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Abstract: In order to analyze the complex interactive behaviors between the robot and two
humans, this paper presents an adaptive optimal control framework for human-robot-human
physical interaction. N-player linear quadratic differential game theory is used to describe the
system under study. N-player differential game theory can not be used directly in actual scenerie,
since the robot cannot know humans’ control objectives in advance. In order to let the robot know
humans’ control objectives, the paper presents an online estimation method to identify unknown
humans’ control objectives based on the recursive least squares algorithm. The Nash equilibrium
solution of human-robot-human interaction is obtained by solving the coupled Riccati equation.
Adaptive optimal control can be achieved during the human-robot-human physical interaction.
The effectiveness of the proposed method is demonstrated by rigorous theoretical analysis and
simulations. The simulation results show that the proposed controller can achieve adaptive optimal
control during the interaction between the robot and two humans. Compared with the LQR controller,
the proposed controller has more superior performance.

Keywords: physical human-robot interaction; game theory; adaptive optimal control; robot control

1. Introduction

In the past decade, physical human-robot interaction has attracted the attention of the research
community due to the urgent requirement for robot technology in unstructured environment [1–4].
Physical human-robot interaction combines the advantages of humans and robots, which means that
humans are good at reasoning and problem solving with high flexibility, while robots perform well
in terms of execution as well as guaranteeing the accuracy of task execution [5,6]. The combination
of these advantages has led to the wide application of physical human-robot interaction, such as
teleoperation [7,8], collaborative assembly [9,10], and collaborative transportation [11–13].

Two types of specific human robot interaction strategies have been widely studied: co-activity type
of interaction strategy and master-slave control strategy [14,15]. Co-activity type of interaction strategy
is used in typical rehabilitation robots that help limb movement training or intelligent industrial
systems that support heavy objects to resist gravity, where robots completely ignore human users’
behaviors [16,17]. In contrast, the master–slave control strategy is used in the teleoperated robots
or force extender exoskeletons use where robots completely follow the control of human users [18].
However, these strategies can only be used for specific interactive behaviors, the general framework
for analyzing various interactive behaviors between robot and humans is still missing [19,20].

It has been pointed out that game theory can be used as a general framework to analyze complex
interactive behaviors between multiple agents because different combinations of individual cost
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functions and different optimization objectives can be used to describe various interactive behaviors
in game theory [21]. In [22], the human and the robot were been regarded as two agents and game
theory was used in order to analyze the performance of the two agents. In [23], the optimal control was
obtained for a given game with a linear system cost function by solving the coupled Riccati equation.
In [24], an optimal control algorithm was developed for human-robot collaboration by solving the
Riccati equation in each loop. In [25–28], policy iteration was used to solve the Nash equilibrium
solution in order to improve the calculation speed. In [29], cyber-physical human systems was modeled
via an interplay between reinforcement learning and game theory. In [30], haptic shared control for
human-robot collaboration was modeled by a game-theoretical approach. In [31], human-like motion
planning was studied based on game theoretic decision making. In [32], cooperative game was used
for human-robot collaborative manufacturing. In [33], a bayesian framework was proposed for nash
equilibrium inference in human-robot parallel play. In [19], non-cooperative differential game theory
was used to model human-robot interaction system that results in a variety of interaction strategies.
However, the above studies only consider two agents, that is, the interaction between one human and
one robot. Therefore, the aforementioned methods are not suitable for human-robot-human physical
interaction where more than one human interact with one robot physically. It is worth noting that
the physical interaction between one robot and two humans will bring greater advantages such as
operating larger loads, improving the flexibility and robustness of the system [28,34–37]. These greater
advantages are brought by the team collaboration between the robot and two humans. To the authors’
acknowledgment, no literature have researched the problem of the physical interaction between one
robot and two humans based on game theory.

