
sensors

Article

Real-Time Compact Environment Representation for
UAV Navigation

Kaitao Meng 1 , Deshi Li 1,2,*, Xiaofan He 1, Mingliu Liu 1,2 and Weitao Song 1

1 Electronic Information School, Wuhan University, Wuhan 430072, China; meng_kaitao@whu.edu.cn (K.M.);
xiaofanhe@whu.edu.cn (X.H.); liumingliu@whu.edu.cn (M.L.); wt.song@whu.edu.cn (W.S.)

2 Collaborative Innovation Center of Geospatial Technology, Wuhan 430079, China
* Correspondence: dsli@whu.edu.cn

Received: 24 July 2020; Accepted: 25 August 2020; Published: 2 September 2020
����������
�������

Abstract: Recently, unmanned aerial vehicles (UAVs) have attracted much attention due to their
on-demand deployment, high mobility, and low cost. For UAVs navigating in an unknown
environment, efficient environment representation is needed due to the storage limitation of the
UAVs. Nonetheless, building an accurate and compact environment representation model is highly
non-trivial because of the unknown shape of the obstacles and the time-consuming operations such
as finding and eliminating the environmental details. To overcome these challenges, a novel vertical
strip extraction algorithm is proposed to analyze the probability density function characteristics of
the normalized disparity value and segment the obstacles through an adaptive size sliding window.
In addition, a plane adjustment algorithm is proposed to represent the obstacle surfaces as polygonal
prism profiles while minimizing the redundant obstacle information. By combining these two
proposed algorithms, the depth sensor data can be converted into the multi-layer polygonal prism
models in real time. Besides, a drone platform equipped with a depth sensor is developed to build
the compact environment representation models in the real world. Experimental results demonstrate
that the proposed scheme achieves better performance in terms of precision and storage as compared
to the baseline.

Keywords: unmanned aerial vehicle; obstacle sensing; compact environment representation;
kernel density estimation

1. Introduction

Driven by the advantages of on-demand deployment, high mobility, and low cost, unmanned
aerial vehicles (UAVs) have become appealing solutions for a wide range of commercial and
civilian applications over the past few years, including remote sensing [1], search and rescue [2],
and surveillance [3]. For a UAV navigating in an unknown environment, obstacle detection is
essential, specifically for autonomous navigation. In particular, the environment representation
model needs to be quickly built from the sensor carried by the UAV and stored in the onboard memory.
Such information can be utilized for path planning, traversability analysis, and exploration [4–6].
As the UAVs only have limited storage [7], efficient environment representation is crucial.

The most commonly used environment representation method is to divide space into cubes with
an equal size [8–10]. This method can simplify the original point cloud data and quickly analyze the
surrounding obstacle areas. However, the resolution of the corresponding grid maps has to be carefully
designed, since a small resolution grid consumes a large storage space while a large resolution grid
may lead to unfavorable errors near the obstacle surfaces [11]. With this consideration, an accurate
and compact environment representation model without relying on the grid map needs be developed,
so as to provide a concise spatial relationship [12,13] and improve the efficiency of navigation [14],

Sensors 2020, 20, 4976; doi:10.3390/s20174976 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7479-2280
https://orcid.org/0000-0002-4101-3938
http://dx.doi.org/10.3390/s20174976
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/20/17/4976?type=check_update&version=3

Sensors 2020, 20, 4976 2 of 21

as well as environmental information sharing among the UAVs [15]. Nonetheless, building an accurate
and compact three-dimensional (3D) environment representation model from an onboard sensor is
highly non-trivial. Specifically, the main challenges are three-fold. Firstly, it is difficult to construct
a unified compact model for the obstacles because of their unknown shapes and the sensing noise.
In addition, it is quite time-consuming to find all the arbitrarily shaped gaps on the obstacle surfaces
and determine whether these environmental details should be removed to reduce storage consumption.
Moreover, due to the requirement of the perception latency to process the captured sensor data and the
limited computational capability of the UAVs [16,17], only low-complexity algorithms can be applied.

To tackle the above challenges, a novel vertical strip extraction algorithm is proposed in this work
to analyze the probability density function characteristics of the depth sensor data and extract the
obstacle information according to the roughness of the obstacle surface by an adaptive size sliding
window. Furthermore, to speed up the elimination of irrelevant environmental details, a two-stage
plane adjustment algorithm is presented to quickly fill the irrelevant gaps and then obtain a rectangular
outline of the obstacle. Further combining these two algorithms, the obtained overall modeling scheme,
dubbed as obstacle surface adaptive plane extraction (OSAPE), can convert the onboard sensor data into
the multi-layer polygonal prism models in real time, as shown in Figure 1. In addition, by establishing
the compact environment representation model within the field of view, a global map can be obtained
by merging the processing results from successive frames and different perspectives.

Quadrotor

Stereo camera

(a) (b)

(c) (d)

Figure 1. Environment representation experiment. (a) Experimental scene. (b) Image in the field of
view of the UAV. (c) Compact model. (d) Depth image acquired by the onboard sensor.

The main contributions of this work are summarized as follows:

• Two novel algorithms, namely the vertical strip extraction algorithm and the plane adjustment
algorithm, are proposed to effectively adapt to different obstacle shapes and different surface
roughness, as well as to speed up the elimination of irrelevant environmental details by minimizing
redundant information.

• The proposed OSAPE modeling scheme, which is the combination of the two proposed algorithms,
can convert the normalized data into simplified prisms based on the size of the UAV in real time.

• By building a drone platform with a depth sensor, real-world experiments are conducted to
demonstrate the advantage of the proposed scheme over the baseline.

The rest of this paper is organized as follows. Section 2 discusses the related works. In Section 3,
the system model and the main process of the proposed scheme are presented. The vertical strip extraction
algorithm and the plane adjustment algorithm are presented in Sections 4 and 5, respectively. Experimental
results are presented in Section 6. In Section 7, conclusions and future works are discussed.

Sensors 2020, 20, 4976 3 of 21

2. Related Works

In the literature, several methods about building the compact environment representation
models have been developed for unmanned ground robot trajectory generation [18–20].
However, two-dimensional (2D) compact environment representation models for the ground robots
cannot directly be used in UAV autonomous navigation due to the lack of height information [21].
The extraction of 3D world representations from depth sensors has raised tremendous interests in
recent years. For example, in [22], an obstacle detection system in an indoor environment was proposed
based on the Kinect sensor, which can accurately detect several types of obstacles in real time. In [23],
an omnidirectional obstacle detection method was proposed by repairing the obstacle regions in the
depth images, which can provide a three-dimensional omnidirectional obstacle viewing. Most recently,
another related research interest in recognizing the obstacles in an unknown environment is semantic
SLAM [24], which can provide not only where the obstacles are, but also what they are. Different from
these works, the focus of our work is how to further simplify the obstacle model.

Recently, several pioneering works studied the problem of compact environment representation
in the context of UAV autonomous navigation. For example, in [25], the polygonal outline of obstacles
was extracted based on the grid map, which was used to generate a safe UAV trajectory and avoid the
detected obstacles. In [26], an online autonomous collision-free navigation approach was presented by
utilizing the octree-based map to generate flight corridors. However, the above grid-based environment
representation models result in inflexible grid placement and quantization errors, and the octree-based
map [10] requires an additional computational cost to acquire a free space area by searching and
querying the state of the grid in tree-based storage structures [27].

