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Abstract: Millimeter-wave (MMW) imaging scanners can see through clothing to form a
three-dimensional holographic image of the human body and suspicious objects, providing a harmless
alternative for non-contacting searches in security check. Suspicious object detection in MMW images is
challenging, since most of them are small, reflection-weak, shape, and reflection-diverse. Conventional
detectors with artificial neural networks, like convolution neural network (CNN), usually take the
problem of finding suspicious objects as an object recognition task, yielding difficulties in developing
large-amount and complete sample sets of objects. In this paper, a new algorithm is developed using
the human pose segmentation followed by the deep CNN detection. The algorithm is emphasized
to learn the similarity with humans’ body clutter applied to training corresponding CNNs after
the image segmentation base of the pose estimation. Moreover, the suspicious object recognition
in the MMW image is converted to a binary classification task. Instead of recognizing all sorts of
suspicious objects, the CNN detector determines whether the body part images present the abnormal
patterns containing suspicious objects. The proposed algorithm that is based on CNN with the pose
segmentation has concise configuration, but optimal performance in the suspicious object detection.
Extensive experiments confirm the effectiveness and superiority of the proposal.

Keywords: millimeter-wave image; security check; object detection; human pose segmentation;
convolution neural network

1. Introduction

More security checks have been deployed to react the high-risk security environment due to
the ongoing threat of terrorism [1]. Traditional security-check measures, such as X-ray equipment,
arched metal detectors, and manual inspection, however, have shortcomings. For example, X-rays
harm the human body, arched metal detectors only discern metal objects, and manual inspection
poses the risk of personal discomfort. The millimeter-wave (MMW) three-dimensional imaging
scanner [2–7] based on the near-field synthetic aperture radar (NF-SAR) three-dimensional imaging
technology [8–11] offers an alternative. When compared with the traditional security-check measures,
the MMW three-dimensional imaging scanner can provide the following advantages: 1. No X-ray
radiation concern. The millimeter-wave frequency ranges from 3 GHz to 300 GHz, which is much
lower than that of X-rays [12]. 2. Non-contact inspection. This MMW three-dimensional imaging
scanner utilizes MMWs to inspect individuals passing through a line without subjecting them to
physical contact. Different materials reflect MMWs in characteristic ways, and the captured waves can
be processed to assess whether a suspicious object is present. 3. Clothing penetrability. Active MMW
three-dimensional imaging scanner can see through clothing to imaging suspicious objects. Therefore,
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based on the application requirements of the MMW three-dimensional imaging scanner, studying the
automatic object detection and recognition algorithms for the MMW image is of great significance.

2. Related Work

At present, there are two classes object detection methods for the MMW image: image threshold-based
methods [13–15] and machine learning-based methods [16–19].

The image threshold-based methods mostly use the image gray histogram to determine the
segmentation threshold, according to which the body and objects can be separated from each other,
and then classify the objects. For example, both [20,21] proposed a two-level thresholding method for
estimating the size of the concealed objects, where the lower threshold determines the regions of the
human body and the higher one is used to segment the concealed objects. The advantage of these
methods is the simple operation and low computational complexity. The literatures [22–26] use the
Gaussian mixture model to model the image gray histogram and combine other algorithms (such as EM
(expectation-maximization)) to calculate the segmentation threshold. These modeling-based methods
are more reasonable and they can more accurately obtain a gray histogram. However, the performance
of the modeling-based approaches is greatly affected by the mismatch of the model. Different from the
above methods, the literatures [27] developed a new real-time algorithm that is based on the correlation
function that characterizes the correlation between the standard properties of the suspicious objects
and the properties of the MMW human images. The algorithm has a high detection accuracy when
the template images are sufficient. Further, it can be seen that the performance of the algorithm is
related to the number and quality of the templates. Moreover, this algorithm can be implemented
unless the scattering intensity of the objects is stronger than that of the human body. Unfortunately,
this premise cannot be always ensured, because the back-scattering intensity of the human bodies and
suspicious objects may fluctuate greatly due to some factors, such as the different body parts, body fat
content, the material of suspicious objects, the antenna illumination angle, etc. The fluctuation will
highly influence the gray histogram of the final MMW images. Therefore, enhanced approaches are
required in order to solve these problems.

