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Abstract: Excessive discharge of heavy metal ions will aggravate environment pollution and threaten
human health. Thus, it is of significance to real-time detect metal ions and control discharge in the
metallurgical wastewater. We developed an accurate and rapid approach based on the singular
perturbation spectrum estimator and extreme gradient boosting (SPSE-XGBoost) algorithms to
simultaneously determine multi-metal ion concentrations by UV–vis spectrometry. In the approach,
the spectral data is expanded by multi-order derivative preprocessing, and then, the sensitive feature
bands in each spectrum are extracted by feature importance (VI score) ranking. Subsequently,
the SPSE-XGBoost model are trained to combine multi-derivative features and to predict ion
concentrations. The experimental results indicate that the developed “Expand-Extract-Combine”
strategy can not only overcome problems of background noise and spectral overlapping but also mine
the deeper spectrum information by integrating important features. Moreover, the SPSE-XGBoost
strategy utilizes the selected feature subset instead of the full-spectrum for calculation, which
effectively improves the computing speed. The comparisons of different data processing methods
are conducted. It outcomes that the proposed strategy outperforms other routine methods and can
profoundly determine the concentrations of zinc, copper, cobalt, and nickel with the lowest RMSEP.
Therefore, our developed approach can be implemented as a promising mean for real-time and
on-line determination of multi-metal ion concentrations in zinc hydrometallurgy.

Keywords: zinc hydrometallurgy; metal ion measurement; UV–vis spectroscopy; feature selection
and combination; singular perturbation spectrum estimator; extreme gradient boosting

1. Introduction

Zinc metal smelting wastewater contains multiple toxic metal ions, such as zinc, copper, cobalt,
and nickel. Irrational discharge of heavy metal ions will cause serious harm to the ecological
environment [1,2]. At present, the concentrations of metal ions are mostly acquired via off-line analysis
in the laboratory, which is laborious, time-consuming, connects with many errors and chemical costs,
and leads to blind control of wastewater discharge. Hence, the real-time and accurate detection of
metal ions is urgently needed [3].

As for better online monitoring methods, optical detection methods are widely used because
of its high efficiency and low laboriousness, such as ultraviolet-visible (UV–vis) spectroscopy [4,5],
atomic absorption spectroscopy (AAS) [6], near-infrared spectroscopy (NIRS) [7], surface-enhanced
raman spectroscopy (SERS) [8], laser-induced breakdown spectroscopy (LIBS) [9], and so on. Among
these, the UV-vis spectrophotometry can achieve online analysis on multi-ions without expensive

Sensors 2020, 20, 4936; doi:10.3390/s20174936 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-2778-0022
https://orcid.org/0000-0003-0063-0363
http://dx.doi.org/10.3390/s20174936
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/17/4936?type=check_update&version=2


Sensors 2020, 20, 4936 2 of 14

sample pretreatment and is easily operated, making it cheaper and faster in the applications [10–12].
Our previous work focused on detecting copper and cobalt concentrations using UV–vis spectroscopy
and multivariate regression model based on the wavelet denoising and locally weighted partial least
squares methods [13,14]. However, due to the complex background and similar chemical properties
of detected ions, the spectra are excessively overlapped and exist severe nonlinearity. The denoising
method and regression model based on full spectrum will become invalid. The characteristic
information of each ion is difficult to distinguish and extract when the ion species increased. Moreover,
the external environment unavoidably generates noise interference, resulting in inconsistent intensity
of spectral signals. All these problems make it arduous for the spectral quantitative analysis of complex
mixed solution and seriously restrict the application of spectral technology.

To establish a quantitative analysis model, the works of predecessors can be roughly divided
into three parts: spectral preprocessing, feature selection, and multivariate calibration. For spectral
preprocessing, the commonly used methods are denoising and derivatives. The derivative method
can reconstruct the spectral peak and eliminate the background signal interference [15,16]. Moreover,
the ability to distinguish subtle changes in similar spectra is considerably enhanced in the derivative
spectrum [17]. However, most studies usually select a single derivative approach, which may not
be sufficient for analysis of severe overlapped spectra. Li et al. proposed the singular perturbation
spectral estimator (SPSE) based on the singular perturbation technique and Taylor series to obtain
high quality derivative spectra from the measured spectrum with noise [18–20]. Since the obtained
spectrum is relatively simple, lacks detail information, and contains a large amount of arbitrary noises,
it is vital to adopt diversified preprocessing methods that provide abundant and accurate information.

