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Abstract: The recognition of human activities is usually considered to be a simple procedure. Problems
occur in complex scenes involving high speeds. Activity prediction using Artificial Intelligence
(AI) by numerical analysis has attracted the attention of several researchers. Human activities are
an important challenge in various fields. There are many great applications in this area, including
smart homes, assistive robotics, human–computer interactions, and improvements in protection
in several areas such as security, transport, education, and medicine through the control of falling
or aiding in medication consumption for elderly people. The advanced enhancement and success
of deep learning techniques in various computer vision applications encourage the use of these
methods in video processing. The human presentation is an important challenge in the analysis of
human behavior through activity. A person in a video sequence can be described by their motion,
skeleton, and/or spatial characteristics. In this paper, we present a novel approach to human activity
recognition from videos using the Recurrent Neural Network (RNN) for activity classification and the
Convolutional Neural Network (CNN) with a new structure of the human skeleton to carry out feature
presentation. The aims of this work are to improve the human presentation through the collection of
different features and the exploitation of the new RNN structure for activities. The performance of
the proposed approach is evaluated by the RGB-D sensor dataset CAD-60. The experimental results
show the performance of the proposed approach through the average error rate obtained (4.5%).

Keywords: human activities; action recognition; skeleton features; motion tracking; human detection;
deep learning; deep association metric

1. Introduction

Human activity recognition is a crucial and challenging task in video processing and action
classification. Activity recognition is developed in the framework of continuous surveillance of human
behavior. It has become the basis for diverse applications, such as healthcare and elderly surveillance,
sports injury detection, human position estimation, and home monitoring. Despite the important
progress in human activity recognition gathered from video sequences, it remains a delicate problem
for many reasons, such as changes in viewpoint and distance from the camera, the complexity of the
background, and the diversity of speed.
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The extraction of significant features is the most challenging part. Indeed, it influences the
performance of the algorithm by reducing the time and complexity of calculations. However, the most
traditional methods of human activity recognition [1] are based on handcrafted local features from
RGB video taken by 2D cameras that are unable to manage complex activities. Some methods are
based on the detection of a moving person by background extraction. Gaussian Background [2], kernel
density estimation [3], Visual Background Extractor [4], and Sigma Delta [5] have been used with
success in static fonts. Other methods involve motion tracking to characterize human activity. Human
tracking is done to control its movement and build trajectories throughout the sequence. Tracking is
usually a simple procedure for humans. The problem becomes complex when the speed of the objects
is very high. This encourages researchers to develop methods that solve motion tracking problems
using computer vision methods such as Optical Flow [6,7], Scale Invariant Feature Transformation
(SIFT) [8], Histogram of Oriented Gradient (HOG) [9], and Mean Shift [10]. Since these approaches
recognize actions based on the appearance and motion of parts of the human body from RGB video
sequence, they lack a 3D structure from the scene.

Therefore, recognizing a human action based only on RGB modality is not enough to overcome
current challenges. With the development of artificial intelligence and high computing capacity,
some deep learning and transfer learning methods are adopted for the learning and automatic
extraction of complex features provided by sensors. The emergence of depth sensor cameras such
as Kinect has made activities recognizable by low-cost computer vision methods. These sensors are
capable of providing detailed information about human motion, which is more complex for traditional
2D cameras. Indeed, most RGB-D (Depth) cameras currently developed integrate real-time skeleton
tracking. The skeleton is a high-level presentation that can be used to describe human activity in a very
precise way and is adapted to the challenge of activity analysis and action recognition. However,
skeleton data include the coordinates of the human body’s key joints over time. This is an important
factor for the motion presentation of each action.

Recently, the recognition of human actions based on the skeleton has attracted the attention of several
researchers. Some action recognition approaches using RGB-D cameras and skeleton presentation have
been proposed and have an advanced state-of-the-art status. Therefore, the recognition of actions and the
analysis of human behaviors in an intelligent home or in an indoor position are becoming more and
more important. Indeed, in the field of medicine, there is a rapidly increasing demand for systems
to recognize human actions and to quickly detect patients’ physical and mental health problems.
Indeed, Gao et al., 2018 [11] developed an application based on human action monitoring for healthcare.
This application remotely monitors the status of patients or the elderly. Identifying changes in daily
human behavior, such as food preparation, walking, housekeeping, exercise, or sleep allows medical
scientists to suggest strategies for diet, exercise, and adherence to treatment. This is particularly
important for older people, for whom such systems allow them to live at home longer, in a healthier
and safer manner. An equally important component of human activity is the assistive robotic field.
David et al., 2019 [12] used the robots to learn human actions by extracting descriptive information
about their activity in order to classify them. In this process, activities are integrated into the context of
daily living, and normal human activities in indoor positioning are assessed.Based on these methods,
we applied three methods in this work: the traditional method for human tracking, skeleton joints,
and a deep learning model for human presentation and activity classification. The aim of this work
was to propose a new system for human activity analysis based on the presentation of human features
in a video sequence. Our contribution is presented in two major stages. In the first stage, we extracted
the 2D human skeleton and performed activity classification using the new deep learning model.
RGB videos from the CAD-60 dataset were used as input. In the second stage, we performed human
activity recognition for continuous streams and real-time videos.

The remainder of this paper is organized as follows. Section 2 describes the development of the
human activity techniques and the different presentations of the human descriptor. Section 3 explains



Sensors 2020, 20, 4944 3 of 15

our novel proposed approach, and the last section presents the experimental results and summarizes
the comparison with the state-of-the-art methods.

2. Related Works

The recognition of human activities using intelligent techniques is usually based on two major
stages: feature extraction and action classification. Features are the most important information to
describe human activity; they can be visual, such as pixel intensity, texture, or temporal information such
as the motion direction or trajectory path. To obtain an efficient vector of human activity information,
many researchers have used spatial or visual features. AlbuSlava 2016 [13] and Majed Latah 2017 [14]
proposed a new method based only on spatial and contextual features to predict customer behavior
and human actions. Indeed, they exploited the performance of the Convolutional Neural Network
(CNN) and 3D-CNN to extract spatial information for emotions and action classification. Other authors
demonstrated that human actions can be better described using motion and speed. Murad and Ryun
2017 [15] and Qin et al. [16] applied body-worn sensors and Long Short Term Memory (LSTM) Recurrent
Neural Networks for human motion description. The latter involves gyroscope and accelerometer
measures. In the same context, Ning et al., 2017 [17] only used temporal features based on the
local optical flow of the global human silhouette for human action recognition. Despite the level of
performance found, these methods remain sensitive in complex scenes, which present variations in
background, scale, and texture. These make the recognition of human activities difficult.

