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Abstract: In the process of fault diagnosis and the health and safety operation evaluation of modern
industrial processes, it is crucial to measure important state variables, which cannot be directly detected
due to limitations of economy, technology, environment and space. Therefore, this paper proposes a
data-driven soft sensor approach based on an echo state network (ESN) optimized by an improved
genetic algorithm (IGA). Firstly, with an ESN, a data-driven model (DDM) between secondary
variables and dominant variables is established. Secondly, in order to improve the prediction
performance, the IGA is utilized to optimize the parameters of the ESN. Then, the immigration
strategy is introduced and the crossover and mutation operators are changed adaptively to improve
the convergence speed of the algorithm and address the problem that the algorithm falls into the
local optimum. Finally, a soft sensor model of an ESN optimized by an IGA is established (IGA-ESN),
and the advantages and performance of the proposed method are verified by estimating the alumina
concentration in an aluminum reduction cell. The experimental results illustrated that the proposed
method is efficient, and the error was significantly reduced compared with the traditional algorithm.

Keywords: soft sensor; echo state network (ESN); genetic algorithm (GA); alumina concentration;
aluminum reduction cell

1. Introduction

For industrial enterprises, energy-saving, cost reduction and efficiency increase are the foundation
of their development. The main means are to continuously optimize the control strategy of the
production process and enhance the state monitoring of production equipment and process. One of
the problems to be solved is to collect the key state variables in real time. However, these variables
are usually difficult to measure directly. The main reason is that on the one hand, they are limited by
the harsh environment and narrow space. There is no suitable hardware sensor to adapt to special
industrial sites. On the other hand, the development of available hardware sensors cannot be realized
in a short period of time in terms of technology and economy. In addition, generally speaking,
modern industry can be regarded as a complex nonlinear system, and large uncertainties exist in the
processes. For example, the sampling time of some process variables is irregular, since they may have
been tested in the laboratory, which could result in varying time delay. Even if some state variables can
be measured directly, the measured data may be extremely unreliable [1–6].

One way to solve the above issue is to develop a soft sensor, which seeks to select one or
more variables that are easy to measure as secondary variables, and estimate the target variables by
establishing a mathematical model according to the correlation between the selected variables and
the target variables [7–9]. Generally, developing a reliable soft sensor consists of the following steps
(see Figure 1): secondary variables selection, historical data collection, data pretreatment, variables
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and model structure selection, model identification, model verification, implementing and online
adjustment. In the adjustment process, steps 2–6 will be repeated until a certain estimation accuracy is
achieved [10].
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Among them, the variables and model structure selection is a relatively critical step, which needs to
determine an appropriate and reliable soft sensor model according to the actual requirements. In general,
soft sensor models can be divided into two categories: first principles models (FPMs) and data-driven
models (DDMs). As described in Referrence [7], the methods of FPMs are based on physical and chemical
principles and assumes the process as an ideal static state. However, in many industrial processes,
there are some characteristics, such as unclear mechanisms, multi-physical coupling, object–model
mismatch and nonlinearity, which make it difficult to realize ideal physical assumptions and deviation
measurements, which in turn limits the application of such methods. By contrast, developing a soft
sensor based on DDMs only requires obtaining the historical operational data without considering the
complex mechanism or process knowledge, and this has been successfully applied to many spheres,
which has attracted more and more attention from academia and industry. Classical data-driven
modeling methods include principle component analysis (PCA) [11–16], support vector machine
(SVM) [17–20], partial least squares (PLS) [21,22], Gaussian process regression (GPR) [23,24], Bayesian
prediction [25,26], slow feature analysis (SFA) [27–30], extreme learning machine (ELM) [31] and their
improved models, artificial neural networks (ANNs) [32] and two or more hybrid models [33–35],
among others. The advantage of PCA is that it is convenient for simplifying the model and is generally
used for the correlation analysis between the same matrix vectors. PLS is used to simulate the
correlation between independent variables and dependent variables, which are commonly used in
linear systems. SVM is generally used for the binary classification of vectors in the feature space.
GPR needs to use a complete sample or characteristic information to predict, and losses effectiveness in
high dimensional space. Bayesian prediction needs to know the prior probability and is sensitive to the
expression of input data. SFA performs well in analyzing the invariant characteristics of time-varying
signals, capturing the dynamic changes of process variables and improving the prediction performance.

