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Abstract: As is known, cerebral stroke has become one of the main diseases endangering people’s
health; ischaemic strokes accounts for approximately 85% of cerebral strokes. According to research,
early prediction and prevention can effectively reduce the incidence rate of the disease. However,
it is difficult to predict the ischaemic stroke because the data related to the disease are multi-modal.
To achieve high accuracy of prediction and combine the stroke risk predictors obtained by previous
researchers, a method for predicting the probability of stroke occurrence based on a multi-model
fusion convolutional neural network structure is proposed. In such a way, the accuracy of ischaemic
stroke prediction is improved by processing multi-modal data through multiple end-to-end neural
networks. In this method, the feature extraction of structured data (age, gender, history of
hypertension, etc.) and streaming data (heart rate, blood pressure, etc.) based on a convolutional
neural network is first realized. A neural network model for feature fusion is then constructed to
realize the feature fusion of structured data and streaming data. Finally, a predictive model for
predicting the probability of stroke is obtained by training. As shown in the experimental results,
the accuracy of ischaemic stroke prediction reached 98.53%. Such a high prediction accuracy will be
helpful for preventing the occurrence of stroke.
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1. Introduction

1.1. Related Work

Stroke is one of the main causes of death and disability worldwide [1]. Due to lack of effective
treatment, it is difficult to cure stroke patients completely. On the other hand, even if the patient
is cured, they still have to face harsh realities: permanent disability, incapacity [2], reduced social
activities [3], etc. Hence, the disease puts a heavy burden on patients, the health care system and
society. According to lots of studies, there is a certain eclipse period before the onset of stroke and
early prediction and prevention can effectively reduce incidence rate of the disease. Actually, some
premonitory symptoms appear during the eclipse period of stroke. For example, Zhang designed a
questionnaire to put forward that a series of symptoms will appear during the eclipse period before
the onset of stroke [4], such as chronic yawning, frequent choking coughs and a habit of biting the
tongue. Goldstein [5] has divided risk factors into nonmodifiable risk factors (age, gender, race and
genetic, etc.), well-documented and modifiable risk factors (high blood pressure, smoking, diabetes,
atrial fibrillation, some other heart diseases, etc.) and less well-documented or potentially modifiable
risk factors (metabolic syndrome, alcoholism, drug abuse, etc.), and it was suggested that changing
well-documented and modifiable risk factors or less well-documented or potentially modifiable risk
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factors could reduce the risk of stroke onset. Therefore, early detection and prevention can effectively
reduce the risk of ischaemic stroke and increase the success rate of cure during the eclipse period.

In the medical field, a large-scale independent electronic health record (EHR) database has been
established, which provides a large quantity of clinical diagnoses, and imaging and laboratory data [6].
It makes a considerable contribution to predicting the occurrence of diseases by artificial intelligence,
which has been widely used for analysis and prediction, with remarkable results. In this field, it is
used to deal with complex disease prediction tasks [7]. For example, Czabanski used the Lagrangian
support vector machine to predict atrial fibrillation (AF). The results obtained during the test stage
showed that the classification accuracy was 98.86%; it can effectively detect AF and provide more
reliable information for the processing stage after the onset of AF [8]. Osman used an automatic
epilepsy diagnostic method based on a self-organization map (SOM) method to discover epilepsy [9],
and the detection accuracy of the model reached 97.47%; it could effectively detect epilepsy. Therefore,
the combination of deep learning and big data has made remarkable achievements in the field of
disease prediction.

In terms of the prediction of stroke, many researchers used artificial intelligence technology to
predict stroke. For example, Songhee [10] used a deep neural network based on extended PCA to
extract features from medical service usage and health behavior data and predicted stroke; the area
under the curve (AUC) value of our method was 83.48%. It can be used by both patients and doctors
to prescreen for possible strokes; however, the risk factors considered are not comprehensive, and the
predictive performance of the model is average. Chen-Ying [11] used a deep learning network model
to perform feature extraction and stroke prediction on electronic medical claim records. The area under
the curve (AUC) value of the method was 0.915. The prediction performance of the prediction model
is good. However, there is still a problem of insufficient consideration of factors related to stroke.
Although the above-mentioned researchers proved that using deep learning techniques can predict
stroke, they all used single-modal data for model training and prediction, and the accuracy of the
model is average.

In addition, many researchers have explored many different predictors related to stroke, which
provide a sufficient feasibility basis for the prediction methods of stroke. Flint, a stroke specialist
at Kaiser Permanente medical center in the United States, performed 36 million blood pressure
measurements on more than one million people. This study brought a large amount of data and
provided a clear answer to the basic question about blood pressure and stroke: "diastolic blood
pressure" and "systolic blood pressure" are independent predictors of stroke risk [12]. Wesley collected
left ventricular hypertrophy (LVH) detected by electrocardiography (ECG-LVH) and LVH detected
by echocardiography to assess the risk of stroke. Finally, ECG and echocardiography were found to
be predictive factors for stroke [13]. Di [14] recruited 11 post-stroke patients and 20 healthy control
subjects and performed an elbow sinusoidal trajectory tracking experiment. The experimental results
showed that the EMG’s fApEn (fuzzy approximate entropy) values of the experimental group and
the control group were significantly different, so stroke can induce neurological changes in paretic
muscles. Bodapati examined that whether 24-hour heart rate variability (HRV) added predictive
value to the Cardiovascular Health Study clinical stroke risk score (CHS-SCORE) [15]. The value of
adding HRV to the CHS-SCORE was assessed with stepwise Cox regression analysis. They found
that two HRV parameters, CV% (coefficient of variance of NN intervals) and power law slope,
emerged as significantly associated with incident stroke when added to a validated clinical risk
score. Chantamit-o-pas et al. integrated the icd-10 code into the health records and other potential risk
factors in Electronic Healthcare Records (EHRs) into the patterns and models to predict stroke [16].

1.2. Novelty and Contributions

Current forecasting methods mainly use single-modal data, and the field of stroke prediction
is no exception. If the features in text, image or stream data are needed, some methods are used to
extract the required features from the unstructured data. How to process multi-modal data with the
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help of multiple end-to-end neural networks, and to make fusions and predictions, are very important
technical challenges.