To enhance the results of human action classification, researchers in this field proposed
a combination of spatial and temporal features. Here, Nicolas et al., 2016 [18] applied a novel model
to learn spatio-temporal features using Gated Recurrent Units (GRU) with Recurrent Convolution
Networks (RCN). This model is based on the pre-trained VGG-16 on an ImageNet transfer learning
Model. Xu et al., 2016 [19] and Baldominos et al. [20] proposed the Recurrent Convolution
Neural Networks (RCNN) model for human action recognition using GoogleLeNet architecture.
Here, the authors exploited the advantages of CNN and RNN to extract the temporal and spatial
features. Then, they used the GoogleLeNet architecture to combine features and compute the accuracy of
video classification. In the same context, Zhang et al., 2016 [21] presented deep-learned spatio-temporal
features using a vector of locally aggregated descriptors to detect motion descriptor and SIFT geometric
information to predict motion descriptors. An Independent Subspace Analysis (ISA) was used for
contextual feature extraction. Zhao et al., 2017 [22] used other techniques to extract human features.
They combined the RNN model with GRU hidden units and 3D-CNN architectures. These techniques
were used successfully to determine the spatio-temporal features of some human actions that do not
require the complete presentation of the human body.

Recently, there has been a growing interest on depth information and the skeleton presentation
of human activities. Faria et al., 2012 [23] applied a dynamic Bayesian mixture model for human
activity prediction based on skeleton features. This model is designed to combine multiple classifier
probabilities into a single form by assigning weights to counterbalance the probabilities as posterior
probabilities. Koppula et al., 2013 [24] modeled the skeleton of a human being using Hidden Markov
Models (HMM). Nodes present the objects and activities, and the edges present the relationships
between objects and activities. For the classification of the latter, [24] used the Support Vector Machines
(SVM) method. Bingbing et al., 2013 [25] proposed a novel feature extraction technique using the
fusion of grayscale and depth frame to extract 3D spatial and temporal descriptors of human activities.

Indeed, depth filters are used to remove false grayscale human detection. Wang et al., 2014 [26]
proposed a new feature based on a 3D skeleton and Local Occupation Model (LOM) for learning human
actions. The objective of the LOM is to reduce the use of 3D human joints. In fact, this study defined
each action by the human’s movement joints; for example, for a person drinking water, only the joint
of the hand would be extracted. To address the same aim, Shan and Akella 2014 [27] and Enea et al.,
2016 [28] used RGB-D sensors for human skeleton detection and kinetic energy to identify the key
poses that present intense positions of action in a large space. The 3D presentation of human joints
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is exploited by the SVM technique to predict and determine human actions. Gaglio et al., 2015 [29]
combined three machine learning techniques to predict human activities. They used the K-means
method to detect a human 3D skeleton posture, the SVM method for classification, and the Hidden
Markov Models (HMM) to model activity.

More recently, Manzi et al., 2017 [30] applied RGB-D sensors to select human skeleton features,
the K-means method for posture selection, and Sequential Minimal Optimization for training data.
The purpose of this architecture was to select and demonstrate that the minimum number of key
poses is sufficient to describe and recognize a human activity. Srijanet al., 2018 [31], Cruz et al. [32],
and Khaire et al. [33] proposed and developed a method based on the combination of skeleton and
contextual feature extraction. The skeleton features were extracted by the RGB-D sensor and the
CNN and LSTM models. The contextual features were detected using the CNN model. In addition,
Yanli et al., 2018 [34] proposed a View-guided Skeleton-CNN (VS-CNN) model for human arbitrary
view and human action recognition which carries on weakening view differences by visualizing
skeleton sequences and covers a larger range of view angles. Hug et al., 2019 [35] applied an action
recognition model based on the transformation of the skeleton to a spatial presentation using the
conversion of the distance values of two joints to color points, and they used the DenseNet CNN model
for action classification. We finish this section by presenting the major conclusions extracted by the two
surveys of Wan et al., 2018 [36] and Pham et al., 2019 [37]. These authors found that methods based on
human pose estimation and skeleton feature extraction can achieve higher classification rates.

Based on this finding, we developed the contribution presented in this paper. We present a new
model that can be used for continuous and online human activity recognition using pose estimation
features. Our new model can exploit different types of features: temporal using the Kalman filter, visual
using the CNN model Inception V3, and 2D skeleton features using the pose estimation technique.
All of these features are used as inputs of our GRU RNN model for online human activity prediction.
Table 1 presents a summary of different methods and our proposed technique.

Table 1. State-of-the-art methods and their interpretation.

Authors Methods Interpretation

AlbuSlava 2016 [13] and Majed Latah 2017 [14] 3D CNN Spatial features

Murad and Ryun 2017 [15] and Qin et al. [16] Deep recurrent neural networks
and multimodal sensors Motion features

Ning et al., 2017 [17] Local optical flow of a global
human silhouette Motion features

Nicolas et al., 2016 [18] GRU + RCN Spatio-temporal features

Xu et al., 2016 [19] and Baldominos et al. [20] RCNN Spatio-temporal features

Zhang et al., 2016 [21] Vector of locally aggregated
descriptors, SIFT and ISA Spatio-temporal features

Zhao et al., 2017 [22] RNN + GRU + 3D CNN Spatio-temporal features

Faria et al., 2012 [23] Dynamic Bayesian mixture model Skeleton features

Koppula et al., 2013 [24] HMM Skeleton features

Bingbing et al., 2013 [25] Histogram of oriented gradient
and SVM Spatio-temporal features

Wang et al., 2014 [26] LOM Skeleton features

Shan and Akella 2014 [27] and Enea et al., 2016
[28] Pose Kinetic Energy + SVM Skeleton features

Gaglio et al., 2015 [29] Kmeans + HMM + SVM Skeleton features

Manzi et al.,2017 [30] Kmeans + Sequential Minimal
Optimization Skeleton features
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Table 1. Cont.