Comparatively, ANN has strong nonlinear and adaptive information processing capacities.
In recent years, the research on ANN has been continuously deepened, and many widely applied
network structures have emerged, ESN being one of them. ESN is a new architecture of recurrent
neural network (RNN), which was proposed by Jaeger et al. at the beginning of this century [36,37].
Because of its excellent performance in nonlinear dynamic system modeling, especially as a “black box”
time series model, ESN has been successfully applied in speech recognition, network communication
and other fields and achieved good results [38–40].
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In brief, the above data-driven modeling methods have their own advantages and disadvantages,
and due to the limitations of process data, the prediction accuracy can only be guaranteed in the local
range. In addition, various industrial processes are multivariable, are time-varying with dynamic
delay and have a wide operation range, which make it difficult to achieve satisfactory results. A new
data-driven soft sensor, called an improved genetic algorithm (IGA) optimization ESN model (IGA-ESN)
is proposed in this paper, inspired by the idea of the abovementioned methods, using the advantages
of the ESN in “black box” time series modeling (for example, an aluminum electrolytic cell can be
regarded as a non-linear time series black box system), and the ESN’s advantages that can alleviate
local minimum and fast learning speed. It then uses IGA to optimize the reservoir parameters of the
ESN to raise prediction performance. Then, we take alumina concentration in the aluminum reduction
process as a case study to verify the effectiveness of the proposed approach.

It should be noted that many scholars have tried to optimize the ESN by using the IGA and
achieved good prediction results. As in reference [41], this method is used to predict the network delay.
Compared with these methods and applications, in addition to improving the crossover and mutation
operations of the traditional genetic algorithm, in order to avoid the risk that the population diversity
will be weakened and the algorithm will fall into the local optimal solution, an immigration strategy is
introduced to improve the search ability of the algorithm.

Specifically, several key contributions of this paper can be summarized as follows: (1) Task
oriented: as the key variables of industrial systems are difficult to measure in a direct and timely
manner, we propose a new data-driven soft sensor, named the IGA-ESN model, which is established
by ESN; the reservoir parameters are optimized by IGA to maximize the estimation accuracy and
improve the convergence speed. (2) Compared with the traditional data-driven statistical approach,
the proposed soft sensor approach significantly improves the convergence speed. In addition, it is
an unsupervised learning method, which only needs a small amount of training data. Therefore,
the proposed method is even more adaptive for the modern industrial requirement. (3) The established
model in this paper is applicable to estimate alumina concentration in an aluminum reduction cell.
To the best of our knowledge, this is the first utilization of an ESN model in this field.

The remaining of this paper is structured as follows: In Section 2, the basic characteristics of the
ESN, such as reservoir parameters, are introduced. The proposed IGA-ESN model is described at
length in Section 3. In Section 4, the experiments and results analysis are presented. Finally, our work
is briefly summarized in Section 5.

2. ESN Characterization

A typical structure of an ESN shown in Figure 2. It mainly includes three parts: input units,
a dynamic reservoir, and output units. Let the number of nodes in the input and output layers of the
ESN be m and l, respectively, and the number of neurons in the reservoir be n. The values of the three
parts at time k are u(k), x(k) and y(k), respectively. It has the following expression:

u(k) = [u1(k), u2(k) · · · , um(k)]T,

x(k) = [x1(k), x2(k) · · · , xn(k)]
T,

y(k) =
[
y1(k), y2(k) · · · , yl(k)

]T

(1)

The dynamic reservoir is the most important part of the network, which is formed by the sparse
connection of many networks. The internal vector of the reservoir is updated in real-time during the
network operation. The update equation is as follows:

x(k + 1) = f
(
Winu(k) + Wresx(k) + Wbacky(k)

)
, (2)

where f = [f1, f2 · · · , fn] is the activation function of the neurons inside the network. Win is the
input connection weight matrix and it achieves the connection between the input signal and the
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reservoir. Wres is the reservoir matrix. The network output results will be powered back to the network.
The feedback connection is defined as Wback in this paper. Wback is the connection between the output
and the reservoir. The output is connected to the reservoir through Wout.Sensors 2020, 20, x FOR PEER REVIEW 4 of 20 
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The parameter selection of the reservoir is very significant to the performance of the ESN, and it is
one of the important problems to be studied in ESN [42]:

• Spectral radius (SR)

The internal connection spectral radius of the reservoir refers to the maximum absolute value of
the eigenvalue of Wres, which is used to represent λmax. When λmax < 1, the network can be guaranteed
to reach a stable state after some time. This is because if λmax > 1, the input matrix may come from an
empty set, and then the network will enter an instable null state and two stable states, thus violating
the echo state property. For a specific proof please see reference [36].

• Processing unit (N)

The number of processing units in the reservoir is the scale of the reservoir, which refers to the
number of neurons in the reservoir. When the unknown system is quite complicated, the number of
N should be extended. However, the hidden danger is that if N is too large, the network is prone to
over-fitting. Over-fitting makes the network achieve a good fitting effect on the training set, while a
large deviation appears on the validation set, resulting in a decrease in the prediction performance of
the network.

• Input scaling (IS)

Input scaling of the reservoir refers to transforming the input data. When entering data, the data are
usually not directly input into the network but scaled to achieve the signal transformation. Empirically,
the stronger the non-linear relationship of the tasks in general, the stronger the IS’s expansion force.