There is also some literature on the plane extraction algorithm [28–32]. This algorithm can segment
the parts of the depth image or the point cloud data belonging to the same plane, thereby utilizing
a small number of geometric parameters to simplify the environment representation. For example,
approximate planes are extracted by principal component analysis (PCA) based on voxel maps, and the
plane parts are preserved for path planning [28]. However, some irregular obstacle surfaces may be
lost during the conversion process due to the preset roughness threshold [29]. Moreover, the farthest
recognizable distance of this method is limited (less than 10 m), as the plane fitting parameters cannot
be adaptively adjusted according to the distance to the object [30].

Existing works on 3D compact building reconstruction have already demonstrated that the UAV is
an effective method to improve the efficiency of reconstruction [33,34]. The observation data are mainly
composed of the top area of the objects (e.g., building roofs and the top of the trees). For example, in [35],
a modeling method combining meshes and geometric primitives was proposed, which simplifies the
environment model while preserving the details of the environments. In [36], a novel algorithm was
presented to obtain a lightweight, watertight polygonal surface model from the obtained global point
cloud. However, due to different observation angles and global data requirements, these compact
building reconstruction methods cannot be directly utilized for real-time obstacle modeling and
route planning.

3. Adaptive Plane Extraction Model

In this section, the compact environment representation model is presented first, followed by the
main process of the proposed modeling scheme.

Consider a UAV equipped with a depth sensor (e.g., binocular vision sensor, ToF camera [37])
performing tasks in an unknown environment. The generated depth data are given by D̃(u, v)
(The data of other scanning sensors such as LiDAR [38] can also be converted into a 2D matrix D̃(u, v)),
where u = 1, ..., U and v = 1, ...V are the column and the row numbers of the sensor data, respectively.
D̃(u, v) ∈ [D, D̄], where D and D̄ correspond to the minimum and the maximum measurement
distances of the sensor, respectively. For the ease of analysis, the normalized disparity data D(u, v) are
defined as:

Sensors 2020, 20, 4976 4 of 21

D(u, v) =
f c · C

D̃(u, v)
, (1)

where f c is the camera focal length and C is a normalization parameter. Furthermore, the pitch angle
θ, the roll angle φ, and the yaw angle ϕ of the camera can be measured by a six degrees of freedom
inertial measurement unit (IMU).

A static obstacle in an unknown environment is denoted by O ∈ R3 and can be modeled as a
multi-layer polygonal prism Θ ∈ R3 surrounding this obstacle. The heights of all the layers in Θ
are denoted by YΘ = (Y1, Y2, ..., Yk, ...), where Yk and Yk+1 define the height range of the kth layer.
In addition, the corresponding side profile of the polygonal prism is composed of several vertical
rectangles indexed by l ∈ {1, ..., L}, i.e.,

Πl= {P1
a ,P2

b ,η}. (2)

In Equation (2), P1
a and P2

b are two diagonal points of the rectangle Πl shown in Figure 2a, and the
plane fitting parameter η can provide a basis for merging planes, which will be elaborated later in
Section 5.3. In addition, the orientation from the point P1

a to the point P1
b is utilized to distinguish free

space and obstacles without additional parameters. In particular, following the orientation from P1
a to

P1
b , the area on the right-hand side is always free space from the top view. On the contrary, the area on

the left-hand side is either an obstacle or an unknown area.

X

Y

Z

1

bP

2

bP

1

aP

2

aP

O

(a)

Unknown

area

(b)

Figure 2. Compact environment representation models. (a) Rectangle parameters. (b) The modeling process.

With the above consideration, a novel modeling scheme is proposed to convert the normalized
data D(u, v) into several rectangles and merge them into simplified prisms in real time. The main
process of the proposed scheme is illustrated in Figure 3. Firstly, the depth image is obtained by a
depth sensor show in Figure 3a, and whether the image should be rotated or not is determined by the
roll angle φ of the camera. Then, the identified 2D obstacles are converted into 3D Euclidean space,
shown in Figure 3d, which will be referred to as the vertical strips in the subsequent discussions.
The vertical planes are fitted based on the coplanarity of the obtained vertical strips shown in Figure 3e.

Images Depth image and Rotation

Obstacle vertical stripsPlane adjustmentCompact environment representation

Obstacle extraction

(a) (b) (c)

(f) (e) (d)

1

2 3

?

No

Yes

0

Rotate image −

Figure 3. The flowchart of the proposed compact environment representation scheme. (a) RGB images.
(b) Depth image and rotation judgment. (c) Obstacle extraction-based probability density function.
(d) Vertical strips. (e) The results of the plane adjustment algorithm. (f) The application scenario of the
compact environment representation model.

Sensors 2020, 20, 4976 5 of 21

Based on the above discussion, the obtained rectangles at multiple viewing angles can be merged
and fused to form closed multi-layer polygonal prisms. The modeling process of a single-layer prism
is shown in Figure 2b. Specifically, the newly obtained planes are clustered according to the positions
of their vertices and merged with adjacent planes. A polygonal prism Θ will be generated if the planes
in one cluster form a closed side profile. The proposed modeling scheme mainly consists of the vertical
strip extraction algorithm and the plane adjustment algorithm, which will be illustrated in Section 4
and Section 5, respectively, in detail. Important notations and symbols used in this work are given in
Table 1.

Table 1. List of notations.

Notation Physical Meaning

Πl Vertical rectangle
η The parameter of the rectangle
θ, φ, and ϕ The pitch, roll, and yaw angles
D(u, v) The normalized disparity data
f c Focal length
K(x) The Gaussian kernel function
Fu(x) The probability density function in column u
F′(x) The minimum threshold of the probability density function
xi The center of the ith peak
∆xi The width of the ith sliding window
∆vi The height of the ith sliding window
Hm The minimum recognizable obstacle height
Hs The minimum height to the passable region for the UAV
Ws The minimum width to the passable region for the UAV
g(x) Estimated disparity value
Cr The rth cluster of the vertical strips

4. The Proposed Vertical Strip Extraction Algorithm

In this section, the vertical strip extraction algorithm is proposed, which identifies the obstacles in
the normalized disparity data by columns and converts them into a 3D Euclidean space.

4.1. Statistical Estimation of Obstacles

The normalized disparity data D(u, v) of pixels belonging to the same obstacle are approximately
equal or within a certain range. Therefore, to improve the anti-noise capability and the accuracy of the
obstacle model, the distribution characteristics of the normalized disparity data are analyzed, and the
roughness of the obstacle surfaces is estimated statistically.

Kernel density estimation (KDE) [39] is a non-parametric way to estimate the probability density
function of random variables, which can be utilized to analyze the distribution characteristics of
the obstacles in the sensor data while resisting measurement noise. If the roll angle |φ| exceeds the
threshold φ0, the disparity data will be rotated by the angle −φ to facilitate statistical analysis.

Lemma 1. Given the normalized disparity data D(u, v) and the pitch angle θ of the UAV, a new converted
disparity value that eliminates the influence of the pitch angle is given by:

Dθ(u, v) =
D(u, v) · f c

f c · cos θ − (v− v0) · sin θ
. (3)

Proof. Please refer to Appendix A.