Authors Methods Interpretation

Srijan et al., 2018 [31], Cruz et al. [32]
and Khaire et al. [33] RGB-D + CNN + LSTM model Skeleton and contextual

features

Yanli et al., 2018 [34] VS-CNN Skeleton and contextual
features

Hug et al., 2019 [35]
The conversion of the distance
value of two joints to colors points
+ CNN

Skeleton and contextual
features

Proposed approach CNN (Inception V3 +mobileNet)
+ GRU + RNN + Kalman filter

Skeleton +
spatio-temporal
features

CNN: Convolutional Neural Network, GRU: Gated Recurrent Units, LOM: Local Occupation Model, LSTM: Long
Short Term Memory, RCN: Recurrent Convolution Networks, RNN: Recurrent Neural Network, SVM: Support
Vector Machines, VS-CNN: View-guided Skeleton-CNN.

3. Proposed System for the Classification of Human Activities

Our system for the analysis of human activities relies on the extraction of relevant features from
human presentation video sequences. Our system consists of two parts: the first part addresses the
construction of a new classification model based on the 2D human skeleton. The performance of this
model was evaluated using inside-home activities from the CAD-60 database (Section 3.1). The second
part proposes continuous and real-time human activity recognition. In this part, three types of features
are exploited to present human activities: visual, temporal, and 2D human skeleton. Figure 1 presents
an overview of our proposed system for activity classification and action recognition.
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Figure 1. The newly proposed model for human activity recognition. Our model is divided into two
parts: model training and activity recognition. This model is based on human pose estimation and
human tracking.

3.1. Model Training

In this section, we explain the steps involved in training the classification model. This is based on
two major stages: the first is the extraction of 2D features using skeleton detection and human pose
estimation; the second is the pre-training of a new deep learning model based on activity classification.
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3.1.1. Human Pose Estimation and Skeleton Detection

One of the major problems with human activity recognition is determining how the human pose
can be described and estimated. Human pose estimation presents the position and orientation of
a person using the detection of their skeleton. This includes the joints or key points of the human
body—for instance, the elbows and knees. The position and orientation of each joint affect the position
and orientation of the next joint in the skeleton. The challenge of human pose estimation is defined as
the most accurate computer vision techniques that predict the locations of human key points such as
the nose, elbow, wrist, shoulder, hip, and ankle.

In our study, we used the COCO (Common Object in Context, http://cocodataset.org/#keypoints-
eval) representation with the MobileNet CNN model for key point detection and 2D skeleton
reconstruction rather than using the skeleton information obtained from the Kinect tool. The MobileNet
model takes video frames as input and concatenates the outputs of Block-add 5 and Block-add 12.
The information collected from these blocks is used as input of the first stage to present possible
locations of human key points and confidence maps. The MobileNet structure used in this paper for
skeleton presentation contains two stages. The second stage takes the concatenation of the previous
stage outputs to present the total human key points and the confidence maps. Figure 2 depicts our
MobileNet structure for skeleton detection. The MobileNet model collects 18 joints from the human
body thanks to its two layers—depthwise convolution and pointwise convolution—in its blocks.
MobileNet is trained using the COCO model presented in Figure 3. Each joint is presented using 2D
coordinates (x, y); for example, the joint of the nose is defined by (Nose_x, Nose_y). The computation
of the joints’ locations using the COCO model is based on Object Key point Similarity (OKS). The OKS
technique focuses on the Euclidean distance between each corresponding ground truth normalized by
the scale of the person and detected key points and visibility flags. The computation of OKS values is
based on an un-normalized Gaussian function with a given standard deviation. The total number of
selection features is double the number of joints.
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The selected human features are presented in a CSV file containing 36 values from 18 joints.
The feature vectors computed are concatenated to build features of a dataset matrix associated with
human activities in a video. Human activity features are presented as matrices with 37 columns by N
rows; the columns present 36 values of skeleton joints and classification of the skeleton presentation.
The rows correspond to features from different frames of human activities in the Cornell Activity
Dataset (CAD )60 dataset.
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Figure 3. The human skeleton presentation used in our paper. This skeleton model presents 18
joints in which each joint is projected in the 2D plane. For the collection of human features, we used
36 values (18 × 2), for example, nose_x, nose_y, neck_x, neck_y, Right_shoulder_x, Right_shoulder_y,
Right_elbow_x, Right_elbow_y, etc.

3.1.2. Deep Learning Model

Recurrent neural networks are able to learn long-term features and dependencies from sequential
and temporal data. RNNs have a stack of nonlinear units where at least one connection between units
forms a directed cycle. A well-trained RNN can model any dynamic system. However, RNN training
is mainly affected by long-term dependency learning. RNN units can handle large datasets using deep
architectures. RNN can contain two unit types: LSTM and GRU.

The LSTM has been developed to address gradient explosion problems and can be considered
as a deep neural network architecture once unwound over time. The main component of the LSTM
layer is a unit called a memory block. An LSTM block has three gates: input, output, and forget
gates. These gates can be considered to involve operations of writing, reading, and resetting the cells.
An LSTM cell state is the key component that carries information between LSTM blocks.

A Gated Recurrent Unit (GRU) is part of a specific recurrent neural network model that intends to
use connections through a sequence of nodes to perform memory and clustering-related automatic
learning tasks. GRUs help adjust the input weights of the neural networks to solve the endangered
gradient problem, which is a common problem in recurrent neural networks. The GRUs have what
is called an update gate and a reset gate. Using these two gates, the model refines the results by
controlling the flow of information across the model. Similar to other types of recurring network
models, models with gated recurring units can retain information over a period of time, so one of the
simplest ways to describe these types of technologies is to use a network of neurons of type “centered
on the memory”. For this reason, in this work, we chose to use the RNN with GRUs.

3.2. Activity Recognition

To improve the performance of our human activity recognition system, we developed four tasks,
which are presented in this section, as follows:
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- The collection of 14 activities in one input video and real-time reading of human activities using
a standard webcam.