In recent years, machine learning-based algorithms, including statistical machine learning [28–30]
and deep neural networks [31–37], have been widely applied in the suspicious object detection
for the MMW image. The literature [38] proposed a method that combines image processing with
statistical machine learning techniques. This method had an anti-noise ability and it performed well
on the poor-quality images. However, its multiple classifiers greatly increase the complexity of the
algorithm. The object detection that is based on simple classifiers usually performs poorly in complex
clutter scenarios, while deep neural networks potentially provide a powerful alternative. In [39],
through a series of experiments, it is verified that the deep CNN (Convolution Neural Network)
architecture is immune from the noise in the MMW image classification. Further, the multi-scale
information of images is used to accurately classify. The detection method with a two-stage classifier
in literature [40] was implemented in order to recognize the suspicious objects in THz images at a price
of high computational complexity. Literature [41] proposed a high-performance detection algorithm
that combines the complementary advantages of MMW images and visible images. The algorithm
can generate high-precision human body profiles and accurately locate suspicious objects. However,
combining the corresponding visible images increases the complexity of both the devices and the
algorithm. Literature [42] proposed an algorithm that is applied to the dilated convolution to enlarge
the spatial resolution of the feature maps. The algorithm works better for the small object detection,
having a high detection rate and low false alarm rate in their data-sets. The paper [43] proposed a
novel MMW image detection framework that is based on the well-known two-stage Faster-R-CNN
pipeline. The algorithm achieved better performance on both precision and recall. In addition,
the algorithms proposed in literature [44,45] are dedicated to locating and classifying the hidden
objects in the MMW human images. Lei Pang et al. [46] introduced the YOLOv3 algorithm into
concealed object detection, which is an one-step detection algorithm, and real time and high accuracy



Sensors 2020, 20, 4974 3 of 15

detection is realized. The algorithm, in fact, still obeys the same detection procedure as previous
algorithms, i.e., positioning object, conferring contour, objects segmenting, and objects classification.
Therefore, they have the same merits and drawbacks. Each of these algorithms based on the current
CNN architecture usually has a standard and clear design framework. However, there are challenges
lying ahead for these methods due to the following characteristics of suspicious objects. 1. Diverse
shapes of the suspicious objects [47]. Due to the diverse shapes, we need enormous training samples to
ensure category integrity. Moreover, the lack of color and texture information also creates the difficulty
for the multi-category classification of MMW images. 2. Diversity of electromagnetic wave reflection
of different suspicious objects [48]. Reflection intensity of the objects will be affected by their material,
shapes, posture, and especially illumination angles. It is almost impossible to obtain the complete
reflection information in training samples, which definitely weakens the performance of detecting
the suspicious objects. 3. Strong and structure-complicated body clutter (the human body image
rather than the object image) [49]. Suspicious objects do not necessarily reflect stronger than the body
does due to the aspect sensitivity of the scattering reflection. Hence, strong body clutter may obscure
small and reflection-weak objects. Moreover, due to their complex structure, some parts of the body
significantly resemble suspicious objects, leading to detection errors.