Sensors 2020, 20, 4976 6 of 21

After eliminating the influence of the pitch angle of the UAV by Lemma 1, the probability density
function of the disparity value x in the uth column is given by:

Fu(x) =
1

n · h
n

∑
v=1

K(
x− Dθ(u, v)

h
), (4)

where K(x) is the kernel function and h represents the width of the kernel function. The kernel K(x)
satisfies the conditions ∫ K(x)dx = 1 and K(x) > 0. The widely used Gaussian kernel is chosen to
estimate the obstacle because of its strong noise immunity,

K(x) =

{
A

σ
√

2π
exp(−x2

2σ2)

0

,
,
|x| < 1

2
otherwise

, (5)

where σ is the standard deviation and A is a normalization parameter. The center of the Gaussian
kernel is Dθ(u, v), and σ is set according to the sensor noise and depth resolution.

To filter out the measurement noise and slight undulations on the ground, the minimum
recognizable obstacle height is set to Hm, and it is not difficult to verify that the corresponding
minimum value of Fu(x) is given by:

F′(x) =
Hm · x

C
, (6)

where x is the corresponding disparity value of the obstacle and C is the normalization parameter
used in Equation (1). As shown in Figure 4, several columns of the probability density function are
displayed in different colors, and the blue translucent plane represents the minimum threshold F′(x)
under different disparity values. The peak of the probability density function is greater than F′(x),
which indicates that there exists an obstacle near the current disparity value x. The probability density
function in Figure 4b corresponds to the white dotted line in Figure 4a.

x

(a) (b)

(c)

Figure 4. Example of probability density function of the normalized disparity value. (a) RGB image
and the disparity data. (b) Probability density function of one column. (c) Probability density function
of several columns.

4.2. Obstacle Identification with a Sliding Window

Due to the measurement error of the depth sensor and the narrow gaps on the obstacle surface,
depth pixels may be partially mutated, resulting in the same obstacle being divided into several parts.
To address this issue, the sliding windows with adaptive sizes are utilized to identify the obstacles
in the normalized disparity data, and the corresponding window size is adjusted according to the
roughness of the obstacle surfaces to improve the anti-noise capability.

Specifically, the number and the distance of the obstacles in the uth column can be determined by
the peak value Fu(xi) above the threshold F′(x), where xi is the disparity value of the ith identified

Sensors 2020, 20, 4976 7 of 21

obstacle in the column u. Construct one sliding window for each disparity value xi. The width of
the corresponding sliding window is given by ∆xi = |x̄i − xi|, where x̄i and xi are computed by
Fu(x̃) = α · Fu(xi) for x̃ = x̄i and x̃ = xi, respectively, and ∆xi reflects the roughness of the obstacle
surface. Furthermore, the length ∆vi of the ith sliding window is adjusted according to the minimum
height Hs of a passable region of the UAV as follows:

∆vi =
Hs · g(xi)

C
. (7)

In Equation (7), the estimated disparity value g(xi) is designed according to the influence of the
measurement noise, which is given by:

g(x) =
C · f c

C· f c

x − ke ·
(

C· f c

x

)2 , (8)

where ke is the proportional coefficient of sensor measurement error. Intuitively, the estimated disparity
value g(xi) corresponds to the minimum distance to the obstacle under the influence of noise, so that
the window height can be adjusted according to the measurement noise. More specifically, the noise
increases approximately proportional to the square of the distance according to the measurement
characteristics of the depth sensor [40].

To speed up identification, the sliding step is set to half the length of the corresponding
window. As the window slides down, the state of the pixel Dθ(u, v) can be determined by the
following conditions:

1. The average of the disparity value in the sliding window is within the range [x̄i, xi] and
2. more than half of the pixels in the sliding window are within the range [x̄i, xi].

If both conditions are admitted, the pixels in the sliding window belong to the ith obstacle.
Otherwise, the last pixel of the disparity value within the range [x̄i, xi] is set as the endpoint of
the obstacle.

Based on the above discussion, the obstacle detected in the column u is described as (x̂i, u, vb
i , vt

i),
where x̂i is the estimated disparity value of the obstacle xi; vt

i and vb
i are the top and the bottom

coordinates of obstacles in the disparity data, respectively. In particular, the estimated disparity value
x̂i is determined by the roughness of the obstacle surfaces, which is given by:

x̂i =

max

v
{Dθ(u, v)}v∈{vb

i ,...,vt
i}

, ∆xi > e(xi)
1

‖vt
i−vb

i ‖+1
· ∑

v∈{vb
i ,...,vt

i}
{Dθ(u, v)}, ∆xi ≤ e(xi)

, (9)

where e(x) = ke · (C· f c

x)2 + 2α · h. For example, Figure 5 demonstrates this sliding process.
Specifically, the horizontal and the vertical units in Figure 5 correspond to the normalized disparity
value and the row index of the depth data, respectively. Since ∆xi for the tree is greater than its
corresponding threshold e(xi), the distance to the object is represented by the closest point. On the
contrary, for a relatively smooth wall, its distance is estimated by the average disparity value to
improve the estimation accuracy.

With the above process, the obstacle surfaces with relatively concentrated depth values can be
identified. However, the obstacles with an irregular structure or scattered depth values may not be
extracted by this method. To build a unified obstacle model, a discretization strategy is presented in
the next subsection to segment the remaining pixels.

Sensors 2020, 20, 4976 8 of 21

Tree

Wall

Car

Road

Noise

v

x

1x 2x 3x

Disparity value

Figure 5. Illustration of obstacle identification with sliding windows.

4.3. Irregular Object Processing

In this subsection, the horizontal surface in the remaining pixels is identified first, followed by
irregular or inclined object segmentation.

The geometric relationship of the horizontal surface in the camera coordinate system is given
as follows:

Zc =
∆H
sin θ

− Yc

tan θ
=

f c · C
D(u, v)

, (10)

and:
v− v0

f c =
Yc

Zc , (11)

where Zc and Yc are the horizontal distance and the vertical distance to a point on the horizontal plane
(cf. the red circle in Figure 6), respectively. In Equations (10) and (11), ∆H is the altitude difference
between the horizontal surface and the depth sensor shown in Figure 6, and the image calibration
center is (u0, v0). By plugging Equation (11) into Equation (10), the row index v for the horizontal
surface is given as follows:

v = v0 +
∆H

C · cos θ
· D(u, v)− f c · tan θ. (12)

0v

cY
H

v

Image plane

Optical axis

cZ

Z axis

Figure 6. The geometric relationship of the horizontal surface.

Sensors 2020, 20, 4976 9 of 21

If D(u, v) = 0, then v = v0 − f c · tan θ, which corresponds to the vanishing point. For example,
it can be seen from Figure 5 that the extension of the ground portion in the v-disparity image will pass
through a fixed point. Hence, a horizontal surface can be identified by fitting the correlation coefficient
of the normalized disparity data D(u, v) and the row index v. The fitted image center is given by:

vc =
v̄ ·∑

v
D(u, v)2 − D̄(u, v)∑

v
(D(u, v) · v)

∑
v

D(u, v)2 − nr · D̄(u, v)2 , (13)

and the correlation coefficient between the disparity value and the row index is given by:

r =
∑
v
(D(u, v)− D̄(u, v)) · (v− v̄)√

∑
v
(D(u, v)− D̄(u, v))2 ·∑

v
(v− v̄)2

, (14)

where nr is the number of pixels to be identified and v̄ = ∑ v
nr

, D̄(u, v) = ∑ D(u,v)
nr

. The pixels belong to
a horizontal surface if (1− |r|) < εr and |vc − (v0 − f c · tan θ)| < εv. The horizontal object surface is
used as a reference for the thickness of the obstacle in this work.