- Human tracking using the pre-trained transfer learning Convolutional Neural Network (CNN)
model Inception V3 and the Kalman filter.

- Two-dimensional feature extraction using human pose estimation and skeleton detection.
- Human activity recognition.

The classification and recognition of human activities have become important tasks for many
applications in the fields of medicine, smart surveillance, and video games. In this study, we developed
a new activity recognition system, which is presented in Figure 4. The input of our system is a continuous
video that groups 14 human activities involving one or many people. Each activity is presented as
a short video of 3 s. To properly recognize human activities throughout the frames of each mini video,
we used Inception V3 to extract the visual characteristics of a person in each frame. Moreover, to locate
the moving person in a video sequence, we used a linear Kalman filter [38].

Sensors 2020, 20, x FOR PEER REVIEW 8 of 15 

 

- Human tracking using the pre-trained transfer learning Convolutional Neural Network 
(CNN) model Inception V3 and the Kalman filter. 

- Two-dimensional feature extraction using human pose estimation and skeleton detection. 
- Human activity recognition. 

The classification and recognition of human activities have become important tasks for many 
applications in the fields of medicine, smart surveillance, and video games. In this study, we 
developed a new activity recognition system, which is presented in Figure 4. The input of our system 
is a continuous video that groups 14 human activities involving one or many people. Each activity is 
presented as a short video of 3 s. To properly recognize human activities throughout the frames of 
each mini video, we used Inception V3 to extract the visual characteristics of a person in each frame. 
Moreover, to locate the moving person in a video sequence, we used a linear Kalman filter [38]. 

Inception V3 is a transfer learning model, and it has a deep architecture. It consists of 
symmetrical and asymmetric basic components, including convolutional layers, maximum and 
average clustering layers, concatenation layers, dropped layers, and fully connected layers. The layer 
of batch normalization is widely used in this model. The system loss is calculated via Softmax. To 
build our model, video sequences presented by these frames are used as the input. These are used by 
the Inception V3 model to extract the output of the last average pooling layer that presents the 
characteristics framework. Inception V3 seemed to be the best transfer learning model compromise 
between resource consumption, learning time, and performance. Moreover, the concatenation layer 
of convolutional and pooling layers makes the features more specific. 

Therefore, the tracking of a moving person consists of locating their position in a video sequence 
for each time point. The tracking algorithms’ average shift and edge detection play important roles 
in computer vision. The Kalman filter is based on a state-space approach to estimate the state of the 
system using the distribution function of the Kalman filter. This approach can recover lost traces, 
making them the most useful tracking algorithms. The Kalman filter can solve tracking problems 
based on the state space and measurement equations. The two steps used to track a person through 
the Kalman filter are prediction and correction. During the prediction step, the current time state is 
estimated from the previous state. This estimation is also called a priori state estimation. It does not 
require a measurement value. The Kalman filter estimates the position, speed, and acceleration of the 
person in each frame of the video. It can track by using the linear model and Gaussian noise to obtain 
better results with a minimal mean square error. It is a recursive estimator, which means that to 
estimate the current state, the previous state and its current measurements are required. These two 
are enough to assess the current state. The Kalman filter averages the prediction of the state of the 
system with a new measurement using a weighted average phenomenon to obtain more precise 
estimated values. The goal of human tracking in this part of our system is to link the frames, because 
we need to visualize and predict human activity in each frame. In this stage, human activity 
recognition in a video using the linear Kalman filter has the most critical role. It can extract the 
bounding box using a centroid position and track the moving person in a video sequence (Figure 5). 
This step can reduce the computing time and improve the performance of our model. The sequential 
use of Inception V3 and the Kalman filter is considered an essential step in our recognition system. 
The next step in our system is skeleton extraction and human activity classification. 

 
Figure 4. The structure of our human activity recognition system. Figure 4. The structure of our human activity recognition system.

Inception V3 is a transfer learning model, and it has a deep architecture. It consists of symmetrical
and asymmetric basic components, including convolutional layers, maximum and average clustering
layers, concatenation layers, dropped layers, and fully connected layers. The layer of batch normalization
is widely used in this model. The system loss is calculated via Softmax. To build our model, video
sequences presented by these frames are used as the input. These are used by the Inception V3 model
to extract the output of the last average pooling layer that presents the characteristics framework.
Inception V3 seemed to be the best transfer learning model compromise between resource consumption,
learning time, and performance. Moreover, the concatenation layer of convolutional and pooling layers
makes the features more specific.

Therefore, the tracking of a moving person consists of locating their position in a video sequence
for each time point. The tracking algorithms’ average shift and edge detection play important roles
in computer vision. The Kalman filter is based on a state-space approach to estimate the state of the
system using the distribution function of the Kalman filter. This approach can recover lost traces,
making them the most useful tracking algorithms. The Kalman filter can solve tracking problems
based on the state space and measurement equations. The two steps used to track a person through
the Kalman filter are prediction and correction. During the prediction step, the current time state is
estimated from the previous state. This estimation is also called a priori state estimation. It does not
require a measurement value. The Kalman filter estimates the position, speed, and acceleration of
the person in each frame of the video. It can track by using the linear model and Gaussian noise to
obtain better results with a minimal mean square error. It is a recursive estimator, which means that to
estimate the current state, the previous state and its current measurements are required. These two are
enough to assess the current state. The Kalman filter averages the prediction of the state of the system
with a new measurement using a weighted average phenomenon to obtain more precise estimated
values. The goal of human tracking in this part of our system is to link the frames, because we need
to visualize and predict human activity in each frame. In this stage, human activity recognition in
a video using the linear Kalman filter has the most critical role. It can extract the bounding box using
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a centroid position and track the moving person in a video sequence (Figure 5). This step can reduce
the computing time and improve the performance of our model. The sequential use of Inception V3
and the Kalman filter is considered an essential step in our recognition system. The next step in our
system is skeleton extraction and human activity classification.
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4. Experimental Results