• Sparseness of reservoir (SD)

The sparseness of the internal connection of the reservoir is represented by SD. The larger the SD
value, the tighter the connection between the networks, the stronger the ability to express information,
and the stronger the non-linear approximation ability. However, during the operation of the algorithm,
the network calculation amount will increase and the real-time performance will decrease. Choosing
the right SD is also crucial.
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3. Development of the ESN Soft Sensor Model

To achieve a reliable estimation of industrial process state variables that are difficult to measure
directly, three points need to be paid attention to. First of all, the historical data sets are highly nonlinear
and change dynamically with time, and it is difficult to achieve effective estimation using general
statistical methods. Second, the small sample size of the sampling and assay data is not conducive to
the use of a large number of data training methods. Third, due to the complex industrial environment,
data will inevitably be missing. In order to solve these problems, the data-driven soft measurement
method proposed in this paper is mainly based on an ESN suitable for small sample sizes and nonlinear
dynamic “black-box” time series modeling. Considering that the parameter selection of reservoir affects
the performance of ESN, an improved genetic algorithm was adopted to optimize the parameters of
the reservoir. In the process of data acquisition, cubic spline interpolation was adopted to solve the
problem of missing data.

3.1. Basic ESN

The reservoir state equation and output layer equation obtained from input and output is
respectively expressed as:

x(k + 1) = f
(
Winu(k + 1) + Wresx(k) + Wbacky(k)

)
y(k + 1) = Woutx(k + 1)

(3)

In practice, the activation function of neurons is a generally hyperbolic tangent function
described in Equation (3). The key issue of ESN is to identify the output connection weight Wout

using known samples [43]. Suppose the time-series input and output samples are expressed as
(u(1), y(1), · · ·u(k), y(k)), where u and y are dimension m and dimension l vector, respectively.
The samples have a one-to-one correspondence, and this correspondence is what ESN needs to learn.
Learning is divided into two phases: the sampling phase and the weight calculation phase.

In the sampling phase, the initial state of the network is arbitrarily selected. Generally, the initial
state of the network is chosen as x(0) = 0. The training sample u(k), (k = 1, 2, · · ·m) completes the
system state calculation and the corresponding ŷ(k) calculation according to Equation (3) Each time
x(k) is calculated. The sample data need to be written to the output units. In practice, to remove
the impact of any initial state on the dynamic performance of the system, the state of the system is
always collected from a certain moment t0. From time t0, the system network expresses the mapping
relationship between the input and output sample data sets. We define state matrix as B and the output
matrix as Q. When t > t0, start to collect the corresponding internal state x(k) of the network, add it
to the matrix B and finally get the size of the matrix (t− t0 + 1) ∗ n. After t0, the expected output is
collected and updated into the matrix Q, and the size of the final Q is (t− t0 + 1) ∗ l.

In the previous step, the system state matrix B and output matrix Q were obtained. Based on
these two matrices, the output connection weight Wout is calculated. The relationship between the
state variable and the output connection weight is linear. Therefore, the goal to be achieved is to
approximate the actual output y(k) according to the output ŷ(k) of the network, which is reflected in
the following equation.

y(k) ≈ ŷ(k) =
l∑

l=1

Wi
outxi(k) (4)

It is hoped that the mean-square error of the system satisfying Wi
out is calculated to be the smallest,

that is, to solve the optimization problem shown by the following equation:

min
1

t− t0 + 1

t∑
k=t0

y(k) −
l∑

i=1

Wi
outxi(k)


2

(5)
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This is a linear regression issue [44]. The output weight can be calculated by solving the
inverse matrix: (

Wout
)T

= B−1Q (6)

The inverse matrix B is usually replaced by a pseudo-inverse B, so that all parameters of the ESN
can be determined, and the training of the network is completed. Figure 3 is a block diagram of ESN.
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3.2. IGA-ESN

As outlined in the above section, ESN performance is affected by reservoir parameters and needs
to be optimized. A genetic algorithm has the following advantages: first, it takes the value of the
objective function as the search information directly, and thus it does not need to differentiate the
objective function, avoiding the situation that many objective functions are difficult to differentiate in
reality or even of there being no derivative. Secondly, its swarm search characteristics can effectively
avoid the problem of searching for some unnecessary points and falling into the local extremum.
Therefore, in the established ESN model, an improved genetic algorithm is adopted in order to optimize
the reservoir parameters.

3.2.1. Individual Coding

Coding is the first problem to be solved in the application of a genetic algorithm, and it is also
a key step in the design of genetic algorithms. The coding method affects the operation methods of
the crossover operator, mutation operator and other genetic operators, and largely determines the
efficiency of the genetic evolution. Therefore, the parameters of ESN to be optimized are coded first.
The binary code operation is simple and easy, and crossover, mutation and other genetic operations are
easy to implement; thus this paper uses the binary coding method to code these parameters.