Then, the pixels that do not meet the above conditions should belong to a sloping or irregular
surface. However, it is difficult to obtain the accurate position of these obstacles and build a unified
compact model. Here, a simple and effective strategy is presented to quickly divide the remaining
pixels at a constant height interval Hd, which is set according to the resolution requirements. Similar to
Equation (6), the number of segmented pixels can be estimated as nd = Hd · x/C, where x is the
disparity value of the irregular object. The segmentation position of the irregular obstacles can be
obtained by searching in steps of nd. As a result, the pixels belonging to the irregular objects in the
same column are divided into multiple segments along the vertical direction, and the closest point in
each segment is used to represent the distance to the divided object. This simple and effective way can
convert different types of objects into arrays with four elements, i.e., (x̂i, u, vb

i , vt
i).

4.4. Vertical Strip Clustering

In this subsection, the identified obstacle in the normalized disparity data will be converted
into 3D Euclidean space. In particular, the projection of a point Pc = (Xc, Yc, Zc) from the camera
coordinate system to the image coordinate system is given by:

 u
v
1

 =

D(u,v)

C 0 D(u,v)·u0
C· f c

0 D(u,v)
C

D(u,v)·v0
C· f c

0 0 D(u,v)
C· f c

 Xc

Yc

Zc

 . (15)

Furthermore, the point Pc in the camera coordinate system is given by:

[Xc, Yc, Zc, 1]T =

[
R T
0 1

]
· [Xw, Yw, Zw, 1]T , (16)

where R and T denote the rotation matrix and the translation matrix of the camera. According to
Equations (15) and (16), (x̂, u, vb

i , vt
i) in the camera coordinate system is converted into 3D Euclidean

space, i.e., Si = (Xi, Yb
i , Yt

i , Zi), which looks like a strip perpendicular to the ground. To further build
the compact contours of the obstacle, the spatially adjacent vertical strips should be clustered.

The clustering of the vertical strips in 3D Euclidean space often requires a radius search to find
their neighbors within the radius. However, the 3D radius search is time consuming when the amount
of data is large. By utilizing the spatial continuity of adjacent pixels on the normalized disparity data,

Sensors 2020, 20, 4976 10 of 21

the vertical strips are clustered according to the 2D index on these disparity data, which can improve
operational efficiency. Specifically, the distance between the vertical strip and the last inserted strip in
each cluster is calculated. If the distance is less than the minimum width Ws of the passable region,
this vertical strip will be inserted into the corresponding cluster. Otherwise, a new cluster is created
for this vertical strip. The details of the fast strip clustering algorithm are given in Algorithm 1.

Algorithm 1 Fast strip clustering algorithm.

1: Initialize cluster set C1 = {S1}, R = 1.
2: for u = 1 to U do

3: for each Si in column u do

4: Calculate the distance di,Cr from this strip to the last inserted strip in each cluster Cr, where

r ∈ {1, ..., R}.
5: if min

r
di,Cr < dth then

6: Insert strip Si into cluster Cr.
7: else

8: R = R + 1, create a new cluster CR.
9: Insert strip Si into the new cluster CR.

10: end if
11: end for
12: end for

4.5. Computational Complexity

For a depth sensor data with size n = U · V, the calculation time of the probability density
function t1 ∝ dn · he with the ceiling operator d·e and the kernel width h. When the height of the
sliding window is M, the calculation time of the sliding extraction t2 ∝ d2 · n/Me. The time of the
remaining pixels processing t3 ∝ nr(nr ≤ n), where nr is the number of remaining pixels. In addition,
the computational complexity for the projection of the vertical strips is negligible, since the number ns

of strips admits ns � n. Therefore, the complexity of the vertical strip extraction algorithm is O(n).

5. The Proposed Plane Adjustment Algorithm

In this section, the plane adjustment algorithm is proposed to convert the obtained vertical strips
into prisms, while useless environmental details will be removed. Since the gap shape on the obstacle
surface is arbitrary and unknown, it will take a long time to search every gap and determine whether
the UAV can pass. To avoid this, a two-stage adjustment method is presented: first, fill the gap in the
vertical direction, and then, convert the concave surface in the horizontal direction. These two main
procedures are elaborated in Sections 5.1 and 5.2, respectively.

5.1. Vertical Gap Filling

The vertical strips belonging to the same obstacle can be regarded as a wall with a certain thickness
as shown in Figure 7, in which the translucent blue cylinders represent the vertical strips. The height
of this wall is determined by the maximum value Ymax and the minimum value Ymin of the vertical
strips in the vertical direction. Obviously, if a narrow gap on the wall is smaller than the minimum size
of the passable region, this gap should be filled, as these details are unnecessary for UAV navigation.
As a result, the main work of removing unnecessary gaps is to obtain the maximum gap area among
the vertical strips.

It is not difficult to find that in the vertical direction, the height of the gaps is the
relative complement of each vertical strip Si = (Xi, Yb

i , Yt
i , Zi) in S̃i = (Xi, Ymin

i , Ymax
i , Zi).

Specifically, there exists two relative complements, i.e., S1
i = (Xi, Ymin

i , Yb
i , Zi) and S2

i =

(Xi, Yt
i , Ymax, Zi) (cf. the cylinder with the dotted line in Figure 7). If the ranges of these two relative

Sensors 2020, 20, 4976 11 of 21

complements are less than Hs, the relative complements should be filled. Otherwise, the size of
the gap can be obtained by calculating the intersection range of the adjacent complements in the
vertical direction. Then, a gap smaller than the minimum size of the passable region will be filled,
while reserved gaps split the wall into multiple clusters (If the width of the wall is less than the
minimum width Ws of the passable region, there is no need to search inside this cluster. Therefore,
a binary searching strategy is adopted to calculate the complements of the vertical strips, which can
greatly reduce the amount of calculation). Hence, the vertical strips inside one cluster are filled with
the same height.

1W

1H

2W

2H

maxY

minY

Figure 7. Illustration of the vertical gap filling method.

5.2. Concave Surface Converting

Based on the vertical strips obtained in the previous subsection, a concave surface converting
algorithm is presented to remove the concave surface according to the size of the passable region of
the UAV and obtain the compact obstacle model.

Since the vertical strips in a cluster share the same height after vertical filling adjustment,
plane extraction is equivalent to a line segment extraction process with a certain height.
However, vertical strips belonging to an uneven surface may be split into more scattered groups,
which makes the obstacle model less compact. Inspired by the split and merge algorithm developed
in [41] (The core idea of the split and merge algorithm is to iteratively split the entire cluster at the
point with the maximum fitting error and merge adjacent parallel line segments), a concave surface
converting algorithm is proposed to model uneven surfaces and reduce irrelevant detailed information.
Whether it is necessary to delete redundant nodes can be determined by the vector cross product
and the distance among three adjacent points. Specifically, for three adjacent vertical strips Si−1, Si,

and Si+1, if
−−−→
Si−1Si ×

−−−→
SiSi+1 > 0 and

√
(Xi−1 − Xi+1)

2 + (Zi−1 − Zi+1)
2 < Ws, the strip Si will be

deleted; here,
−−−→
Si−1Si represents the horizontal vector from Si−1 to Si, and

−−−→
Si−1Si ×

−−−→
SiSi+1 denotes a

cross product operation to determine the concavity. The above steps are repeatedly performed until no
improvement can be made. The detailed steps of concave surface converting algorithm are illustrated
in Algorithm 2.