4.1. Dataset

The Cornell Activity Dataset CAD-60 includes RGB-D activity sequences for human indoor
activities. These activities are acquired using an RGB-D sensor at a rate of 25 frames per second.
CAD-60 contains information on RGB images, depth, and source code that can be used to detect
skeletal coordinates of 15 human joints. This activity was presented by Sung et al., 2012 [39]. However,
according to the description given by [39], this database presents 60 video sequences of five people.
The version published for the system of recognition of the human activities presents 56 video sequences
grouped into 14 classes: brushing teeth, cooking (chopping), cooking (stirring), water drinking, opening
a pill container, random, relaxing on the couch, talking on the phone, wearing contact lenses, working
on a computer, and writing on the whiteboard. These activities are done by four people (two boys and
two girls) in two different places: the bathroom and the kitchen. To visualize the human activities of
the CAD-60 database, we present some of them in Figure 6.
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Figure 6. Six activity classes included in the CAD-60 dataset. The video samples were captured
by Microsoft Kinect sensors concurrently at 25 fps. The activities were performed in the bathroom
and kitchen.
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4.2. Implementation Details

Python, with the support of the Keras framework using TensorFlow, was installed on a laptop
computer with the Intel Core i7-8550U 8th Generation Processor 4.0 GHz and 8 GB of memory.
In the first part of the evaluation of our system, the skeleton data were collected from the RGB
videos of the CAD-60 dataset. The skeleton presentation considered 18 joints. Initially, the human
skeleton presented in CAD-60 dataset, which was extracted using the Kinect sensor, had only 15 joints.
This presentation did not include the eyes and ears. However, a central joint between the hip and
the shoulder was added. The features selected from the experimental dataset included 36 values,
and the size of the feature database and the CSV file was around 80,300 values. After the detection
of 2D human features using human pose estimation and skeleton detection, we split the dataset of
features obtained into one dataset with three-quarters of the features for training and a dataset with
one-quarter of the features for the test. The collection of RGB features test frames was used for activity
recognition. For activity classification, the RNN model was trained for 60 epochs with a batch size of
100, and the weights were adjusted by the Adam optimizer [40] used with default parameters (0.0001).
Additionally, we used the categorical cross-entropy loss technique and the accuracy metrics technique.
The best recognition achieved 100%. The recognition rate of each activity class of CAD-60 is provided
in Figure 7 via a confusion matrix. Moreover, Table 1 illustrates the different recall, precision, and F1
metrics values of the 14 activities, in which A1, A2, . . . , A14 correspond respectively to brushing teeth,
chopping, . . . , writing on the whiteboard. The latter presents high values. All actions present values
of precision and recall higher than 90%; for example, the recall values for brushing teeth and stirring
actions were found to be 100%. Additionally, the recall value for wearing contact lenses was 99%.
The latter can be changed according to the human’s location. Table 2 presents the distribution of recall
values in different actions.
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Table 2. Classification recall, precision, and F1 of the Cornell Activity Dataset (CAD) 60 dataset.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

Recall 1 0.93 1 0.95 0.95 0.92 0.90 0.94 0.93 0.97 0.95 0.99 0.94 0.96
Precision 0.95 1 0.94 0.96 0.96 0.91 0.95 0.93 0.93 0.95 0.97 0.90 0.95 1

F1 0.97 0.96 0.96 0.95 0.95 0.91 0.92 0.93 0.93 0.96 0.96 0.94 0.94 0.98

In this study, our system was used to evaluate indoor activities and carry out action recognition
using the CAD-60 in five locations. The purpose of this was to eliminate complex scenes with moving
backgrounds. The classification time of the proposed method did not exceed 30 min for training and
testing combined, but the time taken for feature collection and CSV file construction of the CAD 60
was more than one day. Our model maintained its level of performance in the different locations,
as presented in Table 3.

Table 3. Performance of our proposed system according to human locations using the CAD-60. Five
locations are presented: bathroom, bedroom, kitchen, living room, and office.

Location Activity Prediction (%)

Bathroom
Brushing teeth
Rinsing mouth
Wearing contact lenses

100%
94%
99%

Bedroom Drinking water
Opening pill container

95%
95%

Kitchen
Cooking (chopping)
Cooking (stirring)
Still

93%
100%
93%

Living room

Random
Relaxing on couch
Talking on phone
Talking on couch

92%
90%
95%
97%

Office Writing on board
Working on computer

96%
94%

Average 95.5%

4.3. Activity Recognition

The second part of our system is devoted to the recognition of human activities. We considered
the video containing the collection frames of the skeleton information in the test database to be the
input and the predicted activity to be the output. To make our system more efficient, we evaluated
it on a real-time basis. The proposed system was tested through a collaboration with students from
the UIB (Universitat de les Illes Balears) laboratory, where each person performed one of 14 activities
presented in the CAD-60. Each activity lasted 3 s to allow our system to better predict the movements
that occurred. Real-time human activity recognition is different from continuous human activity
recognition. Indeed, the performance of the first system could not be measured, but we were able to
observe the results. In the experimental results, in 3 s of human activity (90 frames), incorrect activity
predictions were also observed. Some of the real-time results of activity prediction are presented in
Figure 8, including the detection and tracking of a moving person using a bounding box. Furthermore,
human pose estimation was performed using the detection of human joints and skeleton presentation.
The results show that human tracking in real-time systems is an important step for detecting and
tracking people. Despite the difference between the background of the CAD-60 dataset and our scene
(Laboratory of UIB University Figure 8), the average accuracy rate was around 96%.
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4.4. Comparisons with the State-Of-The-Art Method

A comparison of the state-of-the-art method using the CAD-60 dataset with our system is
summarized in Table 4. We compared the proposed system with similar models that were used
between 2014 and 2019. Fariaet al., 2018 [20] proposed an approach based on the dynamic Bayesian
mixture model for the skeleton presentation of human activities using a single classifier, and the
average accuracy of the proposed approach was 91.9%. In 2015, Gaglio et al. [29] proposed a method
based on 3D postural data for feature extraction and Support Vector Machine with the Hidden Markov
Model for activity classification. The accuracy of this method reached 77.3%. Recently, Cippitelli
et al. [28] in 2016 and David et al. [12] in 2018 developed new approaches for activity classification
using RGBD sensors and Support Vector Machine. The average activity accuracy levels obtained were,
respectively, 93.5% and 92.3%. In 2019, Shabaninia et al. [41] considered weighted 3D joints for human
activity presentation. The average accuracy level obtained was 94.94%.