In the paper, a general adaptive optimal control framework for human-robot-human physical
interaction is proposed based on N-player game theory. Accordingly, the robot and two humans
can interact with each other optimally by learning each other’s control. N-player differential game
theory was used to model the human-robot-human interaction system in order to analyze the complex
interactive behaviors between the robot and two humans. In N-player differential game theory,
humans’ control objectives are assumed to be knowledge [38,39]. However, N-player differential
game theory can not be used directly in actual scenerie since the robot cannot know humans’ control
objectives in advance. In order to let the robot know humans’ control objectives, the paper presents an
online estimation method to identify unknown humans’ control objectives based on the recursive least
squares algorithm. Subsequently, the Nash equilibrium solution of the multi-human robot physical
interaction is obtained by solving the coupled Riccati equation to achieve coupled optimization.
Finally, the effectiveness of the proposed method is demonstrated by rigorous theoretical analysis and
simulation experiments. This paper makes the following four contributions.

(1) N-player differential game theory is firstly used to model the human-robot-human
interaction system.

(2) An online estimation method to identify unknown humans’ control objectives based on the
recursive least squares algorithm is presented.

(3) A general adaptive optimal control framework for human-robot-human physical interaction is
propose based on (1) and (2).

(4) The effectiveness of the proposed method is demonstrated by rigorous theoretical analysis and
simulation experiments.

The remainder of this paper is organized, as follows: Section 2 models the human-robot-human
physical interaction system based on N-player differential game theory. Section 3 establishes an
adaptive optimal control law, and the control performance of the system is analyzed theoretically.
Section 4 verifies the effectiveness of the proposed method through simulation experiments. Finally,
Section 5 concludes this work.
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2. Problem Formulation

2.1. System Description

The system considered contains two humans and one robot. An example scenario is shown in
Figure 1, where the robot and the humans collaborate to perform an object transporting task. In this
shared control task, when the control objectives of humans’ change, the robot should recognize the
humans’ control objectives and response adaptively and optimally. The forces exerted by the humans
on the object are measured by force sensors at the interaction point. It is worth noting that the humans’
control objectives are unknown to the robot.

Figure 1. A scenario where the humans and the robot collaborate to perform an object transporting task.

The forward kinematics of the robot are described as

x(t) = φ(q(t)) (1)

where x(t) ∈ Rm and q(t) ∈ Rn are the positions in Cartesian space and joint space respectively, m and
n are degrees of freedom. Derivation of Equation (1) with time can be obtained

ẋ(t) = J(q(t))q̇(t) (2)

where J(q(t)) ∈ Rm×n is the Jacobian matrix.
The following impedance model is given in Cartesian space

Md ẍ(t) + Cd ẋ(t) = u(t) + f1(t) + f2(t) (3)

where Md ∈ Rm×m is the desired inertial matrix, Cd ∈ Rm×m is the damping matrix, u(t) ∈ Rm is
the control input in the Cartesian space [40–42], f1(t) ∈ Rn is the contact force between object and
human 1, f2(t) ∈ Rn is the contact force between object and human 2.

To track a common and fixed target xd ∈ Rm (ẋd ∈ Rm) in cooperative object transporting task,
Equation (3) can be transformed, as following

Md(ẍ(t)− ẍd) + Cd(ẋ(t)− ẋd) = u(t) + f1(t) + f2(t). (4)
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In order to ease the design of the control, Equation (4) can be rewritten as the following
state-space form

ż = Az + B1u + B2 f1 + B3 f2

z =

[
x(t)− xd

ẋ(t)

]
, A =

[
0m 1m

0m −M−1
d Cd

]

B1 = B2 = B3 = B =

[
0m

M−1
d

] (5)

where 0m and 1m denote m×m zero and unit matrices, respectively.