Frequently-used feature selection methods in spectroscopy are uninformative variable elimination
(UVE) [21] and competitive adaptive reweighted sampling (CARS) [22]. It is considered that variable
combination has a great influence on prediction performance [23]. Even when the subsets containing
less important variables are combined, they can achieve a good predictive performance [24,25].
Therefore, the idea of variable combination is introduced into the spectrum analysis. For multivariate
calibration, the commonly applied approaches are the linear method (e.g., partial least squares (PLS))
and the nonlinear modeling method (e.g., support vector machine (SVM)) [26,27]. At present, ensemble
learning becomes a common technology to enhance the generalization ability by combining the
prediction results of multiple base learners [28–30]. Extreme gradient boosting (XGBoost) is an
iconic ensemble learning algorithm proposed by Chen et al. [31]. XGBoost has many advantages in
processing nonlinear data and can extract features from variables containing noise and redundant
information. Numerous studies demonstrate that it has promoted prediction accuracy and performed
remarkable results for spectral analyses in different domains [32–34]. However, there are still few
works to incorporate this sophisticated strategy into spectral quantitative analysis of heavy metal ions
in solution.

Motivated by the above factors, this article introduces SPSE and XGBoost into UV–vis
spectrometry for the first time to measure multi-metal ion concentrations. In view of the redundant
noise and intricate correlation, the SPSE is employed to expand the multi-order derivative spectra with
high accuracy and strong resistance of disturbance. The ensemble XGBoost model is used to extract
the feature variables and rank the importance score. The sensitive feature bands in each spectrum
are integrated to form new characteristic variable sets and the ion concentrations are predicted.
Afterwards, the multi-derivative feature subset combination is considered to further promote the
prediction precision. Finally, to validate the performance of the “Expand-Extract-Combine” strategy
in SPSE-XGBoost, the comprehensive analyses among CARS-PLS, UVE-LS-SVM, and XGBoost are
carried out. The remainder of this article is organized in the following sections. Section 2 describes
the experimental procedure, in which the basic concepts of SPSE and XGboost are given, respectively.
Then the proposed modeling framework and procedure are introduced. In Section 3, the validation of
comparative results and overall performance of each model are discussed. Conclusions are drawn in
Section 4.
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2. Materials and Methods

2.1. Experimental Apparatus and Samples

A T9 UV–vis spectrophotometer (Beijing Purkinje General Instrument Co., Ltd., Beijing, China) is
used to measure the spectrum. The T9 spectrophotometer utilizes a high-performance xenon lamp and
double beam optical system, which can achieve spectral scanning over a wide wavelength range of
185 nm to 900 nm. A computer (Lenovo Group, Beijing, China) receives the spectral data via a UV-Win
Software (Beijing Purkinje General Instrument Co., Ltd., Beijing, China). UV-Win software provides
complete instrument control and a set of mathematical tools to analyze the measurement results.
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Figure 1. The original absorption spectrum of 49 samples for training and testing.
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Figure 2. The single ion absorption spectrum for zinc, copper, cobalt, and nickel, respectively.

The main metal ions in the hydrometallurgy wastewater of Zhuzhou Smelter Company are Zn(II),
Cu(II), Co(II), and Ni(II), in which the concentration of Zn(II) is 20–250 times that of the other metal
ions. Huge difference of ion concentrations can lead to inconsistent intensity of spectral and severe
masking problems. Hence, it is extremely significant to select appropriate experimental reagents to
ensure the precision of simultaneous determination for the multiple ions. The reagents and their
optimized dosage are as follows: 0.4% Nitroso R salt chromogenic agent solution: 2.5 mL; HAc-NaAc
buffer solution: pH = 5.5, 5 mL. The concentrations of zinc standard solutions are 1 g/L. Copper, cobalt,
and nickel standard solutions are all 12.5 mg/L. All reagents are of analytical grade and added in a 25
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mL colorimetric tube. The specific operation procedure of the experiment is as follows: In the 25 mL
colorimetric tube, add 5.0 mL HAc-NaAc buffer solution. Add zinc standard solution and proper
amount of copper, cobalt, nickel ion standard solution. Add 2.5 mL 0.40% Nitroso R salt chromogenic
solution, shake well to make the chromogenic reaction fully react. Add distilled water to make the
volume up to 25 mL. Prepare reagent blank. Adjust the instrument to zero. Place the sample in a 1 cm
quartz cuvette, and use the reagent blank as a reference.