5.3. Adjacent Plane Refinement

Due to different observation angles and fitting errors of the extracted obstacle contours,
the adjacent planes belonging to the same object may overlap or intersect. With this consideration,
a plane refinement strategy is presented to extend the adjacent planes and remove redundant parts
and then obtain an interconnected prism profile. Specifically, the adjacent planes are supposed to be
merged if the following two conditions are satisfied:

1. The angle between the two planes is less than the threshold ϕ0 and
2. the distance between the boundaries of the adjacent sides is smaller than Ws.

Sensors 2020, 20, 4976 12 of 21

Algorithm 2 Concave surface converting algorithm.

1: Initialize line set L = ∅, and put all strips into set Ω1 and R = 1.
2: for each Ωr do

3: if |Ωr| > 3 then

4: The strips in Ωr are fitted into a line according to their horizontal locations with the fitted

error εl .
5: if εl <= εth then

6: Put this line into L, and remove the corresponding strips in Ωr.
7: else

8: Split the strips at the maximum fitting error into ΩR+1 and ΩR+2; R = R + 2.
9: end if

10: else if
−−−→
Si−1Si ·

−−−→
Si+1Si > 0 and

√
(Xi−1 − Xi+1)

2 + (Zi−1 − Zi+1)
2 < Ws then

11: Delete Si; put the line composed of Si+1 and Si−1 into L.
12: end if
13: end for
14: Merge collinear line segments in L.

To improve the efficiency of the plane fitting, the parameters of a new plane can be calculated
based on the original parameters as follows:

ηnew =
ns

1
ns

1 + ns
2

η1 +
ns

2
ns

1 + ns
2

η2, (17)

where η = (ns, X, Z, XZ, XX); here, ns represents the number of the strips that are fitted into the plane,
and X, Z, XZ, and XX denote the corresponding average coordinate values of the vertical strips.
Hence, the newly acquired plane can be quickly merged with the established compact model without
storing all the merged planes.

5.4. Computational Complexity

In the plane extraction process, the computational complexity of the vertical gap filling step is
O(log ns), and the complexity of the concave surface converting step is O((ns)2). As O(log ns) is
negligible as compared to O((ns)2), the complexity of the overall proposed scheme is O(n)+O((ns)2).

6. Experiment and Analysis

In this section, numerical results are provided to evaluate the performance of the proposed
algorithms. The simulation results on the AirSim simulator (The AirSim simulator is a photorealistic
game engine with cutting-edge graphics features such as high-resolution textures and realistic lighting
and shadows, where the depth image can be obtained in real time) and the experiment results on the
developed drone platform are presented in Sections 6.1 and 6.2, respectively. Specifically, the proposed
scheme in this work was implemented in C++11, and the simulations were performed on an Intel Core
i7-8700K processor. Furthermore, the drone platform was built based on DJI Matrice 100, which is
equipped with a ZED binocular vision sensor and can build the compact environment representation
model of the real world as shown in Figures 1 and 8. The image size obtained from the AirSim
simulation platform [42] is 640 × 480, and the image size of the ZED sensor is 672 × 376.

In the simulation and experiment, the minimum height Hs = 1 m and the minimum width
Ws = 2 m of the passable region of the UAV are set according to the size of the drone platform
(The height of the drone platform is 0.7 m, and the width of the drone platform is 1.4 m. Hs and Ws can
be set according to the size of the drone platform and the accuracy of the flight controller). The height
division range was set to 2 m according to the resolution requirements [25]. Furthermore, the coefficient
of the measurement error ke = 0.01, and the threshold of the fitting error ε l = 0.2 m (Based on our

Sensors 2020, 20, 4976 13 of 21

experience in the experiments, when ε l changes within [0.1 m, 0.3 m], there is little difference in the
obtained models). In addition, the threshold of the roll angle φ0 = 2◦. The proposed OSAPE scheme is
compared with the 3D prisms (3DP) scheme [25] in terms of storage, precision, and processing time.

(a)

(b)

(c)

(d)

(e)

Figure 8. Compact environment representation obtained by the developed drone platform. (a) Building
outline; (b) Alley; (c) Balcony; (d) Corridor; (e) Tree.

6.1. AirSim Simulation

In this subsection, the compact environment representation model on the AirSim simulator is
presented first (A video showing the simulations can be found at https://youtu.be/TketUNf0ers),
followed by the comparison of storage, precision, and processing time.

6.1.1. Compact Model

The proposed scheme is evaluated on different kinds of obstacles in this subsection, including
buildings, trees, and other man-made objects, some of which are shown in Figures 9 and 10 (The colors
of the planes are artificially labeled for the sake of clarity), where the coordinate unit of the 3D compact
environment model is meters. For example, it can be seen from Figure 9 that irregular objects (e.g., stones)
are modeled as a plurality of planes surrounding them, and gaps in the field of view that are smaller
than the passable region of the drone are filled. In Figure 10, the left, the middle, and the right sides
are the RGB images, the disparity data, and the corresponding compact environment representation
models, respectively. Specifically, Figure 10 shows the obtained models when the drone is at different
pitch and roll angles, which indicates that the proposed scheme is adaptable to large tilt angles.

6.1.2. Memory Usage and Model Precision

The proposed scheme is compared with the 3DP scheme [25] for storage consumption and model
precision in this subsection (In 3DP, the grid map is obtained from the depth data, and then the contour

https://youtu.be/TketUNf0ers

Sensors 2020, 20, 4976 14 of 21

of the compact model is extracted based on this grid map). Different grid resolutions of the 3DP
scheme were set for a clearer comparison, i.e., 0.1 m, 0.2 m, 0.4 m, and 0.8 m.

First, the performance of storage consumption was evaluated on the AirSim simulator, and the
compact obstacle model was obtained in real time. It can be seen from Figure 11 that, as the
grid size increases, the storage consumption of the 3DP scheme decreases, which conforms to the
discussions in the Introduction. In the AirSim simulator, a compact environment representation model
is constructed by gradually merging and fusing the obtained models of multiple frames. The storage
consumption for structured obstacles and unstructured obstacles is compared in Figure 11a,b,
respectively (The structured obstacles refer to the obstacles with planar surfaces while the unstructured
obstacles refer to the obstacles with rough surfaces). For structured obstacles, the proposed OSAPE
scheme extracts the planes without quantization, and the unrelated obstacle details are removed;
thus, the number of planes is smaller as compared to that obtained by the 3DP scheme. For unstructured
obstacles, the number of planes is slightly larger than the 3DP scheme with 0.8 m grids and far smaller
than the 3DP scheme with 0.1 m grids.

sw W sh H

(a) (b)

Figure 9. Compact environment representation in the AirSim simulator. (a) Obstacle scene. (b) Compact
environment representation.

(a)

(b)

m

m

m

m

m
m

Figure 10. Compact environment representation at large roll and pitch angles. For (a), φ = 30◦ and
θ = 0◦, and for (b), φ = 0◦ and θ = 30◦.