Table 4. Average recognition accuracies (%) of our approach and comparison with previous works
using the CAD-60 dataset. The best accuracy level is presented in bold.

Methods Year Acc. (%)

Dynamic Bayesian Mixture Model [23] 2014 91.9%
Support Vector Machine + Hidden Markov Model [26] 2015 77.3%
Multiclass Support Vector Machine [25] 2016 93.5
Classifier Ensemble [12] 2018 92.3%
Weighted 3D joints [41] 2019 94.4%
Our System 2020 95.5%

Moreover, we can compare our system with recent work carried in 2019 with different datasets.
Indeed, Jan et al. [42] developed a new approach for motion capture based on skeleton presentation and
deep convolutional networks. The performance of this approach was evaluated using the HDM05-122
dataset, and the accuracy rate obtained was 91.5%. Kai et al. [43] proposed a new model for human
action recognition based on the Convolutional LSTM Network using multi-neighborhood graph
convolution and multiple LSTMs. The model was tested with the Nanyang Technological University
(NTU)dataset, and an accuracy level of 93.8% was achieved. In the same context, Petr et al. [44] and
Fabio et al. [45] developed an action recognition system based on the bidirectional LSTM network to
analyze the accuracy gap in the expressive power of 2D and 3D skeletons using the PKU-MMD and
HDM05-15 datasets. The accuracy rates obtained were 92.2% and 88.88%.

5. Conclusions and Future Work

In this paper, we presented an effective system for human activity classification and action
recognition based on the following steps: training of a new deep learning model using human skeleton
features and activity recognition using the CNN model, Kalman filter, and the trained model. In the first
step, we exploited the pose estimation technique to extract the human skeleton presentation and the
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movement of joints for the extraction of human features. The latter were used by a new deep learning
model based on RNN with GRU. The better exploitation of the deep learning model RNN with key
point features improved the accuracy of human activity classification. In the second step, we evaluated
our system using a continuous video sequence (collective action from the CAD-60 dataset and real-time
human actions). In this step, we added two techniques for human tracking in each frame into our
system. We used Inception V3 followed by Kalman filtering to enhance human motion detection and
tracking. Our system achieved great performance for activity classification. A hybrid combination
of the transfer learning CNN model, human tracking, skeleton features, and the deep learning RNN
model with Gated Recurrent Unit improved the cognitive capability of the system. A comparative
study with existing approaches in related works was carried out. This comparison led to the conclusion
that the proposed system gives satisfactory results.

As future work, we plan to develop assistive robot applications to help people with social aspects.
Indeed, assistive robots could be equipped with the ability to learn human activities. These robots are
an active research topic in which various solutions are being developed to improve the life quality
of aging people and children. For example, a robot could help children on the autism spectrum
connect with other children and it could help aging people to perform daily tasks, as well as providing
healthcare assistance. Our application combines telecommunication infrastructure, human activities,
and deep learning architectures.

In this work we focus to develop new system for human activity analysis inside of home.
Our system based on the uses of skeleton data. We exploited in this paper two types of deep learning
models: Convolutional Neural Network and Recurrent Neural Network with the Kalman filter
for human tracking in real time. Our system is evaluated by CAD 60 dataset. According to the
experimental results and the comparison with the state of the arts we can conclude that our system has
a good performance.

Author Contributions: Conceptualization, F.J.P.; Data curation, J.M.B.; Formal analysis, N.J., F.J.P., J.M.B. and
M.S.B.; Investigation, N.J., F.J.P. and J.M.B.; Methodology, N.J., F.J.P. and J.M.B.; Resources, N.J.; Supervision, F.J.P.,
N.B. and M.S.B.; Validation, N.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Ministerio de Economía, Industria y Competitividad (MINECO),
the AgenciaEstatal de Investigación (AEI), and the European Regional Development Funds (ERDF,
EU) under projects TIN2015-67149-C3-2-R (MINECO/AEI/ERDF, EU), PERGAMEX RTI2018-096986-B-C31
(MINECO/AEI/ERDF, EU), PID2019-104829RA-I00/AEI/10.13039/501100011033 (MICINN) and Telecommunication,
Software and System Group (TSSG), Waterford Institute of Technology, Waterford, Ireland.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rodríguez-Moreno, I.; Martínez-Otzeta, J.M.; Sierra, B.; Rodriguez, I.; Jauregi, E. Video Activity Recognition:
State-of-the-Art. Sensors 2019, 19, 3160. [CrossRef] [PubMed]

2. Wren, C.R.; Azarbayejani, A.J.; Darrell, T.J.; Pentland, A.P. Integration Issues in Large Commercial Media Delivery
Systems; SPIE: Washington, DC, USA, 1996. [CrossRef]

3. Elgammal, A.; Harwood, D.; Davis, L. Non-parametric model for background subtraction. In Computer
Vision—ECCV 2000; Springer: Berlin, Germany, 2000; pp. 751–767. [CrossRef]

4. Barnich, O.; Van Droogenbroeck, M. ViBE: A powerful random technique to estimate the background in
video sequences. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, Taipei, Taiwan, 19–24 April 2009; pp. 945–948. [CrossRef]

5. McFarlane, N.J.B.; Schofield, C.P. Segmentation and tracking of piglets in images. Mach. Vis. Appl. 1995, 8,
187–193. [CrossRef]

6. Lucas, B.D.; Kanadee, T. Aniterative image registration technique with an application tostereovision.
In Proceedings of the Imaging Understanding Workshop, Pittsburgh, PA, USA, 24–28 August 1981;
pp. 121–130.

http://dx.doi.org/10.3390/s19143160
http://www.ncbi.nlm.nih.gov/pubmed/31323804
http://dx.doi.org/10.1117/12.229194
http://dx.doi.org/10.1007/3-540-45053-x_48
http://dx.doi.org/10.1109/icassp.2009.4959741
http://dx.doi.org/10.1007/BF01215814