Table 1. The concentration of Zn(II), Cu(II), Co(II), and Ni(II) of 49 samples (mg/L).

NO. Zn(II) Cu(II) Co(II) Ni(II) NO. Zn(II) Cu(II) Co(II) Ni(II)

1 10 0.2 0.4 0.6 26 40 1.0 0.6 0.2
2 10 0.4 0.8 1.2 27 40 1.2 1.0 0.8
3 10 0.6 1.2 0.4 28 40 1.4 1.4 1.4
4 10 0.8 0.2 1.0 29 50 0.2 0.4 0.6
5 10 1.0 0.6 0.2 30 50 0.4 0.8 1.2
6 10 1.2 1.0 0.8 31 50 0.6 1.2 0.4
7 10 1.4 1.4 1.4 32 50 0.8 0.2 1.0
8 20 0.2 0.4 0.6 33 50 1.0 0.6 0.2
9 20 0.4 0.8 1.2 34 50 1.2 1.0 0.8
10 20 0.6 1.2 0.4 35 50 1.4 1.4 1.4
11 20 0.8 0.2 1.0 36 60 0.2 0.4 0.6
12 20 1.0 0.6 0.2 37 60 0.4 0.8 1.2
13 20 1.2 1.0 0.8 38 60 0.6 1.2 0.4
14 20 1.4 1.4 1.4 39 60 0.8 0.2 1.0
15 30 0.2 0.4 0.6 40 60 1.0 0.6 0.2
16 30 0.4 0.8 1.2 41 60 1.2 1.0 0.8
17 30 0.6 1.2 0.4 42 60 1.4 1.4 1.4
18 30 0.8 0.2 1.0 43 70 0.2 0.4 0.6
19 30 1.0 0.6 0.2 44 70 0.4 0.8 1.2
20 30 1.2 1.0 0.8 45 70 0.6 1.2 0.4
21 30 1.4 1.4 1.4 46 70 0.8 0.2 1.0
22 40 0.2 0.4 0.6 47 70 1.0 0.6 0.2
23 40 0.4 0.8 1.2 48 70 1.2 1.0 0.8
24 40 0.6 1.2 0.4 49 70 1.4 1.4 1.4
25 40 0.8 0.2 1.0

In this study, 49 groups of mixed solutions are analyzed. Figure 1 shows the original spectra
of the 49 mixed ion solutions. The measured UV–vis spectrum wavelength ranges from 280 nm
to 800 nm with 1 nm scanning resolution. Each sample is scanned three times and the averaged
spectrum is obtained for calculation. Among them, the concentration range of Zn(II) is between
10 mg/L and 70 mg/L and the concentrations of Cu(II), Co(II), and Ni(II) all range from 0.2 mg/L to
1.4 mg/L. The concentration of Zn(II), Cu(II), Co(II), and Ni(II) in the solutions are shown in Table 1.
Figure 2 is the spectra of single ion solution of Zn(II), Cu(II), Co(II), and Ni(II), which exhibits that the
peaks of ions are adjacent to each other. This is because the competitive reaction between Zn(II) and
other impurity metal ions aggravates the spectrum overlapping and masking. Meanwhile, the peak
shape and movement tendency of ions are similar due to their resemble chemical properties. Besides,
a negative peak occurs mainly because the absorbance value of Zn(II) complex in the measured solution
is less than of the reagent blank at 320–380 nm. A large amount of noise appear at 280–300 nm and
300–400 nm mainly because of the high absorbance of the reference solution, making the spectrum
nonlinear at these ranges. Therefore, the traditional calibration method based on the full spectrum can
hardly achieve a high detection accuracy.