2.2. Problem Formulation

According to non-cooperative differential game theory, in the paper, the interaction between the
robot and the humans is described as a game between N players (in this paper, N = 3) [43]. In the
game, each player will minimize their respective cost function

Γ ≡
∫ ∞

t0

zTQz + uTudt

Γ1 ≡
∫ ∞

t0

zTQ1z + f T
1 f1dt

Γ2 ≡
∫ ∞

t0

zTQ2z + f T
2 f2dt

Q =

[
Q01 0n×n

0n×n Q02

]

Q1 =

[
Q11 0n×n

0n×n Q12

]

Q2 =

[
Q21 0n×n

0n×n Q22

]

(6)

where Γ, Γ1, Γ2 are cost functions of the robot, human 1, and human 2, respectively, Q, Q1, Q2 are
state weights matrices of the robot, human 1 and human 2, respectively. Each player achieves the
cooperative object transporting task by minimizing the error to the target while minimizing their
own costs. Q, Q1, Q2 contain two components corresponding to position regulation and velocity,
respectively. Q01, Q11, Q21 correspond to position regulation and Q02, Q12, Q22 correspond to velocity.

In [27], the N-player game has been studied if the cost functions are known. However, Γ1, Γ2

are unknown to the robot because they are determined by the humans. Therefore, a method
is proposed in the paper to estimate Γ1, Γ2 in order to achieve adaptive optimal control and,
thus, the human-robot-human cooperative object transporting task.

2.3. N-Player Differential Game Theory

Based on the differential game theory of linear systems, for N-player game the following linear
differential equation [43] is considered:

ż = Az + B1u1 + · · ·+ BNuN , z(0) = z0. (7)

Each player has a quadratic cost function that they want to minimize:

Γi =
∫ ∞

0
zTQiz + uT

i uidt, i = 1, · · · , N (8)
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Different types of multi-agent behaviors are defined in game theory, which can be achieved
through different concepts of game equilibrium [44,45]. In this paper, Nash equilibrium is considered.
In the sense of Nash equilibrium, each player minimizes their cost function:

ui = −ηiz, ηi = BT
i Pi

(A−
N

∑
j 6=i

Biηi)
T Pi + Pi(A−

N

∑
j 6=i

Biηi)i + Qi − PiBiBT
i P = 0, i = 1, · · · , N

(9)

where N is equal to 3 in this paper. In the sense of Nash equilibrium, the humans and the robot
minimizes their own cost function:

u = −αz

α = BT Pr
(10a)

f1 = −βz

β = BT P1
(10b)

f2 = −γz

γ = BT P1
(10c)

AT
r Pr + Pr Ar + Q− PrBBT Pr = 02n, Ar = A− Bβ− Bγ (10d)

AT
1 P1 + P1 A1 + Q− P1BBT P1 = 02n, A1 = A− Bα− Bγ (10e)

AT
2 P2 + P2 A2 + Q− P2BBT P2 = 02n, A2 = A− Bα− Bβ (10f)

where α ≡
[

αe, αv

]
is the feedback gain of the robot, β ≡

[
βe, βv

]
is the feedback gain of the

human 1, γ ≡
[

γe, γv

]
is the feedback gain of of the human 2. αe, βe, γe are the position error gains,

αv, βv, γv are the velocity gains, Pr, P1, P2 are the solutions of the above well-known Riccati equation
consisting of Equation (10d–f). The robot and the humans influence each other through Ar, A1, and A2

in order to achieve the interactive control and the coupling optimization.
β, γ are unknown to the robot. Therefore, we aim to propose a method to estimate them in the

following section.

3. Adaptive Optimal Control

A recursive least squares algorithm with forgetting factors is used in this paper to get the estimate
β̂, γ̂ of β, γ in order to estimate the feedback gains of the humans in real time and avoid the data
saturation phenomenon caused by the standard least squares algorithm [46]. Subsequently, the estimate
Q̂1, Q̂2 of Q1, Q2 can be obtained using Equation (10e,f).