For the problems in the MMW images to detect suspicious objects, an algorithm that is based
on deep CNN detection integrated with human body pose segmentation is proposed in this paper.
The proposed algorithm solves those challenges through the following improvements. 1. We convert
the object recognition to binary classification task—anomaly detection, which allows for us ignore the
diverse shapes of the suspicious objects because we no longer need to classify them. 2. The MMW
imaging anomaly detection algorithm is more emphasized to learn the similarity with humans’ body
clutter rather than the anomalous object, which avoid facing the second challenges directly and whose
advantages as following. The second challenge lies in the large amount requirement on training
data of diverse targets. However, large data sets with correct labels are deeming difficult to collect
in MMW radar applications. On the contrary, data of body clutter are abundant and easy to collect.
Furthermore, the characteristics of body clutter are easier to learn than that of objects. 3. The proposed
algorithm reduces the risk of misjudgment through image segmentation and emphasizes the similarity
with humans’ body clutter. In traditional methods, entire images are sent to the object detector.
Subsequently, the detector may misjudge a human joint similar to objects as the object, which is
unavoidable. However, in the proposed method, negative samples only contain body clutter that is
background, if the detector misjudges a human joint as object there will be no background on this
image, which is obviously a mistake. Therefore, as mentioned earlier, our detector emphasizes body
clutter to avoid this mistake for segmented images.

In summary, our algorithm takes body clutter as the object of study and focuses on learning
body clutter features and detecting clutter anomaly, which is the essence of the proposed algorithm.
The main contributions of this paper are concluded as follows.

1. The clutter anomaly detection instead of suspicious object recognition paves a new way to the
MMW imaging security check. In this way, on the one hand, sufficient training samples are readily
accessible to us for learning body clutter features. On the other hand, the detector is robust to the
shapes and reflection intensity of suspicious objects, because the proposed detector only aims at
body clutter.

2. Great reduction of algorithm complexity. The complexity of the algorithm is greatly reduced,
because the detector only performs the binary classification of body part images. The image
segmentation and sufficient body clutter samples help to simplify the clutter anomaly detector as well
as ensure satisfactory performance.

3. Stronger generalization capability is a potential contribution to the work. The clutter anomaly
detector only aims at the body clutter. Thus, the detector will work effectively no matter what kind of
suspicious objects are present. In other words, the detector has a stronger generalization capability.
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The paper is organized, as follows: In Section 3, the Characteristics of MMW human images
are analyzed, meanwhile the suspicious object detection algorithm that uses the human body pose
segmentation followed by deep CNN detection is developed. In Section 4, experimental results with
real measured data are given. Section 5 concludes the paper briefly.

3. The Proposed Algorithm

The complete body MMW image should be segmented into body part images for the individual
body parts in order to remove the individual parts that are similar to objects in a MMW image and
make the detector learn the features of body clutter more easily. Convolution pose machine (CPM) [50]
is chosen in this paper to estimate human body posture. Based on the estimation, the coordinates of
human joints in the MMW image can be obtained in order to segment complete human images into
the body part images. Subsequently, we can discern the objects through detecting the clutter anomaly
in every body part images. When compared with the conventional algorithms, the computational
complexity of detection problem in this proposed algorithm has been reduced due to the image
segmentation. Therefore, this detector is a lightweight neural network, thus improving the computation
efficiency. Figure 1 and Algorithm 1 show the algorithm block diagram and flow separately.

Figure 1. The proposed algorithm block diagram.

Algorithm 1 Convolution neural network (CNN) with Pose Segmentation.
Input:
Complete MMW human images P.
Start:

1: Initialize the improved CPM with the pre-trained weights and biases and initialize suspicious
objects detection network with stochastic weights and biases .
2: Train the improved CPM until convergence and obtain the well-trained weights and biases[
W icpm, B icpm

]
.

3: Run the improved CPM with the well-trained weights and biases
[
W icpm, B icpm

]
and obtain

coordinates of human joints: Ĵ = ψ
([

W icpm, B icpm
]
, P
)
.

4: Segment the complete MMW human images into body part images: I = f seg
(

Ĵ, P
)
.

5: Train the suspicious objects detection network until convergence and obtain the well-trained
weights and biases [W detector, B detector].
6: Run the suspicious objects detection network with the well-trained weights and biases
[W detector, B detector] on body part images: D̂ = F detector ([W detector, B detector], I).

Output:
Detection result: D̂.