2.2. Multi-Derivative Spectral Reconstruction by SPSE

Due to the random noise and overlapping problems in the original spectra of complex mixtures,
the derivative spectra method is widely used in spectral analysis of multicomponent calibration.
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To decrease the background error and separate the overlapping absorption band, the singular
perturbation spectrum estimator (SPSE) [19,20] is applied. The estimator is based on inverse Taylor
series, which takes the advantage of scale separation to obtain the simplified original problems [35].

Assuming that the spectral signal u(v1) is given at any wavelength v1 and that u(v1) is
differentiable k+ 1 times at any v1. Define v1 = v+ ε, where ε is the system perturbation parameter and
sufficiently small. For higher-order derivative estimators, because lim

ε→0
xi = u(i−1)(v)(i = 1, 2, · · · , n),

the Taylor series of spectral signal can be approximated as linear differential system and the description
of SPSE is obtained as follows:

ẋ1(v) = x2(v)
ẋ2(v) = x3(v)
ẋ3(v) = − 6

ε3 (x1(v)− û(v))− 6
ε2 x2(v)− 3

ε x3(v)
y(v) = x1(v),

(1)

where û(v) = u(v1) is the measured spectral signal; (ẋ1, ẋ2, ẋ3) are the state items of the differentiator;
x1(v) is the denoising spectrum of the measured signal u(v); and x2(v) and x3(v) are the first-order
and second-order derivative spectrum, respectively.

Since the SPSE only has the perturbation parameter ε to adjust, it can overcome the restriction
of inconsistent parameter selection. Meanwhile, a large amount of additive noise is eliminated
by the successive multiple integral parts. Thus, it is concluded that the denoising spectrum and
multi-order derivative spectrum can be estimated, effectively suppressing random noise and redundant
background signals in the spectrum.

2.3. eXtreme Gradient Boosting Based on Feature Importance Ranking

Extreme gradient boosting (XGBoost) [31] is a novel tree learning algorithm which achieves
considerable result for sparse data processing. It takes classification and regression tree (CART) as the
base learner. Figure 3 illustrates the basic structure of XGBoost, in which X is the spectral absorbance
matrix in this model and y is the concentration of a certain metal ion. According to the additive training
strategy of boosting, each tree is constructed based on learning from the residual δ of the previous tree.
ŷ(k)i = ŷ(k−1)

i + fk(xi) is the prediction of the k-th iteration. At every iteration, XGboost optimizes the
model and decreases the prediction error. The final prediction output ŷi is generated by the weighted
summation of trees as follows:

ŷi =
K

∑
k=1

fk(xi), fk ∈ F , (2)

where F is the space of functions containing all regression trees; K denotes the number of trees. To
learn function fk of each tree, XGBoost establishes an objective function with regularization:

L(φ) = ∑
i

l(yi, ŷi) + ∑
k

Ω( fk), (3)

where φ is all learnable parameters in XGBoost; l(yi, ŷi) is the loss function representing the error
between the predicted concentration ŷi and the actual concentration yi, the smaller the l is, the better
the performance of the algorithm; Ω( fk) is the regularization term to penalize the model complexity
and prevent over-fitting. When XGBoost uses the square loss function to measure error, the second
derivative Taylor expansion of the loss function can assist the model to optimize the objective quickly.
The second derivative Taylor expansion of the loss function after k-th iteration is given as follows:

L(φ)(t) '∑ [l(y(t)i , ŷ(t−1)
i ) + gi ft(xi) +

1
2

hi f 2
t (xi)] + Ω( ft), (4)



Sensors 2020, 20, 4936 6 of 14

where gi and hi are the first and second derivative of the loss function. It can be learned that the
loss function only depends on the first and second derivatives of each data point. To predict the
ion concentrations, the essential step in the XGBoost learning algorithm is to optimize the XGBoost
algorithm parameters, booster parameters, and learning parameters.