Equation (10e) is used as the model for identification. For convenience, we let θ1 = −βT , y1 = f T
1 ,

W = zT . Subsequently, Equation (10b) can be rewritten as

y1 = Wθ1. (11)

The feedback gain of the human 1 are estimated by minimizing the total prediction error

J1 =
∫ t

0
exp(−λ1t)‖y1(s)−W(s)θ̂1‖2ds (12)

where λ1 is the constant forgetting factor. The update rule of the parameter θ1 can be obtained as

˙̂θ1 = −PWTe1

Ṗ = λ1P− PWTWP

e1 = ŷ1 − y1.

(13)
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The estimated error of θ̂1 is

eθ1(t) = exp(−λ1t)P(t)P−1(0)eθ1(0). (14)

Thus, the estimate β̂ can be obtained as

β̂ = −θ̂T
1 . (15)

Similarly, we let θ2 = −γT , y2 = f T
2 , W = zT . Afterwards, Equation (10c) can be rewritten as

y2 = Wθ2. (16)

The feedback gain of the human 2 are estimated by minimizing the total prediction error

J2 =
∫ t

0
exp(−λ2t)‖y2(s)−W(s)θ̂2‖2ds (17)

where λ2 is the constant forgetting factor. The update rule of the parameter θ2 can be obtained as

˙̂θ2 = −PWTe2

Ṗ = λ2P− PWTWP

e1 = ŷ2 − y2.

(18)

The estimated error of θ̂2 is

eθ2(t) = exp(−λ2t)P(t)P−1(0)eθ2(0). (19)

Thus, the estimate γ̂ can be obtained as

γ̂ = −θ̂T
2 . (20)

Equations (13), (15), (18) and (20) are critical, because they enable each agent to recognize their
partners’ control objectives and use Equation (10a–f) to adjust their own control.

In order to ensure the performance of cooperative object transporting task, we let

Q + Q1 + Q2 ≡ C (21)

where C is the total weight. The cooperative object transporting task fixes the task performance
through the total weight C and uses Equation (21) to share the the effort between 2 humans and the
robot. Equation (21) makes the proposed controller be able to adjust the contributions between the
humans and the robot and makes the humans and the robot take complementary roles as well.

The control architecture is shown in Figure 2.
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Figure 2. Control Architecture.

A pseudo-code summarizes the implementation procedures of the proposed method as
Algorithm 1.

Algorithm 1 Adaptive optimal control algorithm based on N-player game

Input: Current state z, target xd.
Output: Robot’s control input u, estimated the humans’ cost function state weight Q̂1, Q̂2 in Equation (10e,f).
Begin

Define xd, initialize Q, Q̂1, Q̂2, u, f1, f2, ẑ, α, β̂, γ̂, Pr, P̂1, P̂2, set λ1 in Equation (13), λ2 in Equation (18), C in
Equation (21), the terminal time t f of one trial.
While t < t f do

Measure the position x(t), velocity ẋ(t), and form z.
Update β̂ using Equations (13) and (15), Update γ̂ using Equations (18) and (20).
Solve the Riccati equation in Equation (10d) to obtain P, and calculate the robot’s control input u.
Calculate estimated the humans’ cost function state weights Q̂1, Q̂2 in Equation (10e,f) using the Riccati
equation.
Compute robot’s cost function state weight Q according to Equation (21).

Theorem 1. Consider the robot dynamics shown in Equation (5). If the robot and the humans estimate the
parameters of their partners’ controller and adjust their own control according to Equations (10a–f), (13), (15),
(18), (20) and (21), then the following conclusions will be drawn:

• The closed-loop system is stable, and z, α, β̂, γ̂, u are bounded.
• limx→∞ Q̂1 = Q1, limx→∞ Q̂2 = Q2, which indicate that Q̂1, Q̂2 converge to the correct values Q1, Q2,

if z is persistently exciting.
• The Nash equilibrium is achieved for th human-robot-human interaction system.