3.1. Human Posture Estimation and Image Segmentation

CPM was proposed by Shih-En Wei in 2016 [50]. CPM consists of a sequence of CNN predictors,
such as stage 1 in Figure 2, is trained to make dense predictions at each image location. The convolutional
network operates directly on the belief maps in the previous stage, and output increasingly refined
joint point position estimation results. Because the original CPM has six stages, in order to prevent the



Sensors 2020, 20, 4974 5 of 15

gradient from disappearing, the authors use an intermediate supervision layer to ensure that in order
to be able to generate increasingly accurate belief maps. However, there are some differences in our
task. On the one hand, the original CPM with six stages has complexity structure and powerful fitting
ability. The human poses in MMW human images, however, are simpler than that in visible images.
Therefore, the original CPM is redundancy structure for our task. On the other hand, complexity
structure and powerful fit ability make over-fitting more easily occurred on our small samples MMW
image dataset than on the large number of visible image dataset. Therefore, it is necessary to simplify
the original CPM to do the posture estimation.The structure and fitting ability are weakened; however,
it is more suitable for our task. The structure of the simplified CPM is shown in Figure 2, and the
details of Figure 2 are as follows.

Figure 2. Improved convolution pose machine (CPM) with four stages. The original CPM is
reduced from six stages to four stages and the global-convolution (GCN) layer is used rather than
fully-connected (FCN) layer.

1. Reduced four stages. In the MMW images, training samples are usually not sufficient for the
original six-stage CPM. The original CPM needs to be reduced from six stages to four, which is more
suitable for our task, when we apply it to estimating the human posture in order to avoid over-fitting.

2. The global-convolution (GCN) layer [51], whose scale of convolution is same as feature map,
is used rather than the fully-connected (FCN) layer. Traditionally, the FCN layers are deployed at
the end of networks. However, we choose the global-convolution layer since the GCN layer proves
stronger expression ability and fewer weights than the FCN layer.

Training samples of human posture estimation include the images of the human body’s anterior
and posterior surfaces. We mark the 14 joints of the human body such as the ankle, knee, waist, wrist,
elbow, shoulder, neck, etc., and give a number to everyone, as shown in Figure 3a.

We segment the complete MMW human images after the posture estimation. Every complete
MMW human image is divided into 12 body part images with the 14 joints, which is shown in
Figure 3b. In practice, the images of the head, and palms are ignored because these parts cannot
hide objects. Hence, the different body part images constitute the different sample sets separately.
A lightweight network can be generated as the clutter anomaly detector on every body part image,
owing to the segmentation.
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(a) (b)

Figure 3. Human image marking and Segmentation rules. (a) Human joints marking rules. (b) Segmentation
of human body image.

3.2. Suspicious Object Detector

As mentioned earlier, more attention is shifted from suspicious objects to body clutter,
which avoids the difficulties of learning the features of suspicious object. Correspondingly, clutter
anomaly detection is chosen, rather than conventional suspicious object recognition, which makes good
use of clutter information. For the clutter anomaly detection problem, an ensemble learning network
detector that is based on two different lightweight networks is proposed. Utilizing the two networks
not only avoids the redundancy of weights, but also benefits the detector through their combination.
The final detection result comes from the decision fusion of the two networks’ outputs, improving the
accuracy. In a security check, the leak-alarm, a false negative, proves to be more dangerous than the
false-alarm. Therefore, in this paper, the logic “or” is used in the decision fusion in order to reduce the
frequency of the leak-alarm, despite the fact that it may also increase the frequency of false-alarm.

Figure 4 presents the structure of the clutter anomaly detector. The sub-network 1 is a four-layer
convolution neural network, and the size of convolution kernels is reduced layer-by-layer, which is
beneficial for extracting the fine textures of body clutter. The sub-network 2 has the same structure as
the sub-network 1, while the convolution kernel size remains the same in its layers. The sub-network 2
mainly extracts the contour information of the body clutter, so that every convolution layer of the
sub-network 2 has a large convolution kernel. In summary, the detection network can make good use
of the contours and fine texture information of body clutter.

