with the number of array elements. In addition, if the correction for
amplitude and phase errors is considered, the amount of operation would further increase.

Compared with above these two algorithms, the proposed algorithm based on a tripole vector
antenna has a significant advantage in computation. When K snapshots are used for estimation,
the new algorithm here only needs to complete multiplication in 6K − 1 times, addition in 6K − 1 times,
division in 2 times, square root in 2 times, and anti-cosine function in 2 times.

In details, the square root operation is calculated by Newton iterative method, and the iterative
formula is

xn+1 =
b

2xn
+

xn

2
x0 = b (67)

where b is a radicand. Since A means iteration times and xA is the square root of b, there are A times of
addition, A times of multiplication, and A times of division in one square root operation. On the other
hand, we calculate the inverse cosine function by Taylor’s expansion

arccosx =
π
2
−

M∑
n=0

 (2n)!

22n(n!)2

 x2n+1

2n + 1
=
π
2
−

M∑
n=0

anx2n+1(|x| ≤ 1). (68)

So, the amount of an anti-cosine function computation consists of (M + 1) (M + 2) times of
multiplication, n + 1 times of addition.

In conclusion, the computation load of the proposed algorithm includes M2 + 3M + 1 + 2A + 6K
times of multiplication, n + 2A + 6K times of addition, 2 + 2A times of division. The computation load
of each algorithm can be seen in Table 1.

Table 1. The computational complexity of the algorithm. MUSIC: Multiple Signal Classification.

Algorithm Times of Multiplication Times of Addition Times of Division

MUSIC [11] (2N − 1) (N − D) IQ + NK (2N − 1) (N − D) IQ + (2N − 1) K 1
Interferometer [9] 8 + A + 4 (M + 1) (M + 2) + 2K + 0.5 (N − 2) Klog2K A + 1 + 2K + 4 (n + 1) + Klog2K 6 + A

Proposed Algorithm M2 + 3M + 1 + 2A + 6K n + 2A + 6K 2 + 2A

Where Q is spectral peak search times of azimuth and I is that of elevation.
It can be seen from Table 1 that compared with existing methods, our algorithm of angle estimation

based on a single tripole vector antenna has obvious advantages in computational complexity.

5. Simulations

In this section, we present some numerical results to assess the performance of our algorithm.
For a comparison, we investigate the performance of MUSIC [11], Interferometer [9], and our
proposed algorithm.
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In the following simulations, we consider an L-shaped array consisting of three parallel dipoles
used for the interferometer, and three triple vector antennas used for both MUSIC and the proposed
algorithm. The spectral peak search interval of the MUSIC algorithm is 0.1 degree. In addition,
we assume that the DOA of the incident EM wave is θ0 = ϕ0 = 30◦, and the frequency of the EM wave
is 1 GHz.

For a statistical comparison, we define the root mean square error (RMSE) as

RMSE =

√√√√
1
J

J∑
j=1

[(
φ0 − φ̂0 j

)2
+

(
θ0 − θ̂0 j

)2
]

(69)

where φ0 and θ0 are the actual values of azimuth and elevation angle, respectively. In addition,
φ̂0 j and θ̂0 j are the estimated values of azimuth and elevation angle in the j-th Monte Carlo trial where
j = 1, 2, ..., J.

We also consider the statistical characteristics of the estimation error for the proposed algorithm.
The estimation error is defined as the difference between the estimated value and true value, that is{

∆θ = θ0 − θ̂0

∆φ = φ0 − φ̂0
. (70)

Their mean and variance are 
E[∆θ] = 1

J

J∑
j=1

(
θ0 − θ̂0 j

)
D[∆θ] = E2[∆θ] − E

[
∆θ2

] (71)


E[∆φ] = 1

J

J∑
j=1

(
φ0 − φ̂0 j

)
D[∆φ] = E2[∆φ] − E

[
∆φ2

] . (72)

In addition, the signal-to-noise ratio is defined as

SNR = 10lg
Ps

Pn
(73)

where Ps and Pn represent the effective power of signal and noise, respectively.

5.1. Simulation 1: Statistical Characteristics of Angle Error

In the first simulation, we mainly introduce the statistical characteristics of the estimation error
of the proposed algorithm according to Equations (71) and (72). Supposing J = 200 and SNR = 10 dB,
the results are shown in Figure 4.