The parameters of the ESN to be optimized are: SR, N, IS and SD. We set the genetic algorithm
(GA) parameters with a standard deviation of iteration less than or equal to 0.06, and set the number of
iterations at 300 times. The individual binary coding takes the following form (See Figure 4).
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Individual binary strings encoded by individual parameters are converted to the model’s decimal
number by the equation below to represent the actual parameters of the model:

X = minX +
maxX−minX

2j − 1
d (7)

where X is the actual decimal value, minX is the minimum value of the actual decimal number, maxX is
the maximum value, j is the length of parameter binary string and d is the decimal number corresponding
to the encoded binary string. When setting the coding interval of the reservoir parameters, it is necessary
to consider the requirements of ESN training to improve training efficiency. To ensure the network has
an echo function, the spectral radius SR was set between [0.1, 0.99], the number of binary code bits
was set to 7 bits, the scale of IS was set to [0.01, 1] and the binary code was set to 7 bits. The scale of
reservoir N was set to [50, 300], the binary was 9 bits, the reservoir sparseness SD was set to [0.1, 1],
the binary code was set to 7 bits, the binary code was 30 bits in total and the population size was
designed to be 50. It randomly generated n1, n2 · · · , n50, numbered sequentially.

3.2.2. Fitness Function Design

The optimization goal of the genetic algorithm is to find suitable SR, N, IS and SD, and the fitness
function should be related to the accuracy of the prediction model. In this paper, the fitness function for
the i-th iteration is defined as the value of 1 minus the root mean square error between the actual value
and the predicted value of the variable to be measured. If there are several populations, there will be a
corresponding number of fitness values. The formula is as follows:

Fitness(i) = 1−RMSE(i) = 1−

√√√√√ L∑
t=1

(ck − ĉk)
2

L
, (i = 1, 2, · · · , 50) (8)

where L is the actual length of the predicted sequence, and ck and ĉk represent the actual and predicted
values of the variable to be measured at time t, respectively. The fitness function of the chromosome
can be then be calculated on the basis of the conditions in Formula (8). Each time, 50 fitness values can
be obtained using the fitness function to calculate the strengths and weaknesses of each individual.

3.2.3. Selection Operation

The larger the fitness value, the more accurate the model prediction, the better the parameter
selection, and the smaller the error. In this paper, the fitness values are added together to obtain a
value q, which is defined as the total fitness value:

q =
50∑

i=1

Fitness(i) (9)

The corresponding individual selection probability can be obtained by dividing each fitness value
by the total fitness value, and the formula for individual selection probability p(i) is as follows:

p(i) =
Fitness(i)

q
(10)

The cumulative probability m(i) can be obtained through the cumulative addition of individual
selection probabilities. The cumulative probability is divided into 50 intervals, and 50 random numbers
r are generated between [0, 1].. If r < s(1), individual n1 would be selected to enter the next generation;
otherwise, individual ni would be selected to enter the next generation, where m(i− 1) < r < m(i)
holds, and the selection operation is completed.
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3.2.4. Crossover and Mutation

In the genetic algorithm, the selection of crossover and mutation operators has a significant impact
on the convergence of the algorithm [45]. The crossover operator is used primarily to generate new
individuals and improve the search ability. The mutation operator can make the algorithm converge to
the optimal solution and maintain the population diversity. In the running process of the algorithm,
the crossover and mutation probabilities change according to the fitness value and no longer keep a
value from start to end. To a certain extent, it overcomes the problem of the population falling into the
local optimum and improves the convergence speed of the algorithm. The crossover and mutation
probability are shown in Formulas (11) and (12).

The expression of adaptive crossover probability is as follows:

pc =

 f−f′

f−fmin

(
pc1 − pc2

)
+ pc2 f′ ≤ f

pc2 f′ > f
, (11)

and the expression of adaptive mutation probability is:

pm =

 f−f
f−fmin

(
pc1 − pc2

)
+ pc2 f ≤ f

pm2 f > f
(12)

where pc1, pc2, pm1, pm2 are the upper and lower limits of the probability of crossover and mutation,
respectively. In this paper, the values of each parameter are 0.8, 0.6, 0.05 and 0.01, respectively. f′ is the
smaller fitness value in the two crossed individuals. f is the fitness value of the mutant individual. f is
the average fitness value of each generation.

It can be seen from Equations (11) and (12) that if the present individual has the smallest fitness
value, the probability of cross mutation is the largest, and if the current individual fitness value exceeds
the average fitness value of the population, the probability of cross mutation is the smallest. As a result,
the diversity of the population will increase, and the probability of jumping out of the local optimal
solution will increase as well.

In the later stages of the iteration of the standard genetic algorithm, the population is obliged to
move closer to the optimal individual. The resulting consequence is necessary to reduce the diversity
of the population and increase the risk of the algorithm falling into a locally optimal solution [46]. As a
result, the immigration strategy has been applied, that is, the introduction of new individuals into the
evolution process will increase the diversity of the population and thus improve the searchability of
the algorithm.