Figure 4. Structure of the clutter anomaly detector. Two different convolution structure are used for
extracting the fine textures and the contour information of the body clutter respectively.
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4. Experiments and Analysis

4.1. Experimental Dataset and Environment

An experimental radar system was built in order to obtain real MMW human images, and the
model is shown in Figure 5. It works in ka band (27 GHz) with bandwidth 5 GHz. The experimental
radar system’s range resolution, horizontal resolution, and vertical resolution are 20 mm, 5 mm,
and 5 mm, respectively. Through the experimental radar system, approximately 3000 multi-angle
MMW human images were obtained as the MMW human image dataset and each image takes the
human body as a reference. Everyone has 12 different angles, including six angles on the body’s
anterior and six angles on the posterior surfaces. There are four categories of objects in the dataset,
including bottles, pistols, knives, and mobile phones, which are mainly located on the back, abdomen,
waist, and legs of human bodies. Table 1 shows the number of objects in each category.

Figure 5. Model of experiment system.

Table 1. Millimeter-wave radar human dataset.

Category Total Phone Bottle Pistol Knife

Number 2440 84 480 960 916

In all of the multi-angle MMW human images, the five hundred of them are firstly selected as the
improved CPM training samples. Subsequently, the rest of them are segmented into body part images
for every joint whose coordinates are obtained by the pose estimation resulting from the well-trained
improved CPM. 1678 body part images are randomly selected as the samples for the training and
testing of the detector from all of the body part images. In the 1678 body part images, the images
containing suspicious objects were positive samples and the others were negative samples. Generally,
the number of positive and negative samples should be roughly equal to that of negative ones [52,53].
Because suspicious objects are located on the back, abdomen, and legs, these samples consist of these
three body part images. Table 2 shows the details about the samples.

Table 2. Suspicious objects Detection dataset.

Category Back Abdomen Leg

Negative Samples 258 246 263
Positive Samples 339 268 300
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All of the experiments were performed on a computer having a GTX 1080 GPU and 16 GB
RAM to prove the effectiveness of the proposed method and compare the proposed algorithm with
other algorithms.

4.2. Experiments and Discussion

As a result of few training samples, a pre-trained CPM model on visible image datasets was
used in order to initialize the improved CPM, which is called transfer learning. Based on the good
initialization, the network’s weights also need to be tuned for the pose estimation on MMW human
images. We use GCN layer rather than FCN layer in the improved CPM, whose size of convolution
kernel is same as that of feature maps. In order to demonstrate the effectiveness of the GCN layer,
we compare its converge performance with that of the FCN layer, which is usually applied in CNNs.
Figure 6 shows the converge performance of the improved CPM based on the GCN layer and the
FCN layer. The loss curve presents the fitting performance of the network. Faster convergence can
significantly reduce the iterations of training. A smaller loss value indicates that the network can
reach a better convergence state. From Figure 6, due to transfer learning is used in the improved CPM,
loss curves begin with a small value. Although there are ups and downs during decline, both of the
loss curves fall fast. The GCN layer has the faster converge speed and smaller loss value. Therefore,
we can conclude that the improved CPM based on the GCN layer can converge the training loss
function better and faster to ensure the pose estimation.

Figure 6. Training loss in the training process.

However in practice, due to the fluctuation of the body reflection, there are always some human
joints missing on MMW human images. To solve this problem, we expect the improved CPM to enable
the accurate prediction of the coordinates of the joints missing on MMW human images, providing a
prerequisite for the segmentation. The improved CPM network can correctly estimate every joint,
as shown in Figure 7. The improved CPM can still predict their coordinates, even if some human joints
do not appear in the MMW human images. After the improved CPM returns the joint coordinates for
each MMW human image, the image segmentation is performed.