To overcome those challenges, we combined the stroke risk predictors obtained by previous
researchers and propose a multi-model fusion convolutional neural network architecture to predict
the occurrence probability of ischemic stroke (here the stroke referred to is ischemic stroke). In this
method, a convolutional neural network is the first part used for feature extraction. In fact, there are
two models here. One of them is convolutional neural network based on the VGG16 model used
to extract features from an electrocardiogram (ECG), an electromyogram (EMG), a blood pressure
graph and a heart rate graph. The other is a one-dimensional convolutional neural network model,
which is used to extract features from personal health information (smoking, drinking, history of atrial
fibrillation, history of hyperlipidemia, etc). The second part fuses all the features acquired in the first
part and makes stroke predictions. This study used multiple end-to-end models to fuse and predict
multi-modal data of all stroke-related predictors; we also solved the problem of multi-modal data
fusion in disease prediction.

2. Materials and Method

2.1. Dataset

Since stroke is accompanied by dynamic cerebral automatic regulation injury, the factors related to
the state of dynamic cerebral automatic regulation injury, such as blood pressure, heart rate, ECG and
EMG, can be used to predict stroke. The public dataset called cerebral vasoregulation in elderly with
stroke [17], published by Goldberger [18], is used here. It contains data from a large multi-modal study
that investigated the effects of ischaemic stroke on cerebral vascular regulation. The cross-sectional
study compared 60 subjects who suffered strokes to 60 control subjects, collecting the following data for
each patient and normal person across multiple days: transcranial doppler of cerebral arteries; 24-hour
blood pressure numerics; high resolution waveforms (ECG, blood pressure, CO2 and respiration)
during various movement tasks; 24-hour ECG, EMG, and accelerometer recordings; and gait pressure
recordings during a walking test. The parts of the human body detected by ME6000 are shown in
Table 1. As the information of some research subjects is incomplete, the data from 39 patients with
ischaemic stroke and 40 normal persons were chosen. Demographic characteristics among the two
groups are shown in Table 2. Blood pressure, heart rate, ECG and EMG and personal health information
(smoking, drinking, history of atrial fibrillation, history of hyperlipidaemia, etc.) are used in this paper;
baseline information about stroke patients and normal persons is shown in Tables A1–A12.

These factors can reflect the impacts of stroke on cardiovascular and cerebrovascular diseases.
Hence, the current state of cardiovascular and cerebrovascular diseases can be judged by observing the
factors. On the other hand, since personal health data such as smoking [19], alcoholism [20], history
of hypertension [21] and history of hyperlipidaemia have strong correlations with stroke [22], it is
necessary to combine personal health data to infer the possibility and probability of stroke attack.
Table 3 lists the predictors related to stroke used in this article.

Table 1. The parts of the human body detected by ME6000.

Type Position

ECG 1 CH1 V5/V6-L clavicle
ECG 2 CH2 V1/V2 L clavicle
EMG 1 gastrocnemius right
EMG 2 gastrocnemius left
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Table 2. Demographic characteristics among the two groups.

Group Stroke Control p

Age(years) 64.21 (±8.94) 64.48 (± 8.07) 0.87
Sex (male, female) 20,19 (39) 17,23 (40) N=79
Race (W, A, AA) 33,1,5 33,3,4

Body mass index(kg/m2) 27.53 (± 4.74) 27.59(± 6.48) 0.95
Years after stroke 6.05 (±4.88) - -

Stroke side (right, left) 24,19 - -
Infarct volume (cm3) 18.69 (±34.06) - -

NIHSS 2.71 (±2.72) - -
MRS 1.2 (±1.14) - -

Continuous variables are presented as mean ± SD, Ordinal variables are presented as mean ± SD (range),
Nominal variables are presented as numbers, Comparison is not significantly different if p > 0.05, Race:
W—White, A—Asian, AA—African American.

The data used in the experiment can be divided into two types, streaming data and structured
data. The streaming data contain blood pressure, heart rate, ECG and EMG data. Twenty-four-hour
beat-to-beat heart rate and BP monitoring using Dynapulse were measured at 20 min intervals during
daytime and at 30 min intervals at night; 24-hour ECG and EMG monitoring was done using ME6000
devices. ECG and EMG data were sampled at 1000 Hz. ECG and EMG were done for 24 h during sleep
and daily activities, such as walking; therefore, both ECG and EMG data have two types, static state
data and dynamic data. The structured data are the personal health information (age, gender, height,
history of hypertension, alcoholism, smoking, etc.) of 79 subjects.

For streaming data, graphical and integrated processing was carried out. First, streaming data
were converted into graphs, such as a blood pressure graph (as shown in Figure A2), a heart rate graph
(as shown in Figure A3), an ECG and an EMG (as shown in Figure A1). In order to easily show the
characteristics of all streaming data, the blood pressure graph (upper left), heart rate graph (upper
right), an ECG and an EMG (lower left and right) are shown in Figure 1.

Figure 1. The composite image contains a blood pressure graph, a heart rate graph, an ECG and
an EMG.

One-dimensional data were obtained by transforming and processing the structured data. Some of
the information (gender, history of hypertension, family members with histories of hypertension, etc.)
has two or more values, so it needs to be processed by one-hot encoding [23]. For example, in Table 4,
index values from 7 to 9 indicate race types (African American, White, and Asian). The details are
shown in Tables 4 and 5, which respectively represent data before and after personal health conversion.
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Table 3. Influencing factors of stroke.

Age Height/m
Human Characteristic Mass/kg BMI

Data Gender Race

Htn patient medical history Neuropathy autonomic symptoms
Dizziness autonomic symptoms Numbness autonomic symptoms

DM/on-DM stroke Syncope autonomic symptoms
Personal medical OHspecific autonomic symptoms Atrial fibirillation patient medical history

history HTN years patient medical history Cancer patient medical history
Stroke patient medical history DM patient medical history

Heart failure =CHF /ifaction=-MI
patient medical history

Current tobacco use Pevious tobacco use
Behavioral Previous alcohol use Pack tobacco years

ALCOHOL Dose/Week

Cancer family history Cancerspecific family history
HeartDisease family history Hdspecific family history

Family medical history HTN family history HTNspecific family history
DM family history Dmspecific family history

Stroke family history StrokeSpecific family history

Life sign parameters Heart rate blood pressure
ECG EMG

Table 4. One example of one-hot encoding of personal health data information.