Proof of Theorem 1. β̂, γ̂ influence u, f1, f2, z as following:

˙̂z = Aẑ + Bû + B f1 + B2. (22)

By subtracting Equation (5) from Equation (22), we have

ėz = Aez + B(û− u) + Be f1 + Be f2 (23)
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where ez = ẑ− z. By considering Equation (10a–c), we have

ėz = (A− Bα)ez + BeT
θ1

z + BeT
θ2

z. (24)

Consider the Lyapunov function candidate as following

W =
1
2

zTz +
1
2

eT
θ1

eθ1 +
1
2

eT
θ2

eθ2 +
χ

2
eT

z ez (25)

where χ = min( 2(λ1−ρ)π
ϕ2‖B‖2 , 2(λ2−ρ)π

ϕ2‖B‖2 ), with ρ being the upper bound of the maximum eigenvalue of

ṖP−1, π being the lower bound of the minimum eigenvalue of Bα − A, ϕ being the upper bound
of ‖z‖.

When considering function V = 1
2 zTz and differentiating V with respect to time, we obtain

V̇ = zT ż = −zT(Bα + Bβ + Bγ− A)z. (26)

According to Equation (10d), Bα + Bβ + Bγ − A is positive definite if Q is positive definite,
it follows limt→∞‖z‖= 0. Therefore, z is bounded and we define ϕ as the upper bound of ‖z‖.
By differentiating Equation (25), with respect to time, and considering Equations (14), (19) and (24),
we obtain

Ẇ =zT ż + eT
θ1

ėθ1 + eT
θ2

ėθ2 + χeT
z ėz

=− zT(Bα + Bβ + Bγ− A)z

− λ1eT
θ1

eθ1 + eT
θ1

ṖP−1eθ1 − λ2eT
θ2

eθ2 + eT
θ2

ṖP−1eθ2

− χeT
z (Bα− A)ez + χeT

z BeT
θ1

z + χeT
z BeT

θ2
z

≤− zT(Bα + Bβ + Bγ− A)z

− λ1‖eθ1‖
2+ρ‖eθ1‖

2−λ2‖eθ2‖
2+ρ‖eθ2‖

2

− χπ‖ez‖2+χϕ‖B‖‖ez‖‖eθ1‖+χϕ‖B‖‖ez‖‖eθ2‖

=− zT(Bα + Bβ + Bγ− A)z

− (
√

λ1 − ρ‖eθ1‖−
√

χπ

2
‖ez‖)2

− 2
√

λ1 − ρ

√
χπ

2
‖eθ1‖ez‖‖+χϕB‖‖ez‖‖eθ1‖

− (
√

λ2 − ρ‖eθ2‖−
√

χπ

2
‖ez‖)2

− 2
√

λ2 − ρ

√
χπ

2
‖eθ2‖ez‖‖+χϕ‖B‖‖ez‖‖eθ2‖

≤− zT(Bα + Bβ + Bγ− A)z

+ (−2
√

λ1 − ρ

√
χπ

2
+ χϕ‖B‖)‖ez‖‖eθ1‖

+ (−2
√

λ2 − ρ

√
χπ

2
+ χϕ‖B‖)‖ez‖‖eθ2‖

≤0 (27)

According to Equations (26) and (27), we have limt→∞‖z‖= 0, limt→∞ ‖ez‖ = 0. Therefore,
z(t) is bounded and limt→∞ ‖ėz‖ = 0. According to Equation (27), we have limt→∞‖eθ1‖= 0,
limt→∞ ‖eθ2‖ = 0. Because of eθ1 = θ̂1 − θ1 = (−β̂)T − (−β)T = βT − β̂T ,
eθ2 = θ̂2 − θ2 = (−γ̂)T − (− γ)T = γT − γ̂T , we can obtain limt→∞‖βT − β̂T‖= 0,
limt→∞‖γT − γ̂T‖= 0. β, γ are assumed to be bounded, since they are the feedback gains of the
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humans. Therefore, β̂, γ̂ are also bounded. According to Equation (10a–c), P1, P2 are also bounded.
According to Equation (10d), Ar is bounded. Therefore, P, α and u are bounded.