We segment the MMW human image into the body part images for the human joints. After this
segmentation, the body part images are obtained, as shown in Figure 8. When compared with the
complete MMW human images, the body clutter in the body part images becomes more monotonous
and simple-structure, which is beneficial to learn its features. Besides, in the image of an individual
body part, suspicious objects are more easily distinguished from the human body, thus reducing
the frequency of false-alarm. In our MMW human images, the suspicious objects are located on the
thigh, abdomen, and back of the body, whose images are displayed in Figure 8. Correspondingly,
our algorithm is verified through these body part images.
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Figure 7. Results of the posture estimation.

Figure 8. Body part images.

Clutter anomaly detection aims at every single body part image. The 1678 body part images,
which include the thigh, abdomen, and back of the body have been obtained as a dataset, as mentioned
earlier. The dataset is divided into two parts, namely a training set and a test set, which account for 82%
and 18%, respectively. Our detector training and testing results are shown in Figures 9 and 10. Figure 9
shows the results of the detector training and Figure 10 shows the results of the detector testing.

Through average 40 iterations, the loss function of sub-network 1 in the detector is converged
to the minimum point, and the graph of loss function dithers near the minimum point, as shown
in Figure 9a. Subsequently, the training is not completed until 600 iterations in order to ensure
convergence stability. It can be seen that no sooner has the iteration started than the graph reaches the
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minimum point, which demonstrates the high convergence speed, meanwhile Figure 9b shows that
the test accuracy of the network varies with the number of iterations. With the network converging,
the test accuracy also increases rapidly. Finally, after the network has been converged, the accuracy
rate remains at about 98%.

Figure 10 shows the training and testing results of the sub-network 2 in the detector.
Like sub-network 1, the sub-network 2 is converged to a minimum after iterations and the accuracy also
reaches a maximum. However, the fluctuation of the loss function during the training of sub-network
2 was severe, which means that using detail textures to detect suspicious objects is easier than using
contour texture information. The two sub-networks are combined for the decision fusion in order to
achieve higher detection rate and lower the false alarm probability; the simple and effective logic “or”
was chosen as the fusion mechanism. Ultimately, the accuracy of the detector on the testing set is 98.5%.

(a) (b)

Figure 9. Variation of training loss and testing accuracy in the training process of sub-network 1.
(a) training loss in the training process. (b) testing accuracy in the training process.

(a) (b)

Figure 10. Variation of training loss and testing accuracy in the training process of sub-network 2.
(a) training loss in the training process. (b) testing accuracy in the training process.

The proposed algorithm was compared with Faster R-CNN and Mask R-CNN to further
demonstrate the advantages of the proposed algorithm. During the training process, each algorithm is
guaranteed to reach a convergence state. The performance metrics of each algorithm are shown in
Tables 3 and 4, and Figure 11.

The strategies are evaluated with the confusion matrix. Table 4 lists the important evaluation indicators.
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Table 3. confusion matrices of three methods.

Proposed Method Faster R-CNN Mask R-CNN

894 (TP) 13 (FP) 605 (TP) 293 (FP) 898 (TP) 413 (FP)
754 (TN) 13 (FN) 474 (TN) 302 (FN) 354 (TN) 9 (FN)

Table 4. Detection performance with different algorithms.

Methods ACC PPV TPR FPR F1 MCC

Mask R-CNN 74.79 68.50 99.00 53.85 0.81 54.60
Faster R-CNN 64.46 67.34 66.70 38.20 0.67 28.48

Proposed Method 98.45 98.57 98.57 1.69 0.98 96.87

Figure 11. Receiver Operating Characteristic (ROC) curves of three methods.

The ACC (Accuracy) is defined as

ACC =
(TP + TN)

(TP + TN + FP + FN)
(1)

It reflects “the ability of the classifier to determine the entire sample correctly”. The precision
is the proportion of “the number of correct prediction data in those data predicted to be positive”.
The recall is the percentage of “the number of correct predictions in positive samples”. PPV (Positive
Predictive Value), TPR (True Positive Rate), FPR (False Positive Rate), F1 (balanced F Score, which is
defined as the harmonic average of precision rate and recall rate) and MCC (Matthews Correlation
coefficient) are defined as

PPV =
TP

TP + FP
, TPR =

TP
TP + FN

(2)

FPR =
FP

FP + TN
, F1 =

2TP
2TP + FP + FN

(3)

MMC =
TP ∗ TN + FP ∗ FN√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TP + FN)
(4)

where TP, FP, FN, and TN are the probability of true positive, false positive, false negative, and true
negative respectively.