Sensors 2020, 20, 4944 14 of 15

7. Horn, B.K.; Schunck, B.G. Determining optical flow. In Techniques and Applications of Image Understanding;
Technical Symposium East; International Society for Optics and Photonics: Washington, DC, USA, 1981;
Volume 17, pp. 185–203. [CrossRef]

8. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999. [CrossRef]

9. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA,
20–25 June 2005. [CrossRef]

10. Comaniciu, D.; Meer, P. Mean shift analysis and applications. In Proceedings of the Seventh IEEE International
Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999. [CrossRef]

11. Gao, Y.; Xiang, X.; Xiong, N.; Huang, B.; Lee, H.J.; Alrifai, R.; Jiang, X.; Fang, Z. Human Action Monitoring
for Healthcare based on Deep Learning. IEEE Access 2018, 6, 52277–52285. [CrossRef]

12. Adama, D.A.; Lotfi, A.; Langensiepen, C.; Lee, K.; Trindade, P. Human activity learning for assistive robotics
using a classifier ensemble. Soft Comp. 2018, 22, 7027–7039. [CrossRef]

13. Albu, V. Measuring Customer Behavior with Deep Convolutional Neural Networks; BRAIN. Broad Research in
Artificial Intelligence and Neuroscience: Bacau, Romania, 2016; pp. 74–79. [CrossRef]

14. Majd, L. Human action recognition using support vector machines and 3D convolutional neural networks.
Intern. J. Adv. Intel. Inf. 2017, 3, 47–55. [CrossRef]

15. Murad, A.; Pyun, J.-Y. Deep Recurrent Neural Networks for Human Activity Recognition. Sensors 2017, 17,
2556. [CrossRef] [PubMed]

16. Qin, Z.; Zhang, Y.; Meng, S.; Qin, Z.; Choo, K.-K.R. Imaging and fusing time series for wearable sensors
based human activity recognition. Inf. Fusion 2020, 53, 80–87. [CrossRef]

17. Ning, Z.; Zeyuan, H.; Sukhwan, L.; Eungjoo, L. Human Action Recognition Based on Global Silhouette and
Local Optical Flow. In Proceedings of the International Symposium on Mechanical Engineering and Material
Science, Suzhou, China, 17–19 November 2017. [CrossRef]

18. Nicolas, B.; Li, Y.; Chris, P.; Aaron, C. Delving Deeper into Convolutional Networks for Learning Video
Representations. Computer Vision and Pattern Recognition. arXiv 2016, arXiv:1511.06432.

19. Xu, Z.; Hu, J.; Deng, W. Recurrent convolutional neural network for video classification. In Proceedings
of the IEEE International Conference on Multimedia and Expo (ICME), Seattle, WA, USA, 11–15 July 2016.
[CrossRef]

20. Baldominos, A.; Saez, Y.; Isasi, P. Evolutionary Design of Convolutional Neural Networks for Human Activity
Recognition in Sensor-Rich Environments. Sensors 2018, 18, 1288. [CrossRef] [PubMed]

21. Zhang, L.; Feng, Y.; Han, J.; Zhen, X. Realistic human action recognition: When deep learning meets VLAD.
In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Shanghai, China, 20–25 March 2016. [CrossRef]

22. Zhao, R.; Ali, H.; van der Smagt, P. Two-stream RNN/CNN for action recognition in 3D videos.
In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017. [CrossRef]

23. Faria, D.R.; Premebida, C.; Nunes, U. A probabilistic approach for human everyday activities recognition
using body motion from RGB-D images. In Proceedings of the 23rd IEEE International Symposium on Robot
and Human Interactive Communication, Edinburgh, UK, 25–29 August 2014. [CrossRef]

24. Koppula, H.S.; Gupta, R.; Saxena, A. Learning human activities and object affordances from RGB-D videos.
Int. J. Robot. Res. 2013, 32, 951–970. [CrossRef]

25. Ni, B.; Pei, Y.; Moulin, P.; Yan, S. Multilevel Depth and Image Fusion for Human Activity Detection.
IEEE Trans. Cybern. 2013, 43, 1383–1394. [CrossRef] [PubMed]

26. Wang, J.; Liu, Z.; Wu, Y.; Yuan, J. Learning Actionlet Ensemble for 3D Human Action Recognition.
IEEE Trans. Pattern Anal. Machin. Intel. 2014, 36, 914–927. [CrossRef] [PubMed]

27. Shan, J.; Akella, S. 3D human action segmentation and recognition using pose kinetic energy. In Proceedings
of the 2014 IEEE International Workshop on Advanced Robotics and Its Social Impacts, Evanston, IL, USA,
11–13 September 2014. [CrossRef]

28. Cippitelli, E.; Gasparrini, S.; Gambi, E.; Spinsante, S. A Human Activity Recognition System Using Skeleton
Data from RGBD Sensors. Comput. Intel. Neurosci. 2016, 2016, 1–14. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/0004-3702(81)90024-2
http://dx.doi.org/10.1109/iccv.1999.790410
http://dx.doi.org/10.1109/cvpr.2005.177
http://dx.doi.org/10.1109/iccv.1999.790416
http://dx.doi.org/10.1109/ACCESS.2018.2869790
http://dx.doi.org/10.1007/s00500-018-3364-x
http://dx.doi.org/10.5281/zenodo.1044235
http://dx.doi.org/10.26555/ijain.v3i1.89
http://dx.doi.org/10.3390/s17112556
http://www.ncbi.nlm.nih.gov/pubmed/29113103
http://dx.doi.org/10.1016/j.inffus.2019.06.014
http://dx.doi.org/10.2991/ismems-17.2018.1
http://dx.doi.org/10.1109/icme.2016.7552971
http://dx.doi.org/10.3390/s18041288
http://www.ncbi.nlm.nih.gov/pubmed/29690587
http://dx.doi.org/10.1109/icassp.2016.7471897
http://dx.doi.org/10.1109/iros.2017.8206288
http://dx.doi.org/10.1109/roman.2014.6926340
http://dx.doi.org/10.1177/0278364913478446
http://dx.doi.org/10.1109/tcyb.2013.2276433
http://www.ncbi.nlm.nih.gov/pubmed/23996589
http://dx.doi.org/10.1109/TPAMI.2013.198
http://www.ncbi.nlm.nih.gov/pubmed/26353226
http://dx.doi.org/10.1109/arso.2014.7020983
http://dx.doi.org/10.1155/2016/4351435
http://www.ncbi.nlm.nih.gov/pubmed/27069469