According to Equation (10e), we can calculate the estimated errors eQ1 = Q̂1−Q1, eQ2 = Q̂2−Q2.
eQ1 , eQ2 are due to the errors eP, eP1 , eP2 . Because eP, eP1 , eP2 converge to zero, we have limt→∞‖eQ1‖= 0,
limt→∞‖eQ2‖= 0, that is limt→∞ Q̂1 = Q1, limt→∞ Q̂2 = Q2.

Multiplying Equation (10d) by ẑT on the left side and by ẑ on the right side, and considering
Equation (13), we have

0 =ẑTQẑ + ẑT PrBBT Pr ẑ + ẑT Pr ˙̂z

+ ẑPr ˙̂zT + ẑT Pr Hez + ẑPr HeT
z

≡σ̂.

(28)

Considering limt→∞ ez = 0, limt→∞ ėz = 0, we can obtain

lim
t→∞

σ ≡ lim
t→∞

(zTQZ + zT PrBBT Prz

+ zT Pr ż + zPr żT)

=0.

(29)

Similarly, we can obtain

lim
t→∞

σ1 ≡ lim
t→∞

(zTQ1Z + zT P1BBT P1z

+ zT P1ż + zP1żT)

=0

lim
t→∞

σ2 ≡ lim
t→∞

(zTQ2Z + zT P2BBT P2z

+ zT P2ż + zP2żT)

=0.

(30)

limt→∞ σ = 0, limt→∞ σ1 = 0 and limt→∞ σ2 = 0 indicate that the Nash equilibrium is achieved for the
human-robot-human interaction system.

4. Simulations and Results

4.1. Experimental Design and Ssimulation Settings

With the development of the robot technology, in the future, robots will enter our homes and
become a member of family in our daily lives. In our daily lives, we often need to carry various
objects. Some objects (e.g., objects with smaller size and lower weight) can be successfully carried
by one human; some objects (e.g., objects with medium size and medium weight) need to be carried
successfully by two humans; some objects (e.g., objects with larger size and higher weight) can be
carried successfully by three or more humans. Consider one scenario: In our home, we have an
object (such as a table with a relatively larger size and higher weight) that need to be carried by three
humans. However, there are only two humans in the home. In this case, we can let the robot help
us carry the object together with the two humans. The robot can play the same role as one human.
A simulation is conducted with CoppeliaSim in order to verify the control performance of the controller
proposed in this paper. The version of CoppeliaSim that we used is CoppeliaSim 4.0.0 (CoppeliaSim
Edu, Windows). Figure 3 demonstrates the CoppeliaSim simulation scenario of cooperative object
transporting task. The humans cooperate with the robot to transport the object between −10 cm and
+10 cm back and forth along the horizontal direction.
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Figure 3. Simulation of cooperative object transporting task. The humans cooperate with the robot to
transport the object back and forth between −10 cm and +10 cm along the horizontal direction.
The forces that are exerted by the humans on the object are measured by force sensors at the
interaction point.

The controller that is proposed in this paper implements interactive control because every agent
considers the control of other partners. In order to present the advantages of the proposed controller,
we compare the proposed controller with the linear quadratic regulators (LQR) optimal controller.
The LQR controller can be obtained by setting Ar = A, A1 = A, A2 = A in Equation (10d–f). The LQR
controller allows each agent to form its own control input optimally, but it ignores the controls of other
partners. Let Q = Q1 = Q2 = diag(100, 0).

The cost functions of the humans usually change during the physical human-robot-human
interaction. The robot needs to identify the change and adaptively adjust its own cost function
in order to complete the cooperative object transporting task. In order to verify the ability of the
robot to adaptively interact with two humans when humans’ cost functions change, we simulated a
scenario where the robot cooperated with the humans to perform an object transporting task. The
task performance is achieved by setting the value of C in Equation (21). Let C = diag(300, 0). The
cost functions of the human 1 and the human 2 change randomly according to Q1 = diag(50, 0) + ρ ·
diag(50, 0), Q2 = diag(50, 0) + ρ · diag(50, 0) ( ρ is a uniformly distributed random number between
[0, 1]).