The recall of Mask R-CNN is 99.09%, which means that Mask R-CNN is better at learning the
features of suspicious objects and detecting them, as shown in Table 4. Its PPV of 68.5% indicates that
Mask R-CNN misidentifies body clutter as suspicious objects more easily. From its ACC of 74.83%,
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the performance of Mask R-CNN is not as good as we expected, meanwhile the performance of
Faster R-CNN is inferior to Mask R-CNN. The low TPR and PPV indicate that its ability to extract
effective features of suspicious objects and body clutter should be further improved. As we said,
these algorithms pay more attention to suspicious objects rather than body clutter. Because suspicious
objects have diverse shapes and diverse reflections, it is difficult to extract effective features of them.
Besides, strong and structure-complicated body clutter cannot be ignored. Therefore, the errors in
these algorithms seem inevitable.

On the contrary, the proposed algorithm is completely different from them, which pays more
attention to body clutter rather than suspicious objects. By image segmentation, body clutter learning,
and clutter anomaly detection, suspicious objects can be distinguished with higher accuracy. Firstly,
the image segmentation not only removes the images of body parts which look like suspicious objects,
but also makes the detector learn the body’s common features easily. Subsequently, clutter learning and
clutter anomaly detection reduce the complexity of the suspicious item detection problem and enhance
the generalization ability of the detector while making good use of body clutter information. Finally,
our algorithm achieved the ACC of 98.5%, the PPV of 98.6%, and the TPR of 98.5%. These experiment
results indicate the effectiveness of our algorithm. The F1 score and MMC also confirm the excellent
performance of the proposed algorithm.

ROC (Receiver Operating Characteristic) indicates the performance, which curves with FPR as
the abscissa and TPR as the ordinate. The area under curve (AUC) is equivalent to the probability
that a randomly chosen positive example is ranked higher than a randomly chosen negative example.
A larger value indicates better classifier performance. The ROC curve of the proposed algorithm is
closer to the upper left corner, which means that the proposed algorithm has stronger classification
ability, as can be seen from Figure 11. The AUC of this curve is 0.986, which is the largest among the
three algorithms, so the classification performance of the proposed algorithm is better than the other
two algorithms.

5. Conclusions

In MMW imaging, conventional detection methods based on learning features of suspicious
objects face some difficulties including the strong and complex body clutter, the diverse shapes and the
fluctuation electromagnetic reflections of objects. Clutter feature learning rather than suspicious object
feature learning is applied in our algorithm, thus a novel suspicious object detection algorithm based
on MMW human image segmentation followed by deep CNN detection is developed in this paper
in order to overcome these difficulties. Firstly, the improved CPM is used for the pose estimation on
complete MMW human images to obtain the coordinates of every joints. Subsequently, the complete
MMW human images are segmented into the body part images. In these body part images, the body
clutter becomes more monotonous and simpler in structure, which is beneficial for the subsequent
detector. Finally, the lightweight CNN as a clutter anomaly detector is used to detect the suspicious
objects on every body part image improving the detection effectiveness. We compare our algorithm
with other popular algorithms in several aspects. It can be seen from the experimental results that
the GCN layer are more effective than the FCN layer due to its better convergence performance.
The improved CPM based on the GCN layer enables the accuracy prediction of the missing joints
on MMW human images, as we expected. Through the contrast experiments, it is verified that our
algorithm is more effective and our clutter anomaly detector has stronger generalization ability.

In the following works, we will try to use multi-look MMW images observed from one person to
improve the detection ability in more complex environments.
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