To determine whether the conditions of the immigration strategy, one needs to calculate whether
the diversity of the population has weakened. If the diversity of the population weakens, it means that
the individuals retained by the algorithm tend to be equal, and the fitness function of the individuals is
relatively close, so it is expected that the difference between the average fitness value of the individuals
and the population will decrease. Let,

F =
1
N

N∑
j=1

∣∣∣fi − f
∣∣∣ (13)

where fi is the fitness value of the i-th individual during the evolution of the population, f is the average
fitness of the population and N is the number of the population. If F is lower than a certain value
(the value is set to 0.024 in this paper), the default population is reduced and new chromosomes need to
be introduced. Here new chromosomes are artificially added and immigration strategies are initiated.

To sum up, the development process of the IGA-ESN soft sensor model is summarized in Figure 5.
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4. Experiment

In this study, to validate the feasibility and effectiveness of the IGA-ESN, the established soft
sensor was applied to the estimation of alumina concentration in the operation process of an aluminum
reduction cell in a modern aluminum plant. Then, to show the advantages of the soft sensor framework,
the performance of the IGA-ESN model was compared to that of four other common DDM methods.
For performance evaluation, the mean relative error (MRE) and root mean squared error (RMSE)
indices were used.

4.1. Application Background

The modern large aluminum reduction cell is the core equipment of aluminum plants. It is a huge
and complex high-temperature and high-current reactor under the interaction of multiple physical
fields [47]. In practical application, it is connected in series and supplied by a low voltage direct
current source.
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Commonly, a prebaked carbon anode cell structure (shown in Figure 2) is used. The anodes are
sustained by anode rods, which are arranged in parallel on both sides. They are connected with an
anode busbar on the corresponding side, and then form a parallel circuit with the common cathode.
DC flows from anode to cathode, thus generating high temperature. During the electrolysis, alumina
are added through the feeder at a certain time interval and dissolved into the electrolyte continuously
to produce molten aluminum. Alumina in the electrolyte must be maintained in a certain amount
for production to continue and in order to secure the stability, safety and efficiency of the cell. As a
crucial process variable, alumina concentration would be required to stay within a required range.
This is because excessive alumina can form “sludge”, which is sometimes difficult to dissolve and
cause corrosion to the cathode. On the contrary, insufficient alumina will cause an anode effect,
bringing about an abnormal sharp rise of cell voltage and an increase of greenhouse gas emissions [48].
Internal structure of a typical reduction cell is shown in Figure 6.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 20 

 

DC flows from anode to cathode, thus generating high temperature. During the electrolysis, alumina 
are added through the feeder at a certain time interval and dissolved into the electrolyte continuously 
to produce molten aluminum. Alumina in the electrolyte must be maintained in a certain amount for 
production to continue and in order to secure the stability, safety and efficiency of the cell. As a crucial 
process variable, alumina concentration would be required to stay within a required range. This is 
because excessive alumina can form “sludge”, which is sometimes difficult to dissolve and cause 
corrosion to the cathode. On the contrary, insufficient alumina will cause an anode effect, bringing 
about an abnormal sharp rise of cell voltage and an increase of greenhouse gas emissions [48]. Internal 
structure of a typical reduction cell is shown in Figure 6. 

Alumina feeder

Anode busbar

Anode rod

Aluminum

Electrolyte

Anode

Cathode

Direction of current

 
Figure 6. Internal structure of a typical reduction cell. 

At present, alumina concentration control algorithm theory based on cell pseudo-resistance 
tracking is commonly used in the control system of the reduction cell. Depending on the relationship 
between cell pseudo-resistance and alumina concentration (namely the R–C curve), alumina 
concentration change is controlled by tracking the change of the cell’s pseudo-resistance signal. Based 
on the theoretical amount of alumina consumption, the alternate operation process of under feed and 
over feed is adopted, and alumina concentration in the electrolyte fluctuates near the optimal 
concentration point. The R–C curve is shown in Figure 7. 

Anode 
effect 

occurrence 
area

Control 
area Insensitive 

area

High 
concentration 

area

Ps
eu

do
-re

sis
ta

nc
e(

μΩ
)

Concentration(%)  
Figure 7. The relationship between cell pseudo-resistance and alumina concentration. 

The above chart could consist of four areas: (1) High concentration area. The pseudo-resistance 
is highly sensitive to alumina concentration changes, but too high alumina concentration will cause 
precipitation at the bottom of the cell. (2) Insensitive area. The pseudo-resistance is extremely 
insensitive to changes in alumina concentration, and has a modest real-time response and low current 
efficiency. (3) Control area. The pseudo-resistance is more sensitive to alumina concentration 
changes, and the current efficiency is higher; this is the ideal control area for industrial alumina 
concentration. (4) Anode effect occurrence area. The mass of alumina is very low. As alumina 
concentration decreases, the resistance rises rapidly, and the anode effect phenomenon can easily 
occur. 