In Figure 4, the mean of the estimation error is almost always 0 even in the case of small number of
snapshots, which illustrates that the estimation method can be considered unbiased and the error mean
is not sensitive to the number of snapshots. However, the variance of estimation error is relatively
large when the number of snapshots is small. Increasing the number of snapshots can reduce the
variance. Furthermore, the variance of azimuth is always larger than that of elevation angle.
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5.2. Simulation 2: Comparison of RMSE Performance Versus Different SNR

The second simulation illustrates the comparison of the performance among three kinds of DOA
estimation algorithms, which are phase interferometer, MUSIC, and the proposed tripole vector antenna
method. In the simulation, K = 1000, J = 200, and SNR varies from 0 to 10 dB. The results are shown in
Figure 5.
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Figure 5. Relationship between estimation error and SNR.

It depicts in Figure 5 that the MUSIC algorithm has the best performance followed by the proposed
algorithm here. In addition, due to the polarization mismatch between the EM wave and the antenna
for interferometer, the input SNR loss is 3 dB and leads to an estimation error almost twice that of the
proposed method.

5.3. Simulation 3: Comparison of RMSE Performance Versus Different Snapshots

The third simulation compares the performance of the three algorithms under different snapshots.
In this simulation, SNR = 10 dB, J = 200, and K varies from 100 to 1000. The results are shown in
Figure 6.

As illustrated in Figure 6, when the number of snapshots is the same, the performance of MUSIC
is the best, followed by the proposed algorithm and the interferometer. This result is very similar
to the simulation result in Section 5.2, which shows that increasing number of snapshots is equal to
improving the SNR for the proposed algorithm.
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5.4. Simulation 4: RMSE for Different DOAs in Degrees

In order to fully demonstrate the estimated performance of the proposed algorithm at various
angles, we simulated all angles under the condition of 10 dB and 1000 snapshots, and the results are
as follows.

According to Figure 7, estimate errors are different in various incident angles. In the situation
of invariant azimuth, as a decline of elevation, RMSE decreases; when the elevation stays invariant,
the RMSE varies periodically with the change of azimuth, the RMSE is relatively small when azimuth
is kπ/2, and it is relatively large when kπ/2 + π/4. The above simulation results are demonstrated

from Equations (17) and (18). According to Equation (17), the elevation angle depends on
m2

x+m2
y

m2
z

;

according to Equation (18), azimuth depends on m2
x

m2
x+m2

y
, which has nothing to do with mz.
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5.5. Simulation 5: Algorithm Complexity

In this simulation, we record the running time of different algorithms in MATLAB, which is
obtained by taking the average of the running time of multiple Monte Carlo experiments. The version
of MATLAB is 2018b. The CPU of the computer running the experiment is i7-7700HQ with a clock
frequency of 2.8 GHz. The simulation results are shown in Figure 8.
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Figure 8 presents that the speed of the proposed algorithm and the interferometer algorithm
are both much faster than that of the MUSIC algorithm. In detail, the running time of our algorithm
is at least 5 orders of magnitude lower than that of MUSIC algorithm. Furthermore, as the number
of snapshots increases, the calculation time of the interferometer algorithm is approximately 40 to
200 times that of the proposed algorithm. Obviously, the significant advantage of the proposed tripole
antenna algorithm is the low computational complexity.

6. Conclusions

We investigate the DOA estimation with a tripole vector antenna for a single nonlinearly
polarized EM wave. Unlike traditional dipole antennas, tripole vector antennas can completely
capture the electric field of EM waves, which makes it possible to estimate the DOA directly
through the geometric relationship between the signal propagation direction and the tripole vector
antenna. In the proposed method, the antenna array is not required so that hardware cost is
reduced. In addition, many complex operations are not required, such as spectrum search and matrix
eigenvalue decomposition, which means the proposed algorithm has extremely fast operation speed
with satisfactory accuracy. In the future, we will modify the new algorithm to enlarge the suitable
application fields. In addition, combining the proposed algorithm with other schemes to obtain better
performance in DOA estimation will also be considered.
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