In addition, the modeling accuracy is defined as the difference between the established compact
model and the actual obstacle surfaces. However, the location of obstacles is unknown, and it is difficult
to accurately measure the position and the shape of the obstacle surface. Therefore, for quantitative
analysis, the modeling accuracy can be approximated by the average distance from the points of the
obstacle surfaces to the obtained compact model.

Based on the above discussion, the statistics of the modeling accuracy of the proposed scheme and
the 3DP scheme are compared in Figure 12. For the 3DP scheme, as the grid size increases, the modeling
accuracy of the 3DP scheme also increases due to the quantization error. For structured obstacles,
the modeling error of the proposed scheme is much lower than that of the 3DP scheme with 0.1 m
grids. The main reason is that the grid in the 3DP scheme cannot be placed arbitrarily, and the extracted
polygon depends on the border of the grids. However, for unstructured obstacles, the modeling

Sensors 2020, 20, 4976 15 of 21

precision of the proposed scheme is slightly larger than the 3DP scheme with 0.1 m grids, which is
because the proposed scheme eliminates irrelevant obstacle details and introduces modeling error.

(a) (b)

Figure 11. Storage consumption comparison of different schemes in the AirSim simulator. (a) Storage
of structured obstacle. (b) Storage of unstructured obstacles.

(a) (b)

Figure 12. Modeling precision comparison in the AirSim simulator. (a) Modeling precision of structured
obstacles. (b) Modeling precision of unstructured obstacles.

6.1.3. Processing Time

In this subsection, the processing time of the proposed scheme is compared with the 3DP scheme
in the AirSim simulator. The processing times of the 3DP scheme with 0.1 m grids and 0.8 m grids
are on average about 226.1 ms and 17.6 ms, respectively, as shown in Figure 13a (Since there is no
provided source code, the 3DP algorithm is implemented according to [25]). In addition, it can be seen
from Figure 13a that, as the grid size increases, the processing time of one frame gradually increases.
As shown in Figure 13b, the proposed scheme takes only 18.6 ± 3.0 ms to process one frame of depth
sensor data without downsampling in the simulations. The processing time of the proposed scheme
can be reduced by downsampling the depth image in the column direction. As the sampling interval
increases, the processing time gradually decreases. Here, the sampling interval refers to the number of
interval columns for downsampling the depth data only in the column direction, which provides a
way to improve the efficiency of the proposed scheme.

Furthermore, the anti-noise performance of the proposed scheme is evaluated by adding random
noise of different amplitudes. Figure 13 illustrates that as the sampling interval increases, the efficiency
of the proposed scheme improves significantly, but the modeling accuracy and anti-noise performance

Sensors 2020, 20, 4976 16 of 21

decrease. Therefore, the sampling rate can be set according to the requirements of efficiency
and precision.

(a) (b)

(c)

Figure 13. Comparison of processing time and modeling error with different sampling intervals.
(a) Processing time of different schemes. (b) Processing time of different sampling intervals.
(c) Modeling error of different sampling intervals.

6.2. Experiment on the Developed Platform

In this subsection, the proposed OSAPE scheme is evaluated on the developed drone platform.
Specifically, the developed drone platform flies at an altitude from a few meters to several tens of meters
and converts the depth sensor data into the simplified obstacle models in real time. The modeling
results are shown in Figure 8, where the left, the middle, and the right sides are the RGB images,
the disparity data, and the corresponding compact environment representation models, respectively.
It can be seen from Figure 8 that different obstacles including buildings, street lights, and trees are
converted into compact planar models. The red dotted rectangles in Figure 8c,d represent the gaps that
the drone can pass through, and their sizes are 2.7 m × 2.0 m and 5.7 m × 2 m, respectively, while the
actual sizes of these rectangles are 2.9 m × 2.1 m and 5.8 m × 2.2 m, respectively. The extracted
window is slightly smaller than the actual one due to the conservative extraction strategy.

The processing time of the proposed scheme is on average about 89ms on the developed drone
platform, and the compact environment model can be obtained on the developed drone platform
between 10 and 12Hz. Since the processing time of the algorithm has been compared via simulations
(cf. Section 6.1.3), the processing time comparison on the developed platform is omitted. In addition,
the performance of storage consumption is compared based on the modeling results derived from
real flight data collected by the drone platform. Specifically, the proposed scheme reduces the plane
numbers of the field of view by up to 40% as compared to the 3DP scheme with 0.8m grids shown in
Figure 14.

Sensors 2020, 20, 4976 17 of 21

6.3. Application

In this subsection, the obstacles of different shapes shown in Figure 15 are converted into
multi-layer polygonal prisms, including cylinders, trapezoidal prisms, and spheres. Furthermore,
the obtained compact environment representation model can be used for some traditional path
planning algorithms, such as rapidly exploring random trees (RRT) [43] and probabilistic road map
(PRM) [44]. Here, the commonly used RRT method is used to verify the validity of the obtained
compact model. RRT is an algorithm designed to search for non-convex space and generate feasible
paths by randomly building a space-filled tree. Based on the position of the obtained compact model,
it can be determined whether the sampled path point is feasible. As shown in Figure 16, the pink
dots represent the starting location and the target location, and the green dots represent the sampling
path points on the space-filled tree. In addition, the red and the black lines correspond to the planned
path and the smoothed path, respectively. It is worth noticing that the gaps that the UAV cannot pass
through are eliminated, so as to avoid some unsafe path generated by the path planning algorithm.

Figure 14. Storage from the developed drone platform. OSAPE, obstacle surface adaptive plane extraction.

(a)

(b)

(c)

Figure 15. Compact models of obstacles with different shapes. (a) Cylinder and its modeling results.
(b) Trapezoidal prism and its modeling results. (c) Sphere and its modeling results.

Sensors 2020, 20, 4976 18 of 21

(a) (b)

(c) (d)

Figure 16. Path planning in the compact environment representation model. RRT, rapidly exploring
random trees. (a) Obstacle scene. (b) RRT in a single frame. (c) Obstacle scene. (d) RRT in a global map.

7. Conclusions and Future Works

In this paper, the problem of the compact environment representation model for UAV navigation is
studied, where the depth data from the onboard sensor are analyzed and converted into the multi-layer
polygonal prisms. By analyzing the probability density function of the normalized disparity data,
a novel vertical strip extraction algorithm is proposed to improve adaptability to the roughness of
the obstacle surfaces and obtain the more accurate locations of the obstacles. Furthermore, the plane
adjustment algorithm is presented to speed up the elimination of irrelevant environmental details by
minimizing redundant information and obtaining a rectangular outline of the obstacle. By combining
these two proposed algorithms, the obtained modeling scheme can convert the depth sensor data
into simplified prisms in real time. In addition, a drone platform is developed to build a compact
environment representation model in the real world. The experimental results demonstrate that the
proposed scheme consumes less storage as compared to the baseline algorithm and provides higher
accuracy in modeling structured obstacles.

Extending the proposed scheme to the complex terrains and dynamic scenes, exploring a
collaborative multi-UAV modeling strategy, and investigating more efficient storage and search
mechanisms in the large mission area are all worthwhile future works.