Figure 6. Internal structure of a typical reduction cell.

At present, alumina concentration control algorithm theory based on cell pseudo-resistance
tracking is commonly used in the control system of the reduction cell. Depending on the
relationship between cell pseudo-resistance and alumina concentration (namely the R–C curve),
alumina concentration change is controlled by tracking the change of the cell’s pseudo-resistance signal.
Based on the theoretical amount of alumina consumption, the alternate operation process of under
feed and over feed is adopted, and alumina concentration in the electrolyte fluctuates near the optimal
concentration point. The R–C curve is shown in Figure 7.
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The above chart could consist of four areas: (1) High concentration area. The pseudo-resistance
is highly sensitive to alumina concentration changes, but too high alumina concentration will cause
precipitation at the bottom of the cell. (2) Insensitive area. The pseudo-resistance is extremely
insensitive to changes in alumina concentration, and has a modest real-time response and low current
efficiency. (3) Control area. The pseudo-resistance is more sensitive to alumina concentration changes,
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and the current efficiency is higher; this is the ideal control area for industrial alumina concentration.
(4) Anode effect occurrence area. The mass of alumina is very low. As alumina concentration decreases,
the resistance rises rapidly, and the anode effect phenomenon can easily occur.

The fluctuation range of alumina concentration should be controlled within a certain range. If the
concentration is higher or lower than the concentration value corresponding to the outermost point of
the cell pseudo-resistance, the cell pseudo-resistance will increase. In the process of aluminum reduction,
the alumina concentration should appear in the control area as much as possible. By measuring the cell
pseudo-resistance, according to the relationship between them, the purpose of indirectly measuring
the alumina concentration is achieved.

In general, the cell pseudo-resistance can be obtained from an overall perspective:

Ri =
Ui − E

Ii
(14)

where Ri is the cell pseudo-resistance at the i-th time, Ui is the cell voltage at i-th time and Ii is the
line amperage of the cell at i-th time; normally, Ii is approximately constant. E is the apparent back
electromotive force.

4.2. Data Acquisition and Processing

Among the variables related to alumina concentration, in addition to cell voltage, the most easy
to realize online real-time detection is the anode current distribution. We utilized the self-developed
anode current distribution online detection device to obtain the required anode current distribution
data. In addition, in order to assess the variables more accurately, the measurement of the voltage
between anode and cathode was increased.

The detection principle of the anode current distribution is the equidistant voltage method.
Two probes that keep a certain distance are set on the anode guide rod to form an equal distance
voltage drop. By collecting the voltage at this distance, the current flowing through it is calculated
according to Ohm’s law. The expression is as follows:

Ianode =
Uanode

Ranode
(15)

where Ianode is the current flowing through each anode rod, Uanode is the measured equidistant voltage
of each anode rod and Ranode is the equivalent resistance of the length between two points of the
voltage sampling of the anode rod. During the aluminum reduction process, the temperature of the
anode rod changes in real-time and this leads to changes in the resistivity of the anode rod. The actual
resistance of the anode rod is:

Ranode =
(1 + αT)ρAlL

S
(16)

where α is the resistivity temperature coefficient, ρAl is the resistivity of pure aluminum, L is the length
between two points of the voltage sampling of the anode rod, S is the cross-sectional area of the anode
rod and T is the temperature measured by the anode rod at the surface point.

As shown in Figure 8, this self-developed device consists of an electric sampling mechanism,
a driving and detecting integrated module, and an human machine interface (HMI) that has touch
screen control and data visualization functions. It is light in weight, small in volume, anti-magnetic
and high temperature and vibration resistant.
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Figure 8. On-line anode current distribution detect device: (a) multichannel acquisition module;
(b) human machine interface (HMI).

The anode distribution data and the voltage between anode and cathode were synchronously
acquired through the online monitoring terminal. At the same time, the data of alumina concentration
were manually collected and measure offline in the laboratory. Finally, a total of 150 sets of valid data
was achieved by benchmarking the anode current, bipolar voltage and offline alumina concentration.
The collection device is shown in Figure 9.
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reduction cell; (b) alumina concentration sampling for inspection.

In the process of collecting data, due to the harsh environment of the site, there will inevitably
be missing data in the data collection process. This has a significant impact on the establishment of
prediction models, so it is necessary to fill in missing data. The lost parts of the collected data are
shown in Table 1.

Considering that the alumina concentration data are a time series data type with small short-term
fluctuations, we selected the cubic spline interpolation method to deal with the missing data. The core
operation of the cubic spline interpolation method is tantamount to construct a polynomial to form
a smooth curve. This curve can fit the main data points very well, and the formed curve has higher
convergence and further stability. Therefore, it applies well to time series processing [49].
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Table 1. Missing data.