Index Value

0–9 1.0 0.0 64.0 1.63 72.6 27.5 0.0 1.0 0.0 0.0
10–19 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
20–29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30–39 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40–49 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50–59 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
60–69 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.2. Experimental Design

2.2.1. Overall Architecture of Proposed Model

The network model proposed in this paper mainly includes two parts. In the first part,
a convolutional neural network model based on VGG16 was built to extract the features of blood
pressure, heart rate, EMG and ECG, because the VGG16 model has a better classification effect in image
classification [24,25]. For feature extraction of personal health data, the one-dimensional conolutional
neural network model was built. In the second part, a model for feature fusion was built to train the
prediction model that can predict the occurrence probability of stroke. The entire network structure
system is shown in Figure 2.

2.2.2. The First Part: Feature Extraction

The first model used a model based on convolutional neural networks to distinguish the
waveforms of sign-of-life parameters of stroke patients. The model includes a VGG16 model; a fully
connected layer with 256 neurons and the ReLU, which is used as the activation function; and a fully
connected layer with a neuron and the softmax, which is used as the activation function. The work
flow of this model is as follows: First, input the waveform graphs with the shape of 150×150×3 into
the model to train the model. Features of the waveform graphs are extracted through the VGG16
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model, and then input into the fully connected layer of the next layer to get a feature layer with a
shape of 256×1 for next step.

The second model was built using a one-dimensional convolutional neural network model [26] to
identify the personal health data of stroke patients. The model consists of two layers of one-dimensional
convolutional layers containing 16 and 32 neurons, and ReLU is used as the activation function; two
pooling layers—one fully connected layer containing a neuron, and sigmoid is used as the activation
function. The work flow of this model is as follows: First, the convolutional layer and the pooling
layer are used to convolve and pool the text to extract features, and then the features are input into the
fully connection layer of the next layer, and the feature layer with a shape of 32×1 is obtained for the
next step.

Table 5. The values of personal health data information before conversion.

Factor Value Used One-Hot

Htn patient medical history YES NO
Age 70 NO

Alcohol Dose/Week 0 NO
Neuropathy autonomic symptoms YES NO

Previous Tobacco Use YES NO
Current Tobacco Use NO NO

HeartDisease family history 1 NO
HdspeciFIc family history f YES

Stroke year patient medical history 0 NO
Atrial FIbtrillation patient medical history NO NO

BMI 26.7 NO
Gender F NO

Painful feet autonomic symptoms NO NO
Syncope autonomic symptoms NO NO

cancSpec family history NULL NO
HTN years patient medical history 4 NO

DM patient history 0 NO
DmspeciFIc patient history NULL YES
DM patient medical history NO NO

Height/m 1.64 NO
Mass/kg 71.67 NO

Dizziness autonomic symptoms NO NO
Numbness autonomic symptoms NO NO

Pack years 20 NO
Previous alcohol use YES NO
HTN family history 0 YES

HTNspeciFIc family history NULL YES
Heart failure =CHF/ifaction=-MI patient medical history NO NO

Race White YES
DM Non-DM stroke Non-DM NO

OH autonomic symptoms NO NO
Cancer family history 0 YES

Cancer patient medical history NO NO
Stroke patient medical history NO NO

Stroke family history 0 NO
Stroke Specific family history NULL YES
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Figure 2. Overall architecture of proposed model.

2.2.3. The Second Part: Prediction of Incidence Probability of Stroke

The third model was composed of four layers of fully connected layer. The numbers of neurons
in the first three layers of the fully connected layer were 64, 32 and 16. ReLU is used as the activation
function. The number of neurons in the last layer was 1, and the activation function was softmax.
The two models obtained from the training in first part were used to obtain feature layers with shapes
of 256×1 and 32×1. Then the two feature layers were fused [27] to obtain the 189,679 one-dimensional
dataset with a shape of 288×1, which was then used to train the model for predicting the incidence
probability of stroke.

3. Results

During the experiment, graphs of sign-of-life parameters and 79 one-dimensional data with the
shape of 70×1 were used to train the model for extracting the feature from stream data and the model
for extracting the feature from structured data in the first part. In the second part, the two feature layers
were combined as the training data input layer of the model for feature fusion. Finally, a prediction
model was obtained to predict the probability of stroke.

3.1. Results of Training a Model for Extracting Features from Streaming Data

Graphs of sign-of-life parameters were divided into three sets, a training set (60%), a verification
set (20%) and a testing set (20%). The training set and verification set were used to train the model for
extracting features from streaming data. The optimizer was RMSProp, the learning rate was 1 × 10−5,
the loss function was binary cross entropy and the number of iterations of the training was 30. Finally,
the model for extracting features from streaming data was able to identify the waveform graphs of
sign-of-life parameters of stroke patients and normal persons. The curves of accuracy and loss rate of
the feature extraction model are shown in Figures 3 and 4.

3.2. Results of Training a Model for Extracting Features from Structured Data

The one-dimensional dataset was divided into three sets, a training set (60%), a verification set
(20%) and a testing set (20%). The training set and verification set were used to train the model for
extracting features from structured data. The optimizer was RMSProp, the learning rate was 1 × 10−4,
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the loss function was binary cross entropy and the number of iterations of the training was 100. Finally,
a classified prediction model that could identify personal health data of stroke patients and normal
persons was obtained. The curves of accuracy and loss rate of the feature extraction model are shown
in Figures 5 and 6.

Figure 3. Accuracy of the model for extracting features from streaming data during training.

Figure 4. Loss of the model for extracting features from streaming data during training.

3.3. Results of Training a Model for Feature Fusion

On the one hand, graphs of signs of life were input into the feature extraction model for streaming
data; a 256×1 feature dataset was then obtained. On the other hand, the one-hot encoded personal
health data of 79 subjects were input into the feature extraction model for structured data to obtain the
32×1 feature data. Then the feature layer of the sign-of-life parameters of the research subjects was
combined with the corresponding feature layer of the personal health data to obtain a set of feature
layers with a shape of 288×1, which were used as the training data of the model for feature fusion.

The combined feature layer set obtained above was divided into three categories: a training set
(60%), a verification set (20%) and a testing set (20%). The training set and verification set were used to
train the feature fusion model. The optimizer was Adam and the loss function was categorical cross
entropy. The number of training iterations was 3000. Finally, a prediction model for feature fusion
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capable of predicting the incidence probability of stroke was obtained. The curves of the accuracy and
loss rate of the feature fusion model are shown in Figures 7 and 8.

Figure 5. Accuracy of the model for extracting features from structured data during training.

Figure 6. Loss of the model for extracting features from structured data during training.