Author Contributions: Conceptualization, K.M., D.L., M.L. and W.S.; methodology, K.M. and W.S.; software,
K.M., M.L. and W.S.; validation, K.M., M.L. and W.S.; formal analysis, K.M. and W.S.; investigation, K.M., D.L.
and W.S.; resources, K.M., D.L. and W.S.; data curation, K.M. and W.S.; writing, original draft preparation,
K.M.; writing, review and editing, K.M., D.L., X.H. and M.L; visualization, K.M. and W.S.; supervision, D.L.;
project administration, D.L. and M.L.; funding acquisition, X.H. and D.L. All authors read and agreed to the
published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (Grant Nos. 61571334
and 61901305).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Prove of Lemma 1

The relationship between the coordinate value of the Z-axis in the world coordinate system and
that of the camera coordinate system is shown in Figure A1. Under the normalized disparity value

Sensors 2020, 20, 4976 19 of 21

D(u, v) and the pitch angle θ of the UAV, it is not difficult to find that the coordinate value Zw in the
world coordinate system can be given as:

Zw = Zc · cos θ −Yc · sin θ. (A1)

Furthermore, the relationship between v and Yc is given as follows:

v− v0

f c =
Yc

Zc . (A2)

By plugging Equations (1) and (A2) into Equation (A1), the disparity value that eliminates the
influence of the pitch angle of the UAV follows:

Dθ(u, v) =
D(u, v) · f c

f c · cos θ − (v− v0) · sin θ
. (A3)

0v

cY

v

Image plane

Optical axis

Z axis

cZ

wZ

Figure A1. Illustration of the proof of Lemma 1.

References

1. Zhong, Y.; Wang, X.; Xu, Y.; Wang, S.; Jia, T.; Hu, X.; Zhao, J.; Wei, L.; Zhang, L. Mini-UAV-Borne
Hyperspectral Remote Sensing: From Observation and Processing to Applications. IEEE Geosci. Remote
Sens. Mag. 2018, 6, 46–62. [CrossRef]

2. Wu, Q.; Shen, X.; Jin, Y.; Chen, Z.; Li, S.; Khan, A.; Chen, D. Intelligent Beetle Antennae Search for UAV
Sensing and Avoidance of Obstacles. Sensors 2019, 19, 1758. [CrossRef]

3. Boonpook, W.; Tan, Y.; Ye, Y.; Torteeka, P.; Torsri, K.; Dong, S. A Deep Learning Approach on Building
Detection from Unmanned Aerial Vehicle-Based Images in Riverbank Monitoring. Sensors 2018, 18, 3921.
[CrossRef]

4. Cao, T.; Xiang, Z.; Liu, J. Perception in Disparity: An Efficient Navigation Framework for Autonomous
Vehicles With Stereo Cameras. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2935–2948. [CrossRef]

5. Yang, S.; Yang, S.; Yi, X. An Efficient Spatial Representation for Path Planning of Ground Robots in 3D
Environments. IEEE Access 2018, 6, 41539–41550. [CrossRef]

6. Azevedo, F.; Dias, A.; Almeida, J.; Oliveira, A.; Ferreira, A.; Santos, T.; Martins, A.; Silva, E. LiDAR-Based
Real-Time Detection and Modeling of Power Lines for Unmanned Aerial Vehicles. Sensors 2019, 19, 1812.
[CrossRef] [PubMed]

7. Dinh, P.; Nguyen, T.M.; Sharafeddine, S.; Assi, C. Joint Location and Beamforming Design for Cooperative
UAVs With Limited Storage Capacity. IEEE Trans. Commun. 2019, 67, 8112–8123. [CrossRef]

8. Elfes, A. Using occupancy grids for mobile robot perception and navigation. Computer 1989, 22, 46–57.
[CrossRef]

http://dx.doi.org/10.1109/MGRS.2018.2867592
http://dx.doi.org/10.3390/s19081758
http://dx.doi.org/10.3390/s18113921
http://dx.doi.org/10.1109/TITS.2015.2430896
http://dx.doi.org/10.1109/ACCESS.2018.2858809
http://dx.doi.org/10.3390/s19081812
http://www.ncbi.nlm.nih.gov/pubmed/30995721
http://dx.doi.org/10.1109/TCOMM.2019.2936354
http://dx.doi.org/10.1109/2.30720

Sensors 2020, 20, 4976 20 of 21

9. Boucheron, L.E.; Creusere, C.D. Lossless wavelet-based compression of digital elevation maps for fast and
efficient search and retrieval. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1210–1214. [CrossRef]

10. Wurm, K.M.; Hornung, A.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: A probabilistic, flexible,
and compact 3D map representation for robotic systems. In Proceedings of the 2010 IEEE International
Conference on Robotics and Automation (ICRA) Workshop on Best Practice in 3D Perception And Modeling
for Mobile Manipulation, Anchorage, Alaska, 4–8 May 2010; pp. 1210–1214.

11. Fridovich-Keil, D.; Nelson, E.; Zakhor, A. AtomMap: A probabilistic amorphous 3D map representation for
robotics and surface reconstruction. In Proceedings of the 2017 IEEE International Conference on Robotics
and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3110–3117.

12. Schreier, M.; Willert, V.; Adamy, J. Compact Representation of Dynamic Driving Environments for ADAS
by Parametric Free Space and Dynamic Object Maps. IEEE Trans. Intell. Transp. Syst. 2016, 17, 367–384.
[CrossRef]

13. Wyeth, G.; Milford, M. Spatial cognition for robots. IEEE Robot. Automat. Mag. 2009, 16, 24–32. [CrossRef]
14. Lindemann, S.R.; Lavalle, S.M. Simple and Efficient Algorithms for Computing Smooth, Collision-free

Feedback Laws Over Given Cell Decompositions. Int. J. Rob. Res. 2009, 28, 600–621. [CrossRef]
15. Mozaffari, M.; Taleb Zadeh Kasgari, A.; Saad, W.; Bennis, M.; Debbah, M. Beyond 5G With UAVs:

Foundations of a 3D Wireless Cellular Network. IEEE Trans. Wireless Commun. 2019, 18, 357–372. [CrossRef]
16. Falanga, D.; Kim, S.; Scaramuzza, D. How Fast Is Too Fast? The Role of Perception Latency in High-Speed

Sense and Avoid. IEEE Robot. Autom. Lett. 2019, 4, 1884–1891. [CrossRef]
17. Kumar, V.; Michael, N. Opportunities and challenges with autonomous micro aerial vehicles. Int. J.

Robot. Res. 2012, 31, 1279–1291. [CrossRef]
18. Petres, C.; Pailhas, Y.; Patron, P.; Petillot, Y.; Evans, J.; Lane, D. Path planning for autonomous underwater

vehicles. IEEE Trans. Robot. 2007, 23, 331–341. [CrossRef]
19. Ghosh, S.; Biswas, J. Joint perception and planning for efficient obstacle avoidance using stereo vision.

In Proceedings of the 2017 International Conference on Intelligent Robots and Systems (IROS), Vancouver,
BC, Canada, 24–28 September 2017; pp. 1026–1031.

20. Cordts, M.; Rehfeld, T.; Schneider, L.; Pfeiffer, D.; Enzweiler, M.; Roth, S.; Pollefeys, M.; Franke, U. The Stixel
World: A medium-level representation of traffic scenes. Image. Vis. Comput. 2017, 68, 40–52. [CrossRef]

21. Nashed, S.; Biswas, J. Curating Long-Term Vector Maps. In Proceedings of the 2016 International Conference
on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 4643–4648.