Training 

Data (X , y) 

Output                       Tree 

     Tree

     Tree

     Tree 

Output                            

Output                                    

Output                               

Residual 

Residual

Residual

Final 

Output 

...
...

Iteration Iteration
Minimize the objective function for a new tree

Additive 

strategy

Figure 3. The structure of extreme gradient boosting.

Additive tree boosting model enables XGBoost to flexibly use variables in different areas of the
output space. This model can perform effective feature selection and capture higher-order interactions.
Thus, XGBoost in this paper is used not only for feature selection but also for prediction. After all
boosting trees are built, XGBoost can calculate out the importance of each feature. XGBoost generates
the ranking of all features based on variable importance (VI). The VI score measures the frequency of
individual feature that is used to build trees. The more times a feature is selected for splitting trees,
the more valuable it proves to be in the model. In this paper, the feature importance ranking of VI
score is regarded as the basis of feature selection.

2.4. The Proposed SPSE-XGBoost Approach

In view of the merits of SPSE and XGBoost, in this paper, they are integrated to establish a novel
calibration model, shorted as SPSE-XGBoost. The focus of this approach is to explore the benefits of
combining feature subsets of multi-order derivative spectrum and, meanwhile, introduce the ensemble
XGBoost algorithm as key model in feature selection and prediction of metal ion concentrations such
as zinc, copper, cobalt, and nickel. To assess the quality of SPSE-XGBoost model, the root mean
square error (RMSE), the coefficient of determination (R2), the mean absolute percentage error (MAPE),
and the maximum absolute percentage error (MaxAPE) are utilized as the main evaluation criteria
in the proposed approach. Smaller RMSE, MAPE, and MaxAPE represent better model precision.
Figure 4 illustrates the flow chart of the proposed SPSE-XGBoost model that is comprised of the
following four steps.

Step 1: The samples are divided into training set and test set. The X matrix contains all variables of
training set. Then, select different singularly perturbation parameter ε of SPSE to obtain the
denoising spectrum and the first-order and second-order derivative spectra.

Step 2: Perform XGBoost modeling with cross validation for each spectrum. Since different derivative
spectra have different predictive capability, the results are further compared and analyzed to
select preferable derivative order for each ion.

Step 3: Calculate the VI score and rank to extract features. The sensitive feature in each spectrum are
integrated to form new feature subsets.

Step 4: Combine the feature subsets and build SPSE-XGBoost model to predict ions concentration in
the test set. Determine the optimum variables combination via RMSEP and R2.
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Figure 4. Flow chart of the proposed singular perturbation spectral estimator (SPSE)-XGBoost model.

In brief, the proposed method aims to find the best subset of features for multi-metal ions
prediction and analyze the effects of variable selection and combination by an “Expand-Extract-
Combine” strategy. “Expand” refers to the derivative preprocessing procedure that expands the
spectral space of original data. “Extract” means that individual variable is ranked and selected by
the VI score and “Combine” defines that multi-derivative feature subset combination is considered to
promote prediction performance.

3. Results and Discussion

3.1. Multi-Order Derivative Reconstruction Pretreatment

The samples were firstly divided into a training set (39 samples) and a test set (10 samples) using
the Kennard-Stone algorithm [36]. To highlight the characteristic information of each ion, different
singularly perturbation parameter ε is selected in the SPSE to get the denoising spectrum and the
first-order and second-order derivative spectra. To obtain the best preprocessing results, the ε in
our work were set as 0.007 for denoising spectrum, 0.013 for first-order spectrum, and 0.016 for
second-order spectrum, respectively. It can be seen from Figure 5 that subtle changes in the original
spectrum is obviously reinforced after pretreatment, highlighting the ionic difference. The denoising
spectrum does not make significant difference with the original spectrum in the shape. The absorbance
and resolution are greatly enhanced in the derivative spectra, which reasonably expands the data
space and thus provides abundant features for variables selection.