3.4. Model Evaluation

The testing group containing 38,808 samples was used to evaluate the model for feature fusion,
and the confusion matrix obtained is shown in Figure 9. Due to the value of AUC being up to 0.99,
the prediction performance of the proposed model was proven, as shown in Figure 10. The index
values of the model evaluation (precision, recall, accuracy, AUC and f1-score) are shown in Table 6;
the precision, recall and f1-score were obtained by Equations (1)–(3). As os known, the accuracy rate is
expressed as the proportion of positive samples predicted as positive samples. There are two cases for
predicting positive samples. One case labeled as TP is to predict positive samples as positive samples,
and the other labeled as FP is to predict negative samples as positive samples. In this paper, a positive
sample represents a stroke patient and a negative sample represents a normal person. Obviously,
the precision of the proposed model was 98.59%. In the other hand, the accuracy of the proposed
model, which is expressed as the proportion of samples that are correctly predicted, was up to 98.53%.
In short, these results justify the fact that the proposed model has a good performance in terms of
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distinguishing the sign-of-life parameter waveforms and personal health information of stroke patients
and normal people, and predicting the probability of a stroke patient, that is, the occurrence probability
of stroke.

Figure 7. Accuracy of the model for feature fusion during training.

Figure 8. Loss rate of the model for feature fusion during training.

Once the predictive model recognizes that the sign-of-life parameters and personal health data of
the current test subject have the characteristics of a stroke patient, the current test subject is judged to
be a stroke patient. If the current test subject has not had a stroke, the result will be used as a pre-stroke
warning. At this time, the subject should take corresponding preventive measures in time to reduce
the harm caused by stroke.
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Figure 9. Confusion matrix obtained by model evaluation on the testing set.

Figure 10. ROC curve by model evaluation on the testing set.

Precision = TP/(TP + FP) (1)

Recall = TP/(TP + FN) (2)

f 1 − score = (2 × Precision × Recall)/(Precision + Recall) (3)

Table 6. Evaluation index values of the model.

TP FN FP TN Precision Recall Accuracy AUC f1-Score (0) f1-Score (1)

18863 285 270 18390 98.59% 98.51% 98.53% 0.99 0.96 0.96

4. Discussion

In the model for extracting features from streaming data, the convolutional neural network
model based on VGG16 was used to extract the features of ECG, EMG, blood pressure and heart
rate to identify the waveform graphs of sign-of-life parameters of stroke patients. It should be noted
that VGG16 did have perform better when extracting features compared with other models, such as
VGG19, DenseNet201 and ResNet50, as shown in Figure 11 and Table 7. According to the results,
the recognition accuracy of VGG19 was the worst. Further, the training time of VGG16 was the shortest
compared with DenseNet201 and ResNet50. Meanwhile, the number of parameters was the least.
Due to these reasons, VGG16 was selected as the basic network model for extracting features from the
streaming data.
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The multiple end-to-end network models proposed in this paper realized the feature fusion
of multi-modal data and stroke prediction. We compared the method proposed in this paper with
the current stroke prediction methods [10,11], as shown in Table 8. First, the method proposed in
this paper has made perfect measures in terms of input data, changing from universal single-modal
data to multi-modal data. Secondly, optimization was made on the network model, and a prediction
model based on multi-model fusion was used to extract and fuse multi-modal data. Finally, a stroke
prediction model with better classification performance than other methods was obtained. This model
is used to identify the abnormal characteristics of stroke in the sign-of-life parameters and personal
health data in time, so as to prepare for stroke prevention measures in advance to reduce the harm
caused by stroke.

Figure 11. The model for extracting features from streaming data based on different network structures:
the accuracy and loss for the training set and the accuracy and loss for the verification set.

Table 7. Comparison of training time, number of parameters and accuracy using different network
structures on testing sets.

Accuracy Training Time (Second) Total Parameters

VGG19 0.96 1678 122122049
DenseNet201 0.97 34271 26186817

ResNet50 0.97 20162 23638913
VGG16 0.97 12689 16812353

Table 8. The method proposed in this paper with the current stroke prediction methods.

Methods Input Data Model Structure AUC

DNN with scaled PCA Medical service use and health behavior data DNN 83.48%
Deep neural network Electronic medical claims (EMCs) DNN 91.5%

Multi model Streaming data (Blood pressure etc.), structured data (EHRs) Multi model fusion 99%
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5. Conclusions

The purpose of the current study was to estimate the probability of stroke occurrence. Hence,
a convolutional neural network based on multi-model fusion was proposed. First, feature extraction of
streaming data and structured data was carried out in combination with a convolutional neural network
to expand ischaemic stroke-related factors and enhance feature extraction ability. Second, this paper
proposed the processing of multi-modal data by multiple end-to-end neural architectures to achieve
feature fusion and stroke prediction, and solved a major technical problem in disease prediction, which
effectively improved upon the prediction accuracy of traditional models. To verify the effectiveness
of the proposed method, the personal health data of 79 subjects were used in experiments that were
carried out (based on a public dataset). The prediction accuracy reached 98.53%. This study contributes
to our understanding of the impacts of risk factors on the occurrence of stroke. It could be used to help
detect the disease early and thereby help institute appropriate control measures.

Author Contributions: The manuscript was written through contributions of all authors, and all authors
contributed equally. Conceptualization, Y.L. and B.Y.; methodology, Y.L. and B.Y.; validation, Y.C.; visualization,
Y.L.; supervision, Y.C.; writing—original draft, Y.L.; writing—review and editing, Y.L. and B.Y. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Pilot National Laboratory for Marine Science and Technology
(Qingdao), Aoshan Science and Technology Innovation Project (2016ASKJ07), and the research on motion
recognition based on multipart sensors and wearable videos (61602430).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Additional Tables

Table A1. Baseline information about subjects numbered S0030 to S208.