22. Pham, H.H.; Le, T.L.; Vuillerme, N. Real-Time Obstacle Detection System in Indoor Environment for the
Visually Impaired Using Microsoft Kinect Sensor. J. Sens. 2015, 2016, 1–13. [CrossRef]

23. Zhao, X.; Wu, H.; Xu, Z.; Min, H. Omni-Directional Obstacle Detection for Vehicles Based on Depth Camera.
IEEE Access 2020, 8, 93733–93748. [CrossRef]

24. Zhang, J.; Gui, M.; Wang, Q.; Liu, R.; Xu, J.; Chen, S. Hierarchical Topic Model Based Object Association for
Semantic SLAM. IEEE Trans. Visual. Comput. Graphics 2019, 25, 3052–3062. [CrossRef]

25. Andert, F.; Adolf, F.; Goormann, L.; Dittrich, J. Mapping and path planning in complex environments:
An obstacle avoidance approach for an unmanned helicopter. In Proceedings of the 2011 IEEE International
Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 745–750.

26. Redondo, E.L.; Martinez-Marin, T. A compact representation of the environment and its frontiers for
autonomous vehicle navigation. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV),
Gotenburg, Sweden, 11–14 June 2016; pp. 851–857.

27. Liu, M.; Li, D.; Chen, Q.; Zhou, J.; Meng, K.; Zhang, S. Sensor Information Retrieval From Internet of Things:
Representation and Indexing. IEEE Access 2018, 6, 36509–36521. [CrossRef]

28. Ryde, J.; Dhiman, V.; Platt, R. Voxel planes: Rapid visualization and meshification of point cloud ensembles.
In Proceedings of the 2013 International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan,
3–7 November 2013; pp. 3731–3737.

29. Pham, T.T.; Eich, M.; Reid, I.; Wyeth, G. Geometrically consistent plane extraction for dense indoor 3D
maps segmentation. In Proceedings of the 2016 International Conference on Intelligent Robots and Systems
(IROS), Daejeon, Korea, 9–14 October 2016; pp. 4199–4204.

30. Qian, X.; Ye, C. NCC-RANSAC: A Fast Plane Extraction Method for 3-D Range Data Segmentation.
IEEE Trans. Cybern. 2014, 44, 2771–2783. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2004.841477
http://dx.doi.org/10.1109/TITS.2015.2472965
http://dx.doi.org/10.1109/MRA.2009.933620
http://dx.doi.org/10.1177/0278364908099462
http://dx.doi.org/10.1109/TWC.2018.2879940
http://dx.doi.org/10.1109/LRA.2019.2898117
http://dx.doi.org/10.1177/0278364912455954
http://dx.doi.org/10.1109/TRO.2007.895057
http://dx.doi.org/10.1016/j.imavis.2017.01.009
http://dx.doi.org/10.1155/2016/3754918
http://dx.doi.org/10.1109/ACCESS.2020.2993934
http://dx.doi.org/10.1109/TVCG.2019.2932216
http://dx.doi.org/10.1109/ACCESS.2018.2849865
http://dx.doi.org/10.1109/TCYB.2014.2316282

Sensors 2020, 20, 4976 21 of 21

31. Ma, L.; Kerl, C.; Stückler, J.; Cremers, D. CPA-SLAM: Consistent plane-model alignment for direct RGB-D
SLAM. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA),
Stockholm, Sweden, 16–21 May 2016; pp. 1285–1291.

32. Ling, Y.; Shen, S. Building maps for autonomous navigation using sparse visual SLAM features.
In Proceedings of the 2017 International Conference on Intelligent Robots and Systems (IROS), Vancouver,
BC, Canada, 24–28 September 2017; pp. 1374–1381.

33. Wang, R.; Peethambaran, J.; Chen, D. LiDAR Point Clouds to 3-D Urban Models: A Review. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2018, 11, 606–627. [CrossRef]

34. Shahzad, M.; Zhu, X.X. Automatic Detection and Reconstruction of 2-D/3-D Building Shapes From
Spaceborne TomoSAR Point Clouds. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1292–1310. [CrossRef]

35. Lafarge, F.; Keriven, R.; Brédif, M.; Vu, H. A Hybrid Multiview Stereo Algorithm for Modeling Urban Scenes.
IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 5–17. [CrossRef] [PubMed]

36. Nan, L.; Wonka, P. PolyFit: Polygonal Surface Reconstruction from Point Clouds. In Proceedings of the 2017
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017, pp. 2372–2380.

37. Foix, S.; Alenya, G.; Torras, C. Lock-in Time-of-Flight (ToF) Cameras: A Survey. IEEE Sens. J. 2011,
11, 1917–1926. [CrossRef]

38. Nguyen, X.T.; Dinh, V.L.; Lee, H.; Kim, H. A High-Definition LIDAR System Based on Two-Mirror Deflection
Scanners. IEEE Sens. J. 2018, 18, 559–568. [CrossRef]

39. Jones, M.C.; Marron, J.S.; Sheather, S.J. A Brief Survey of Bandwidth Selection for Density Estimation. J. Am.
Stat. Assoc. 1996, 91, 401–407. [CrossRef]

40. Mallick, T.; Das, P.P.; Majumdar, A.K. Characterizations of Noise in Kinect Depth Images: A Review.
IEEE Sens. J. 2014, 14, 1731–1740. [CrossRef]

41. Nguyen, V.; Martinelli, A.; Tomatis, N.; Siegwart, R. A comparison of line extraction algorithms using
2D laser rangefinder for indoor mobile robotics. In Proceedings of the 2005 International Conference on
Intelligent Robots and Systems (IROS), Edmonton, AB, Canada, 2–6 August 2005; pp. 1929–1934.

42. Shah, S.; Dey, D.; Lovett, C. and Kapoor A. AirSim: High-Fidelity visual and physical simulation for
autonomous vehicles. In Proceedings of the 2017 International Conference on Field and Service Robotics,
ETH Zürich, 12–15 September 2017; pp. 621—635

43. LaValle, S.M.; Kuffner, J.J. Rapidly-exploring Random Trees: Progress and prospects. In Proceedings of the
Fourth Workshop on the Algorithmic Foundations of Robotics, Dartmouth, MA, USA, 16–18 March 2001;
pp. 293–308.

44. Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Trans. Robot. Automat. 1996, 12, 566–580. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSTARS.2017.2781132
http://dx.doi.org/10.1109/TGRS.2015.2477429
http://dx.doi.org/10.1109/TPAMI.2012.84
http://www.ncbi.nlm.nih.gov/pubmed/22487981
http://dx.doi.org/10.1109/JSEN.2010.2101060
http://dx.doi.org/10.1109/JSEN.2017.2777500
http://dx.doi.org/10.1080/01621459.1996.10476701
http://dx.doi.org/10.1109/JSEN.2014.2309987
http://dx.doi.org/10.1109/70.508439
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Adaptive Plane Extraction Model
	The Proposed Vertical Strip Extraction Algorithm
	Statistical Estimation of Obstacles
	Obstacle Identification with a Sliding Window
	Irregular Object Processing
	Vertical Strip Clustering
	Computational Complexity

	The Proposed Plane Adjustment Algorithm
	Vertical Gap Filling
	Concave Surface Converting
	Adjacent Plane Refinement
	Computational Complexity

	Experiment and Analysis
	AirSim Simulation
	Compact Model
	Memory Usage and Model Precision
	Processing Time

	Experiment on the Developed Platform
	Application

	Conclusions and Future Works
	Prove of Lemma 1
	References