Time Al2O3 (kg/m3) Voltage between Anode and Cathode (V) Anode Current (kA)

15:29:31 2.23 3.809 6.459
15:29:47 2.42 3.794 6.547
15:30:01 3.12 3.794 6.457
15:30:14 2.96 3.799 6.453
15:30:30 2.77 3.809 6.366
15:30:46 2.92 6.277
15:31:00 2.68 3.813 6.099
15:31:15 3.18 3.809 6.275
15:31:29 3.22 6.45
15:31:44 3.29 3.804 6.532
15:31:59 3.789 6.272
15:32:23 3.45 3.794 6.273

The missing data in the collected data are shown in Table 1, followed by the cubic spline
interpolation supplements in Table 2.

Table 2. Data fitting by cubic spline interpolation.

Time Al2O3 (kg/m3) Voltage between Anode and Cathode (V) Anode Current (kA)

15:29:31 2.23 3.809 6.459
15:29:47 2.42 3.794 6.547
15:30:01 3.12 3.794 6.457
15:30:14 2.96 3.799 6.453
15:30:30 2.77 3.809 6.366
15:30:46 2.92 3.812 6.277
15:31:00 2.68 3.813 6.099
15:31:15 3.18 3.809 6.275
15:31:29 3.22 3.809 6.45
15:31:44 3.29 3.804 6.532
15:31:59 3.22 3.789 6.272
15:32:23 3.45 3.794 6.273

The results showed that the processed data were roughly consistent with the original data, and that
there were no significant fluctuations. The basic characteristics of the data did not change, indicating
that the interpolation method was effective. This accords with the principle of the interpolation method,
which is beneficial to further research later.

4.3. Experimental Results of the Soft Sensor Model Based on IGA-ESN

In checking the feasibility of the method, 150 groups of valid data were collected to form a
test sample set to verify the soft sensor model. The test sample set was split into two subsets.
First 100 groups of data were used as the training subset of the model, and the last 50 groups of
data were used to test the prediction performance of the model. The measured value of alumina
concentration obtained from the sampling test was compared with the output of the soft sensor model
to obtain the estimation performance evaluation of the model.

The mean relative error (MRE) and the root mean square error (RMSE) were used as the evaluation
criteria. The MRE calculation formula is as follows:

MRE =
N∑

i=1

∣∣∣yi − y
∣∣∣

y
× 100% (17)
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and the RMSE calculation formula is:

RMSE =

√√√
1
N

N∑
i=1

(
yi − y

)2
(18)

where N is the number of test samples, y is the real value and yi is the model output value.
The variation range of SR was [0.05, 0.95], the change step size was 0.1, the transformation range

of N was between [50, 95], the transformation step size was 5, IS = 0.2 and SD = 0.35t the average
standard deviation output of the predicted alumina concentration is shown in Figure 10.
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Figure 10. Standard deviation the root mean square error (RMSE) when spectral radius SR and reservoir
size N change.

It can be seen from Figure 10 that with the input scale and the sparseness of the reservoir
determined, as the spectral radius and the size of the reservoir changed, the standard deviation
obtained by the training continuously changed.

The spectral radius SR was taken as 0.6, the size of the reserve pool was N = 80, IS = [0.1, 1],
the step size was 0.1, SD = [0.05, 0.95], the step size was 0.1 and the average standard for the prediction
of alumina concentration was obtained. The difference output is shown in Figure 11.
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As can be seen from Figures 10 and 11, different combinations of SR, N, IS and SD will greatly
affect the performance of the network, and it is particularly important to use genetic algorithms to
obtain appropriate parameters.

Using the method of Section 3, the best fitness curve of the model is shown in Figure 12.
The minimum standard deviation of the predicted alumina concentration in population evolution

can be calculated from Figure 12, as shown in Figure 13.
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From Figure 13, it can be seen that IGA-ESN was faster than the individual optimization parameters
of the ESN optimized by the traditional genetic algorithm (TGA-ESN); that is, the standard deviation
of the model fitting decreased rapidly, indicating that the training speed was excellent and the
IGA-ESN’s optimal parameters can be found faster. Additionally, it was easy to fit the production data.
The prediction standard deviation of the model obtained by TGA-ESN was 0.0862, and the internal
connection weight matrix SR of each parameter of TGA-ESN was calculated to be SR = 0.56, the size of
the reservoir was N = 180, the scale of the input signal was IS = 0.43, and the degree of scarcity of
the reservoir SD = 0.39. The model prediction standard deviation obtained by IGA-ESN was 0.0765,
and the internal connection weight matrix of each parameter of the IGA-ESN decoding consisted of
SR = 0.56, reservoir size N = 180, input signal scaling scale IS = 0.36 and reservoir scarcity SD = 0.43.
The results of using IGA-ESN to predict alumina concentration in the subsequent 50 groups are shown
in Figure 14. It can be seen that the optimized network prediction value was closer to the real value
and the performance was better.Sensors 2020, 20, x FOR PEER REVIEW 16 of 20 
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4.4. Comparison with Typical Methods

In this section, we compare the proposed method with typical data-driven methods, such as
least-squares support vector machine (LSSVM), extreme learning machine (ELM), backpropagation
(BP) and kernel extreme learning machine (KELM) and model-based methods, such as the multilayer
state observer [50].