Subject HTN Patient Group Age Height Mass BMI Gender Race DM/ Non-DM
Number Medical History STROKE

S0030 YES CONTROL 64 1.6256 72.5747792 27.46365545 F White Non-DM
S0064 YES CONTROL 76 1.7018 68.0388555 23.49308018 M White Non-DM
S0068 NO CONTROL 79 1.5748 64.86370891 26.15477364 F White Non-DM
S0121 NO CONTROL 65 1.8288 72.5747792 21.69967838 M White Non-DM
S0153 NO CONTROL 71 1.7018 66.67807839 23.02321858 F White Non-DM
S0154 YES CONTROL 71 1.7526 80.73944186 26.28573518 M White Non-DM
S0160 NO CONTROL 72 1.8288 106.594207 31.87140263 F White Non-DM
S0163 YES CONTROL 73 1.651 84.82177319 31.11810921 F White Non-DM
S0164 NO CONTROL 60 1.651 63.5029318 23.29698015 F White Non-DM
S0165 YES CONTROL 75 1.7018 53.97749203 18.63784361 F White Non-DM
S0166 NO CONTROL 76 1.651 73.48196394 26.95793418 M White Non-DM
S0172 NO CONTROL 71 1.49 58.9670081 26.56051894 F Asian Non-DM
S0174 YES CONTROL 71 1.7018 67.58526313 23.33645965 M White Non-DM
S0175 YES STROKE 64 1.778 77.1107029 24.39220991 M White STROKE
S0176 NO CONTROL 68 1.778 90.718474 28.69671754 M White Non-DM
S0183 NO CONTROL 60 1.6256 64.41011654 24.37399422 F White Non-DM
S0184 NO CONTROL 68 1.7018 64.41011654 22.24011591 F White Non-DM
S0185 YES STROKE 72 1.778 77.1107029 24.39220991 M White STROKE
S0187 NO CONTROL 65 1.6002 60.78137758 23.73679105 F White Non-DM
S0194 NO CONTROL 64 1.778 95.2543977 30.13155341 M White Non-DM
S0197 NO CONTROL 65 1.5494 58.9670081 24.56303288 F White Non-DM
S0199 YES STROKE 77 1.7526 87.08973504 28.35315255 M White STROKE
S0200 NO CONTROL 70 1.8034 76.20351816 23.43100365 M White Non-DM
S0203 YES CONTROL 72 1.8034 70.30681735 21.61789027 M White Non-DM
S0204 YES CONTROL 80 1.7653 67.13167076 21.54221785 M White Non-DM
S0205 YES STROKE 63 1.6002 53.97749203 21.07968757 F Asian STROKE
S0207 YES CONTROL 75 1.6764 54.88467677 19.52971055 F AA Non-DM
S0208 NO CONTROL 67 1.651 70.30681735 25.79308517 F White Non-DM

Race: AA—African American.
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Table A2. Baseline information about subjects numbered S0210 to S0402.

Subject HTN Patient Group Age Height Mass BMI Gender Race DM/ Non-DM
Number Medical History STROKE

S0210 NO CONTROL 72 1.6256 71.66759446 27.12035976 F White Non-DM
S0212 YES CONTROL 65 1.6002 53.97749203 21.07968757 F White Non-DM
S0213 NO CONTROL 71 1.8542 95.2543977 27.70587572 M White Non-DM
S0214 YES STROKE 62 1.7018 61.23496995 21.14377217 F White STROKE
S0215 YES CONTROL 61 1.6002 90.718474 35.42804634 F White Non-DM
S0218 NO CONTROL 70 1.6002 90.718474 35.42804634 F White Non-DM
S0221 NO CONTROL 71 1.6 54.88467677 21.43932686 F White Non-DM
S0225 NO CONTROL 66 1.524 64.41011654 27.73218897 F AA Non-DM
S0227 YES CONTROL 66 1.5494 67.13167076 27.9640682 F AA Non-DM
S0228 NO CONTROL 61 1.8034 79.37866475 24.40729546 M White Non-DM
S0230 YES STROKE 76 1.7272 72.5747792 24.32766712 M White STROKE
S0231 YES STROKE 64 1.6764 76.20351816 27.11563117 M White STROKE
S0232 YES STROKE 70 1.6256 63.5029318 24.03069852 F White STROKE
S0239 YES STROKE 77 1.7018 70.30681735 24.27618286 M White STROKE
S0240 NO STROKE 60 1.6764 99.7903214 35.50856463 F White STROKE
S0242 YES CONTROL 61 1.778 77.1107029 24.39220991 M AA Non-DM
S0243 YES CONTROL 62 1.7 77.11 26.6816609 M Asian Non-DM
S0244 NO STROKE 71 1.57 72.57 29.44135665 F AA STROKE
S0247 YES STROKE 79 1.695 72.25 25.14771017 M White STROKE
S0248 YES STROKE 80 1.68 69.85 24.74844104 F White STROKE
S0277 YES STROKE 67 1.6 99.6 38.90625 F AA STROKE
S0305 NO CONTROL 52 1.63 83.65 31.48406037 M Asian Non-DM
S0321 NO STROKE 54 1.75 112.35 36.68571429 M White STROKE
S0322 YES STROKE 78 1.61 65.9 25.42340187 F White STROKE
S0324 YES STROKE 62 1.7 84.5 29.23875433 M White STROKE
S0332 YES STROKE 73 1.67 66.5 23.84452652 F White STROKE
S0334 NO STROKE 59 1.57 63 25.5588462 F White STROKE
S0337 NO STROKE 67 1.68 78.45 27.7954932 M White STROKE
S0340 NO STROKE 50 1.68 75.85 26.87429138 F AA STROKE
S0343 YES CONTROL 66 1.63 66.2 24.91625579 F White Non-DM
S0348 YES STROKE 72 1.68 51.5 18.24688209 M white STROKE
S0351 YES STROKE 53 1.66 85.9 31.17288431 M white STROKE
S0352 NO STROKE 66 1.47 49.89 23.08760239 F white STROKE
S0353 YES STROKE 65 1.56 79.25 32.56492439 F white STROKE
S0354 NO STROKE 54 1.65 66.3 24.35261708 F white STROKE
S0355 YES STROKE 67 1.75 83.91 27.39918367 M AA STROKE
S0358 YES STROKE 80 1.57 61.2 24.82859345 F white STROKE
S0361 YES STROKE 71 1.74 81.45 26.90249703 M WHITE STROKE
S0363 YES STROKE 55 1.56 94.55 38.85190664 F white STROKE
S0364 NO CONTROL 63 1.8 106.55 32.88580247 M WHITE Non-DM
S0371 YES STROKE 66 1.67 96.2 34.49388648 M WHITE STROKE
S0374 YES STROKE 64 1.57 61 24.74745426 F WHITE STROKE
S0376 YES CONTROL 70 1.83 77.27 23.07324793 M WHITE Non-DM
S0378 NO STROKE 58 1.68 78.2 27.7069161 M WHITE STROKE
S0379 YES STROKE 58 1.74 75.38 24.89760867 M AA STROKE
S0380 YES STROKE 69 1.74 85.15 28.12458713 M WHITE STROKE
S0388 YES STROKE 61 1.62 67.9 25.8725804 F WHITE STROKE
S0389 YES STROKE 50 1.67 107.2 38.43809387 F WHITE STROKE
S0397 YES STROKE 74 1.83 90.7 27.08351996 M WHITE STROKE
S0399 NO CONTROL 51 1.81 68.75 20.98531791 F WHITE Non-DM
S0402 NO STROKE 54 1.82 96.45 29.11786016 M WHITE STROKE

Race: AA—African American.
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Table A3. Baseline information about subjects numbered S0030 to S0343.