Sensors 2020, 20, 4944 15 of 15

29. Gaglio, S.; Re, G.L.; Morana, M. Human Activity Recognition Process Using 3-D Posture Data.
IEEE Trans. Hum. Mach. Syst. 2015, 45, 586–597. [CrossRef]

30. Manzi, A.; Dario, P.; Cavallo, F. A Human Activity Recognition System Based on Dynamic Clustering of
Skeleton Data. Sensors 2017, 17, 1100. [CrossRef] [PubMed]

31. Srijan, D.; Michal, K.; Francois, B.; Gianpiero, F. A Fusion of Appearance based CNNs and Temporal evolution
of Skeleton with LSTM for Daily Living Action Recognition. arXiv 2018, arXiv:1802.00421v1.

32. Cruz-Silva, J.E.; Montiel-Pérez, J.Y.; Sossa-Azuela, H. 3-D Human Body Posture Reconstruction by Computer
Vision; LNAI 11835; Springer: Cham, Switzreland, 2013; pp. 579–588. [CrossRef]

33. Khaire, P.; Kumar, P.; Imran, J. Combining CNN Streams of RGB-D and Skeletal Data for Human Activity
Recognition. Pattern Recognition Letters; Elsevier: Amsterdam, The Netherlands, 2018. [CrossRef]

34. Ji, Y.; Xu, F.; Yang, Y.; Shen, F.; Shen, H.T.; Zheng, W.-S. A Large-scale RGB-D Database for Arbitrary-view
Human Action Recognition. In Proceedings of the ACM Multimedia Conference on Multimedia
Conference—MM ’18, Seoul, Korea, 12–16 October 2020. [CrossRef]

35. Wang, P.; Li, W.; Ogunbona, P.; Wan, J.; Escalera, S. RGB-D-based human motion recognition with deep
learning: A survey. In Computer Vision and Image Understanding; Elsevier: Amsterdam, The Netherlands,
2018; pp. 118–139. [CrossRef]

36. Wan, J.; Escalera, S.; Perales, F.J.; Kittler, J. Articulated motion and deformable objects. In Pattern Recognition;
Springer: Berlin, Germany, 2010; Volume 79, pp. 55–64. [CrossRef]

37. Pham, H.H.; Salmane, H.; Khoudour, L.; Crouzil, A.; Zegers, P.; Velastin, S.A. Spatio–Temporal Image
Representation of 3D Skeletal Movements for View-Invariant Action Recognition with Deep Convolutional
Neural Networks. Sensors 2019, 19, 1932. [CrossRef] [PubMed]

38. Jaouedi, N.; Boujnah, N.; Bouhlel, M.S. fvA New Hybrid Deep Learning Model for Human Action Recognition.
J. King Saud Univ. Comput. Inf. Sci. 2020, 32, 447–453. [CrossRef]

39. Sung, J.; Ponce, C.; Selman, B.; Saxena, A. Unstructured human activity detection from RGBD images.
In Proceedings of the IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA,
14–18 May 2012. [CrossRef]

40. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
41. Shabaninia, E.; Naghsh-Nilchi, A.R.; Kasaei, S. A weighting scheme for mining key skeletal joints for

human action recognition. In Multimedia Tools and Applications; Springer: Berlin, Germany, 2019; Volume 78,
pp. 31319–31345.

42. Sedmidubsky, J.; Elias, P.; Zezula, P. Effective and efficient similarity searching in motion capture data.
In Multimedia Tools and Applications; Springer: Berlin, Germany, 2018; pp. 12073–12094. [CrossRef]

43. Yang, K.; Ding, X.; Chen, W. Multi-Scale Spatial Temporal Graph Convolutional LSTM Network for
Skeleton-Based Human Action Recognition. In Proceedings of the 2019 International Conference on Video,
Signal and Image Processing, Wuhan, China, 29–31 October 2019; pp. 3–9. [CrossRef]

44. Elias, P.; Sedmidubsky, J.; Zezula, P. Understanding the Gap between 2D and 3D Skeleton-Based Action
Recognition. In Proceedings of the IEEE International Symposium on Multimedia, San Diego, CA, USA,
9–11 December 2019. [CrossRef]

45. Carrara, F.; Elias, P.; Sedmidubsky, J.; Zezula, P. LSTM-based real-time action detection and prediction in
human motion streams. In Multimedia Tools and Applications; Springer: Berlin, Germany, 2019; Volume 78,
pp. 27309–27331. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/THMS.2014.2377111
http://dx.doi.org/10.3390/s17051100
http://www.ncbi.nlm.nih.gov/pubmed/28492486
http://dx.doi.org/10.1007/978-3-030-33749-0_46
http://dx.doi.org/10.1016/j.patrec.2018.04.035
http://dx.doi.org/10.1145/3240508.3240675
http://dx.doi.org/10.1016/j.cviu.2018.04.007
http://dx.doi.org/10.1016/j.patcog.2018.01.038
http://dx.doi.org/10.3390/s19081932
http://www.ncbi.nlm.nih.gov/pubmed/31022945
http://dx.doi.org/10.1016/j.jksuci.2019.09.004
http://dx.doi.org/10.1109/icra.2012.6224591
http://dx.doi.org/10.1007/s11042-017-4859-7
http://dx.doi.org/10.1145/3369318.3369325
http://dx.doi.org/10.1109/ISM46123.2019.00041
http://dx.doi.org/10.1007/s11042-019-07827-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Proposed System for the Classification of Human Activities 
	Model Training 
	Human Pose Estimation and Skeleton Detection 
	Deep Learning Model 

	Activity Recognition 

	Experimental Results 
	Dataset 
	Implementation Details 
	Activity Recognition 
	Comparisons with the State-Of-The-Art Method 

	Conclusions and Future Work 
	References