When the LSSVM algorithm is used for modeling, the kernel function uses a radial basis
function kernel (RBF) and determines the approximate value range of parameters γ and σ2 according
to experience: γ ∈ [γmin,γmax], σ2 = [σ2

min, σ2
max]; seven values and five values of parameters γ and

σ2 are selected to form a 7 × 5 grid γ = [1, 2, 5, 10, 20, 30, 50], σ2 = [0.05, 0.1, 0.5, 1, 5], forming 35 pairs
of parameter combinations. Combined with 50 fold cross validation, the parameter combination of
the minimum standard deviation RMSE was obtained; the penalty factor was γ = 10 and the kernel
function was σ2 = 1. The input node of the ELM network was 2, the output was 1, the hidden layer
node was set to 150, and the activation function was Sigmoid. The model input node of the BP network
was 2, the output was 1, the hidden layer node was set to 150, and the activation function was Sigmoid.
The KELM algorithm was also used to estimate alumina concentration (see reference [31] for details),
and RBF was used as the kernel function. The standard deviation and average relative error obtained
by training are shown in Table 3.

Table 3. Comparison of experimental results of several models.

Model Type RMSE MRE (%)

LSSVM 1 0.136521 6.0953
ELM 2 0.127423 7.1056
BP 3 0.134296 6.8999

KELM 4 0.0832 4.7889
TGA-ESN 5 0.0862 4.8566
IGA-ESN 6 0.0765 4.5321

1 Least-squares support vector machine. 2 extreme learning machine. 3 Backpropagation. 4 Kernel extreme learning
machine. 5 Optimization of echo state network by traditional genetic algorithm. 6 Optimization of echo state
network by improved genetic algorithm.

The RMSE and MRE of several training methods are shown in Table 3.
It can be seen from the comprehensive simulation results and model indicators that the simulation

effect of the IGA-ESN model was better than the other algorithms’ simulation effect. For LSSVM, even if
the optimal hyperparameters were obtained using grid search and cross-validation, the simulation
effect maintained errors. From the simulation results, it can be noted that compared with the models
established by LSSVM, BP, and ELM, the IGA-ESN had a standard deviation reduction of more than
39% and an average relative error of about 34%. It is concluded that in the aluminum production data,
when the time series is used as the ESN model and the anode current and the voltage between anode
and cathode are used to predict the alumina concentration, a reliable prediction effect can be obtained.

The model-driven approach and data-driven approach have their respective applicability.
In reference [50], a multilayer state observer was proposed to estimate alumina concentration,
and good results were obtained when the factory model was relatively accurate. The method divides
the aluminum reduction trough into several interconnected subsystems according to the position of
the feeder and assumes that other feeders are blocked, so as to estimate the alumina concentration
of a subsystem more accurately. However, in cases where the plant model is not clear, the approach
proposed in this paper is more effective. In general, if the application object is controlled independently
by a single feeder and the physical model is more accurate, data-driven and model-based hybrid drive
methods can be considered to estimate variations in local alumina concentration.
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5. Conclusions

A soft sensor method based on an echo state network parameter model, IGA-ESN, was proposed.
This method uses an improved genetic algorithm to optimize the key parameters of ESN, introduces
an immigration strategy and adaptively changes the crossover and mutation frequency to improve
the soft sensor accuracy. In order to verify the effectiveness of the method, we applied the method to
the prediction of alumina concentration based on data collected in the production site of aluminum
reduction. The results showed that the prediction of alumina concentration by this method was
consistent with the actual sampling test value. Although the proposed method can realize the soft
sensing of alumina concentration, the real-time performance and stability of the algorithm need to
be further improved in practical applications. Therefore, the future work is to focus on the real-time
practicability of the algorithm on the basis of ensuring measurement accuracy, so as to solve the dynamic
real-time soft sensing problem. It is planned to integrate the proposed method and the developed
monitoring system into the existing process control system, conduct real-time online calibration and
optimize the structure, so as to improve the prediction accuracy and stability of the proposed method.
Then, the data estimated by this method will be fed back to the process control system. In the planned
method, after the actuator executes the control command, the state changes, and the contemporary
estimation value is generated to the process control system. In this way, the method will be more
real-time and practical, so as to realize the alumina concentration online soft sensor. In addition,
we will also explore the application of this method to solve the multi-target soft sensor problems in the
presence of multivariable coupling and uncertain interference.
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