Subject Previous Current Pack Years Previous Alcohol Neuropathy
Number Tobacco Use Tobacco Use Alcohol Use Dose(Week) Symptoms Autonomic Symptoms

S0030 NO NO 0 YES 0 NO
S0064 NO NO 0 YES 0 NO
S0068 NO NO 0 NO 0 NO
S0121 NO NO 0 YES 3 NO
S0153 NO NO 0 NO 0 NO
S0154 NO NO 0 NO 0 NO
S0160 NO NO 0 NO 0 NO
S0163 NO NO 0 YES 0 NO
S0164 YES NO 0 YES 15 NO
S0165 YES NO 0 YES 7 NO
S0166 NO NO 0 NO 0 NO
S0172 NO NO 0 NO 0 NO
S0174 NO NO 0 NO 0 NO
S0175 YES NO 35 YES 20 NO
S0176 YES NO 15 YES 5 NO
S0183 YES YES 41 NO 0 NO
S0184 NO NO 0 YES 0 NO
S0185 YES NO 60 YES 70 NO
S0187 NO NO 0 YES 0 NO
S0194 NO NO 0 YES 3 YES
S0197 NO NO 0 NO 0 NO
S0199 YES NO 56 NO 0 NO
S0200 NO NO 0 NO 0 NO
S0203 NO NO 0 NO 0 NO
S0204 NO NO 0 YES 7 NO
S0205 YES NO 0 YES 0 NO
S0207 NO NO 0 YES 1 NO
S0208 YES NO 27 YES 0 NO
S0210 YES NO 160 NO 0 YES
S0212 NO NO 0 YES 0 YES
S0213 YES NO 9 YES 0 NO
S0214 YES NO 28.57 YES 7 NO
S0215 YES NO 30 YES 0 NO
S0218 YES YES 11 NO 0 YES
S0221 NO NO 0 YES 7 NO
S0225 NO NO 0 YES 0 NO
S0227 NO NO 0 YES 1 NO
S0228 NO NO 0 YES 0 NO
S0230 YES NO 8.6 YES 4 NO
S0231 NO NO 0 YES 3 NO
S0232 NO NO 0 YES 2 NO
S0239 NO NO 0 NO 0 NO
S0240 YES NO 48 NO 0 YES
S0242 NO NO 0 YES 2 NO
S0243 YES NO 1 YES 1 NO
S0244 NO NO 0 YES 1 NO
S0247 YES YES 60 YES 2.5 NO
S0248 NO NO 0 NO 0 NO
S0277 NO NO 0 YES 0 NO
S0305 NO NO 0 NO 0 NO
S0321 NO YES 30.86 YES 7 YES
S0322 NO NO 0 YES 4 NO
S0324 YES NO 86 YES 0 NO
S0332 YES NO 30 YES 2 NO
S0334 YES NO 60 NO 0 NO
S0337 YES NO 66 YES 49 NO
S0340 YES NO 0.1667 YES 2 NO
S0343 YES NO 10.5 YES 0 NO
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Table A4. Baseline information about subjects numbered S0030 to S0343.

Subject Dizziness Numbness Painful Feet Syncope
Number Autonomic Symptoms Autonomic Symptoms Autonomic Symptoms Autonomic Symptoms

S0030 NO NO NO NO
S0064 NO NO NO NO
S0068 NO NO NO NO
S0121 YES YES NO NO
S0153 NO NO NO YES
S0154 NO NO NO YES
S0160 NO NO NO NO
S0163 NO NO NO NO
S0164 NO NO YES NO
S0165 NO NO NO NO
S0166 NO YES NO NO
S0172 NO NO NO NO
S0174 NO NO NO NO
S0175 YES NO NO NO
S0176 YES NO NO NO
S0183 NO NO NO NO
S0184 YES NO NO NO
S0185 YES NO NO NO
S0187 NO NO NO NO
S0194 YES YES YES NO
S0197 NO NO NO NO
S0199 NO NO NO NO
S0200 YES NO NO NO
S0203 NO NO NO NO
S0204 NO NO NO NO
S0205 NO NO NO NO
S0207 NO NO NO NO
S0208 NO NO NO YES
S0210 NO NO NO NO
S0212 NO NO NO NO
S0213 YES NO NO NO
S0214 NO NO NO NO
S0215 NO NO NO NO
S0218 YES NO NO YES
S0221 YES NO NO YES
S0225 NO NO NO NO
S0227 NO NO NO NO
S0228 NO NO NO NO
S0230 YES NO NO NO
S0231 YES NO NO NO
S0232 YES NO NO NO
S0239 NO NO NO NO
S0240 YES YES NO NO
S0242 NO NO NO NO
S0243 NO NO NO NO
S0244 NO NO NO NO
S0247 NO NO NO NO
S0248 NO NO NO NO
S0277 YES NO NO NO
S0305 NO NO NO NO
S0321 NO YES NO NO
S0322 YES NO NO NO
S0324 YES NO NO NO
S0332 NO NO NO NO
S0334 NO NO NO NO
S0337 YES NO NO YES
S0340 NO NO NO NO
S0343 NO NO NO NO
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Table A5. Baseline information about subjects numbered S0030 to S0343.