The human-robot-human cooperative object transporting task can be fulfilled with less effort with
the proposed controller. In order to make this affirmation, we made a comparison with a human-robot
cooperative object transporting task. In simulation of the human-robot-human cooperative object
transporting task, we let Q = Q1 = Q2 = diag(100, 0). In simulation of the human-robot cooperative
object transporting task, we let Q = diag(100, 0), Q1 = diag(100, 0), Q2 = diag(0, 0).

We assume that the humans and the robot do not have prior knowledge of each other
(thus, initially α̂ ≡ 0, β̂ ≡ 0, γ̂ ≡ 0 ). The control input of the robot are generated by Equations (5),
(10a–f), (13), (15), (18) and (20). The simulated interaction forces f1, f2 of the human 1 and the human 2
are generated by a similar set of equations. The simulation time is 40 s. Let the inertia of the robot
Md = 6 kg, the damping of the robot Cd = −0.2 N ·m−1 [19], the real-time least squares algorithm
forgetting factor λ1 = λ2 = 0.95. Simulation time step is 0.005 s.

4.2. Results

Figure 4 depicts the change in position of the end effector with respect to time. The results plotted
in Figure 4 is a smooth curve that looks like a sinusoidal signal. This smooth curve is determined by
Equation (3). In Equation (3), u(t), f1(t), f2(t) are iteratively calculated by our proposed controller
based on game theory. Due to the fact that the humans and the robot do not transport the object
at a constant speed using our method, the end effector follows a curve signal rather than a straight
line signal. As can be seen from Figure 4, the end effector can reach the target position with the
proposed controller which means that the cooperative object transporting task is successfully fulfilled.
In contrast, the end effector can not reach the target position with the LQR controller, which means that
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the cooperative object transporting task is not successfully fulfilled. The reason why the cooperative
object transporting task can be successfully fulfilled with the proposed controller rather than with the
LQR controller is that the proposed controller considers the interaction with other partners. When one
partner decreases effort, the other partners will gradually increase their efforts to ensure the successful
fulfillment of the cooperative object transporting task. In contrast, the LQR controller does not consider
the interaction with other partners, so the cooperative object transporting task cannot be guaranteed to
be successfully fulfilled.

Figure 4. The end effector position value.

In Figure 5, we can see that the estimated humans’ feedback gains converge to the real values
in a few seconds. This means that the humans’ feedback gains can be successfully estimated by the
proposed method.

(a) (b)

(c) (d)

Figure 5. Control gains of humans. (a) the position error feedback gain of the human 1. (b) the velocity
feedback gain of the human 1. (c) the position error feedback gain of the human 2. (d) the velocity
feedback gain of the human 2.

Figure 6 demonstrates that fulfilling the cooperative object transporting task requires larger control
gains β, γ with the LQR controller compared with the controller proposed in this paper. It means that
accomplishing the same task requires less effort using the proposed controller. This is because that the
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proposed controller considers the interaction with other partners and calculates the minimal effort for
the humans and the robot to complete the task. In contrast, the LQR controller doesn’t consider the
interaction with other partners, so the humans and the robot only minimize their own cost function
and may, therefore, require larger effort.

(a) (b)

(c) (d)

Figure 6. Humans’ control gains (a) the position error feedback gain of the human 1. (b) the velocity
feedback gain of the human 1. (c) the position error feedback gain of the human 2. (d) the velocity
feedback gain of the human 2.

The feedback gains are affected by the state weights of the cost functions. In order to verify the
advantages of the proposed controller when the state weights vary, we let Q1 vary from 0 to 10Q
with Q2 = diag(100, 0) and let Q2 vary from 0 to 10Q with Q1 = diag(100, 0) respectively. It can be
seen from Figure 7 that accomplishing the same task always requires less effort using the proposed
controller. We can also see that the difference between the control gains with our proposed controller
and the control gains with LQR controller becoming smaller when Q1/Q or Q2/Q increases, this is
because that the robot’s relative influence decreases.