Subject OH Autonomic Cancer Family CancSpec HeartDisease Hdspecific HTN Family
Number Symptoms History Family History Family History Family History History

S0030 NO 0 0 0
S0064 NO 0 2 b 0
S0068 NO 3 f, m, si 0 0
S0121 NO 0 0 1
S0153 YES 2 gp, f 1 m 0
S0154 YES 0 0 0
S0160 YES 0 4 gp 0
S0163 NO 0 1 f 2
S0164 NO 1 f 1 gp 0
S0165 YES 0 1 f 2
S0166 YES 1 gp 0 0
S0172 YES 0 0 0
S0174 YES 0 0 0
S0175 NO 2 f, si 0 0
S0176 YES 3 f, m, si 1 gp 0
S0183 YES 1 m 1 f 1
S0184 YES 2 gp, si 1 f 1
S0185 YES 0 1 f 0
S0187 NO 0 0 1
S0194 YES 3 f, m, si 1 b 0
S0197 YES 1 f 1 f 0
S0199 YES 0 0 0
S0200 YES 1 si 1 f 0
S0203 YES 0 1 f 1
S0204 YES 0 1 f 1
S0205 YES 1 m 1 gp 0
S0207 NO 0 1 m 3
S0208 NO 0 1 gp 1
S0210 NO 2 gp,m 1 gp 0
S0212 NO 1 gp 1 gp 2
S0213 NO 0 1 f 0
S0214 NO 2 gp,si 1 m 3
S0215 NO 0 0 0
S0218 NO 2 gp,m 1 gp 0
S0221 NO 1 gp 1 f 1
S0225 NO 0 0 1
S0227 NO 0 1 m 1
S0228 NO 1 m 0 0
S0230 NO 0 0 0
S0231 YES 3 f, m, si 1 gp 2
S0232 YES 0 1 f 0
S0239 NO 0 0 0
S0240 YES 0 1 b 0
S0242 NO 0 0 1
S0243 NO 0 1 b 1
S0244 NO 1 b 1 si 1
S0247 NO 0 0 0
S0248 NO 0 1 f 0
S0277 NO 1 gp 1 f 2
S0305 NO 0 0 0
S0321 NO 0 0 1
S0322 YES 1 m 1 f 2
S0324 NO 0 1 gp 1
S0332 NO 0 1 f 0
S0334 NO 0 1 f 0
S0337 NO 2 si,si 1 si 0
S0340 NO 0 1 gp 1
S0343 NO 2 b,si 1 gp 2

Family member: f—father, si—sister, m—mother, gp—grandparent, so—son, b—brother.
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Table A6. Baseline information about subjects numbered S0030 to S0343.

Subject HTNspecific DM Family Dmspecific StrokeFAMILY StrokeSpecific HTN Years Patient
Number Family History History Family History Family History Family History Medical History

S0030 0 0 4
S0064 0 0 0
S0068 0 0 0
S0121 b 1 f 1 f 0
S0153 0 0 0
S0154 1 f 0 2
S0160 0 0 0
S0163 f, m 0 0 50
S0164 0 0 0
S0165 gp, m 0 1 f 4
S0166 2 gp, b 0 0
S0172 0 0 0
S0174 0 0 15
S0175 0 0 0
S0176 0 1 si 0
S0183 m 1 m 0 0
S0184 si 0 0 0
S0185 0 1 m 3
S0187 m 0 1 m 0
S0194 1 gp 0 0
S0197 1 m 0 0
S0199 0 0 0
S0200 0 0 0
S0203 f 0 1 m 8
S0204 so 1 so 0 6
S0205 0 0 0
S0207 gp,f,m 2 gp,m 3 f,b,si 10
S0208 f 0 0 0
S0210 1 gp 0 0
S0212 gp,si 0 1 si 3
S0213 0 0 0
S0214 f,m,si 1 b 1 f 0
S0215 0 0 3
S0218 1 gp 0 0
S0221 m 2 gp,f 0 0
S0225 gp 0 1 gp 0
S0227 m 0 1 m 16
S0228 1 f 1 f 0
S0230 0 0 0
S0231 m, si 1 si 2 m, si 6
S0232 3 f, b, si 0 6
S0239 0 0 21
S0240 0 1 gp 0
S0242 b 0 0 25
S0243 b 0 0 26
S0244 b 4 m,b,so,si 1 m 0
S0247 0 0 1
S0248 0 0 2
S0277 f,m 1 m 0 24
S0305 1 f 0 0
S0321 f 0 1 f 0
S0322 m,b 0 1 b 20
S0324 gp 0 0 47
S0332 0 0 1
S0334 1 gp 0 0
S0337 0 1 m 0
S0340 m 1 f 1 m 0
S0343 gp,m 1 gp 0 1

Family member: f—father, si—sister, m—mother, gp—grandparent, so—son, b—brother.
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Table A7. Baseline information about subjects numbered S0030 to S0343.

Subject Cancer Patient Stroke Patient Stroke Atrial Fibtrillation Heart Failure = CHF DM Patient
Number Medical History Medical History Years Patient Medical /Ifarction = -MI Patient Medical History

History Medical History

S0030 NO NO 0 NO NO NO
S0064 NO NO 0 NO NO NO
S0068 NO NO 0 NO NO NO
S0121 NO NO 0 NO NO NO
S0153 NO NO 0 NO NO NO
S0154 NO NO 0 NO NO NO
S0160 YES NO 0 NO NO NO
S0163 NO NO 0 NO NO NO
S0164 NO NO 0 NO NO NO
S0165 NO NO 0 NO NO NO
S0166 NO NO 0 NO NO NO
S0172 NO NO 0 NO NO NO
S0174 NO NO 0 NO NO NO
S0175 NO YES 16 NO NO NO
S0176 NO NO 0 NO NO NO
S0183 NO NO 0 NO NO NO
S0184 NO NO 0 NO NO NO
S0185 NO YES 3 NO NO NO
S0187 NO NO 0 NO NO NO
S0194 NO NO 0 NO NO NO
S0197 NO NO 0 NO NO NO
S0199 YES YES 16 NO NO NO
S0200 NO NO 0 NO NO NO
S0203 NO NO 0 NO NO NO
S0204 YES NO 0 NO NO NO
S0205 NO YES 11 YES NO NO
S0207 NO NO 0 NO NO NO
S0208 NO NO 0 NO NO NO
S0210 NO NO 0 NO NO NO
S0212 NO NO 0 NO NO NO
S0213 YES NO 0 NO NO NO
S0214 NO NO 0 NO NO NO
S0215 NO NO 0 NO NO NO
S0218 NO NO 0 NO NO NO
S0221 NO NO 0 NO NO NO
S0225 NO NO 0 NO NO NO
S0227 NO NO 0 NO NO NO
S0228 NO NO 0 NO NO NO
S0230 YES YES 1 YES NO NO
S0231 YES YES 6 NO NO YES
S0232 NO YES 1 NO NO NO
S0239 NO YES 4 NO NO NO
S0240 NO YES 12 NO NO NO
S0242 YES NO 0 NO NO NO
S0243 NO NO 0 NO NO NO
S0244 NO YES 1 NO NO NO
S0247 YES YES 8 NO NO NO
S0248 NO YES 2 NO NO NO
S0277 NO YES 4 NO NO NO
S0305 NO NO 0 NO NO NO
S0321 NO YES 2 NO NO NO
S0322 NO YES 5 NO NO NO
S0324 NO YES 1 NO YES NO
S0332 NO YES 1 NO NO NO
S0334 NO YES 8 NO NO NO
S0337 NO YES 16 NO NO NO
S0340 NO YES 2 NO NO NO
S0343 NO NO 0 NO NO YES
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Table A8. Baseline information about subjects numbered S0348 to S0402.

Subject Previous Current Pack Years Previous Alcohol Neuropathy
Number Tobacco Use Tobacco Use Alcohol Use Dose(Week) Symptoms Autonomic Symptoms

S0348 YES YES 0 YES 0.5 NO
S0351 NO NO 0 YES 7 NO
S0352 YES NO 33 YES 2 NO
S0353 YES NO 15 YES 0.25 YES
S0354 YES YES 0 YES 3 NO
S0355 YES NO 10 NO 0 YES
S0358 NO NO 0 YES 1 NO
S0361 YES NO 42 YES 0 NO
S0363 YES NO 33 YES 0 NO
S0364 YES NO 12 YES 3 NO
S0371 YES YES 57 YES 42 YES
S0374 YES NO 10 YES 2 NO
S0376 YES NO 60 YES 3 NO
S0378 YES YES 96 YES 24 YES
S0379 YES YES 14 YES 0 NO
S0380 YES NO 70 YES 20 YES
S0388 YES YES 6.75 YES 0 NO
S0389 YES NO 24 YES 1 NO
S0397 YES NO 15 YES 7 YES
S0399 NO NO 0 YES 0 NO
S0402 YES YES 0 YES 4 NO

Table A9. Baseline information about subjects numbered S0348 to S0402.

Subject Dizziness Numbness Painful Feet Syncope
Number Autonomic Symptoms Autonomic Symptoms Autonomic Symptoms Autonomic Symptoms

S0348 YES NO YES NO
S0351 NO NO NO NO
S0352 NO YES NO NO
S0353 YES YES NO NO
S0354 YES NO NO NO
S0355 NO YES NO NO
S0358 YES NO NO NO
S0361 NO NO NO NO
S0363 NO NO NO NO
S0364 NO NO NO NO
S0371 YES YES NO YES
S0374 NO NO NO YES
S0376 YES NO NO YES
S0378 YES YES YES YES
S0379 NO YES NO YES
S0380 NO NO YES NO
S0388 YES NO NO NO
S0389 NO NO NO NO
S0397 YES YES NO YES
S0399 NO NO NO NO
S0402 NO YES NO NO
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Table A10. Baseline information about subjects numbered S0348 to S0402.

Subject OH Autonomic Cancer Family CancSpec HeartDisease Hdspecific HTN Family
Number Symptoms History Family History Family History Family History History

S0348 NO 1 b 1 b 0
S0351 NO 2 gp,f 2 gp 3
S0352 NO 1 si 1 f 0
S0353 NO 0 1 m 1
S0354 NO 3 gp, m, b 1 gp 0
S0355 NO 0 1 f 0
S0358 YES 2 b, si 0 0
S0361 NO 2 gp, m 1 f 0
S0363 NO 2 gp, f 1 b 1
S0364 YES 0 1 f 1
S0371 NO 1 m 1 gp 0
S0374 YES 0 3 gp 3
S0376 YES 0 3 gp 3
S0378 NO 1 gp 1 m 0
S0379 NO 5 gp, m, si, so, d 1 f 4
S0380 NO 0 1 gp 3
S0388 YES 1 f 0 1
S0389 NO 1 gp 2 f 0
S0397 NO 0 1 b 3
S0399 NO 1 m 0 0
S0402 NO 1 m 0 0

Family member: f—father, si—sister, m—mother, gp—grandparent, so—son, b—brother.

Table A11. Baseline information about subjects numbered S0348 to S0402.

Subject HTNspecific DM Family Dmspecific StrokeFAMILY StrokeSpecific HTN Years Patient
Number Family History History Family History Family History Family History Medical History

S0348 0 0 3
S0351 gp,f,m 1 f 1 gp 12
S0352 0 2 gp, m 0
S0353 b 0 2 gp, f 4
S0354 0 0 0
S0355 0 0 13
S0358 0 0 7
S0361 2 gp, b 1 gp 36
S0363 b 3 gp, m, f 1 b 0
S0364 f 1 f 0 0
S0371 1 d 0 4
S0374 gp, m, b 0 1 gp 3
S0376 gp, f, m 0 2 gp, f 4
S0378 2 m, si 0 0
S0379 f, m, b, si 0 1 si 1
S0380 m,b,si 0 2 f,m 39
S0388 m 1 m 1 m 1
S0389 0 0 1
S0397 f,m,b 0 2 f,m 0
S0399 0 0 0
S0402 0 1 f 0

Family member: f—father, si—sister, m—mother, gp—grandparent, so—son, b—brother.
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Table A12. Baseline information about subjects numbered S0348 to S0402.

Subject Cancer Patient Stroke Patient Stroke Atrial Fibtrillation Heart Failure = CHF DM Patient
Number Medical History Medical History Years Patient Medical /Ifarction = -MI Patient Medical History

History Medical History

S0348 YES YES 5 NO NO NO
S0351 NO YES 8 NO NO NO
S0352 NO YES 6 NO NO NO
S0353 NO YES 2 NO NO NO
S0354 NO YES 2 NO NO NO
S0355 NO YES 13 NO NO NO
S0358 NO YES 5 NO NO NO
S0361 NO YES 1 NO NO NO
S0363 NO YES 1 NO NO NO
S0364 YES NO 0 NO NO NO
S0371 NO YES 1 NO NO NO
S0374 YES YES 1 NO NO NO
S0376 NO NO 0 YES NO NO
S0378 NO YES 1 NO NO NO
S0379 NO YES 1 NO NO NO
S0380 NO YES 1 NO NO NO
S0388 NO YES 1 NO NO NO
S0389 NO YES 1 NO NO NO
S0397 NO YES 1 YES NO NO
S0399 NO NO 0 NO NO NO
S0402 NO YES 1 NO YES NO

Appendix B. Additional Figures

Figure A1. An example of ECG and EMG for a subject.
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Figure A2. An example of the blood pressure curve of a subject in the experiment. The lower curve in
the figure is the systolic pressure curve, and the upper curve is the diastolic pressure curve.

Figure A3. An example of the heart rate of a subject in the experiment.
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