From Figures 4–7, we can conclude that the human-robot-human cooperative object transporting
task can be fulfilled with less effort and the system can be kept stable using the proposed controller.

It can be seen from Figure 8 that, when the cost functions of the human 1 and the human 2 change,
the cost function of the robot will also change adaptively. When the sum of the state weights of the
human 1 and the human 2 Q1 + Q2 increases, the state weight of the Robot Q decreases accordingly.
Conversely, when the sum of the state weights of the human 1 and the human 2 Q1 + Q2 decreases,
the state weight of the robot Q increases accordingly. The reason why the robot can change adaptively
is that we set the constant C value in Equation (21). Equation (21) makes the proposed controller able
to adjust the contributions between the humans and the robot and makes the humans and the robot
take complementary roles as well.

Figure 9 shows that, using the proposed controller, the adaptive cooperative object transporting
task can be fulfilled and the system can be kept stable.
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(a) (b)

(c) (d)

Figure 7. Control gains for different values of humans’ state weights. (a) and (b) the state weight of the
human 1 vary. (c) and (d) the state weight of the human 2 vary.

(a) (b)

(c) (d)

Figure 8. Humans’ state weights. (a) the state weight of the human 1. (b) the state weight of the
human 2. (c) the sum of the state weights of the human 1 and human 2. (d) the state weight of the
robot.

From Figures 8 and 9, we can conclude that the adaptive cooperative object transporting task can
be fulfilled with the proposed controller. During the physical interaction, the robot can successfully
identify the change of each human’s cost function, and then adaptively adjust its own cost function to
achieve interactive optimal control.

Figure 10 demonstrates that fulfilling the human-robot-human cooperative object transporting
task requires smaller control gains βe, βv as compared with the human-robot cooperative object
transporting task. It means that accomplishing the same task requires less effort by means of the
human-robot-human physical interaction. This is because the human-robot-human cooperative object
transporting task considers the interaction with more partners (two partners) and calculates minimal
effort for the humans and the robot to complete the task. In contrast, the human-robot cooperative
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object transporting task consider the interaction with less partners (only one partner), so the human
and the robot may therefore require larger effort.

(a) (b)

(c) (d)

Figure 9. The end effector position value. (a) The end effector position value in Trial 1. (b) The end
effector position value in Trial 2. (c) The end effector position value in Trial 3. (d) The end effector
position value in Trial 4.

(a) (b)

(c) (d)

Figure 10. Humans’ control gains. The dashed lines correspond to the human-robot cooperative
object transporting task. The solid lines correspond to the human-robot-human cooperative object
transporting task. (a) the position error feedback gain of the human 1. (b) the velocity feedback gain of
the human 1. (c) the position error feedback gain of the human 2. (d) the velocity feedback gain of the
human 2.

5. Conclusions

In this paper, the human-robot-human physical interaction problem has been studied. An adaptive
optimal control framework for the human-robot-human physical interaction has been proposed based
on N-player game theory. The recursive least squares algorithm based on forgetting factor has
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been used to identify unknown control parameters of the humans online. The performance of the
controller proposed in this paper has been verified by simulations of cooperative object transporting
task. The simulation results show that the proposed controller can achieve adaptive optimal control
during the interaction between the robot and two humans and keep the system stable. Compared
with the LQR controller, the proposed controller has more superior performance. Compared with
the human-robot physical interaction, accomplishing the same cooperative object transporting task
requires less effort by means of the human-robot-human physical interaction based on the approach
proposed in the paper. Although this paper only conducts simulations on the physical interaction
between one robot and two humans, it is worth mentioning that the framework that is proposed in
this paper has the potential to be generalized to the situation where multiple robots physically interact
with multiple humans. As future work, we will extend the framework to the interaction between
multiple robots and multiple humans.
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