To ensure the reliability of preprocessing, the prediction results of XGBoost model with 10-fold
cross-validation using full-spectrum (280–800 nm) is preliminarily analyzed as shown in Table 1.
The RMSECV and R2 are used to evaluate the predictive ability of the model. The MAPE and MaxAPE
are also calculated. Table 2 reveals that different derivative spectrum models provide different
prediction results. For zinc, the accuracy of models established by the first-order and second-order
spectrum are improved compared with the original spectrum. Although the noise signal is suppressed
in the denoising spectrum, some important characteristics of zinc may be inevitably weakened, so the
predicting result of the denoising spectrum is the worst. For copper, most of the original signals
are masked by zinc, so the denoising spectrum and the first-order derivative spectrum have the
strongest prediction ability, and their MAPE are greatly reduced. Whereas for cobalt, only the model
established by the second-order derivative spectrum has a impressive accuracy. By calculating the
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variation in absorbance change rate, spectral peaks become exceedingly sharp and the overlapping
spectral bands are in a way separated. Therefore, the characteristic information of cobalt stands out
conspicuously. For nickel, the model with the denoising spectrum and the first-order derivative is
preferable. The second-order derivative model is the worst. This is because the signal of nickel is
the weakest in zinc sulfate solution. The second-order derivative spectrum inevitably amplifies the
instability of signal and reduces the prediction precision.
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Figure 5. The original, denoising, first-order, and second-order derivative spectra of the training set.

Table 2. Error evaluations of full-spectrum among different preprocessing methods for metal ions
concentration prediction.

Preprocessing MAPE(%) MaxAPE(%) RMSECV (mg/L) R2

Raw 13.777 21.534 4.785 0.792
Zinc Denoising 16.718 24.621 4.947 0.749

1st derivative 8.744 13.220 4.242 0.892
2nd derivative 8.235 11.395 3.941 0.921

Raw 13.762 18.781 0.145 0.746
Copper Denoising 8.023 12.789 0.115 0.924

1st derivative 7.236 11.604 0.105 0.938
2nd derivative 11.819 14.355 0.139 0.824

Raw 11.213 23.958 0.131 0.773
Cobalt Denoising 11.051 21.545 0.146 0.737

1st derivative 10.792 17.897 0.134 0.756
2nd derivative 6.254 12.032 0.099 0.901

Raw 12.463 23.057 0.143 0.779
Nickel Denoising 8.529 14.573 0.114 0.907

1st derivative 9.322 15.496 0.118 0.894
2nd derivative 17.758 25.619 0.150 0.738

Overall, we have three interesting findings: (i) Different preprocessing method has different effects
on the prediction ability of different ions in the same solution. For example, the denoising spectrum
has a positive effect on copper, cobalt, and nickel but negative on zinc; (ii) derivative pretreatment
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provides more abundant and effective data for spectral prediction, which can improve the accuracy of
model; (iii) a single derivative full-spectrum cannot meet the industrial requirements that the average
error of the measurement of should not exceed 5%, and the maximum error should not exceed 10%.
Therefore, the derivative variables extraction and combination will be considered to maximize the
effective information in the following subsections.

3.2. Variable Selection and Feature Importance Analysis

After preprocessing, we obtain the high-dimension spectral data. Before modeling the spectral
data with small sample yet high dimensions, it is extremely necessary to lessen dimension with
appropriate variable selection method. For VI score ranking, XGBoost extracts feature variables by
calculating the importance ranking of all variables. The times of a feature selected as a splitting tree
node are regarded as the VI scores to measure the feature importance.

300 400 500 600 700 800
Wavelength/nm

-2

-1

0

1

2

A
bs

or
ba

nc
e

(a) Original spectrum

0

2

4

6

8

10

12

14

V
ar

ia
bl

e 
Im

po
rt

an
ce

300 400 500 600 700 800
Wavelength/nm

-2

-1

0

1

2

A
bs

or
ba

nc
e

(b) Denoising spectrum

0

2

4

6

8

10

12

14

V
ar

ia
bl

e 
Im

po
rt

an
ce

Zinc
Copper
Cobalt
Nickel

300 400 500 600 700 800
Wavelength/nm

-200

-160

-120

-80

-40

0

40

80

120

A
bs

or
ba

nc
e

(c) 1st-order derivative

0

2

4

6

8

10

12

14

V
ar

ia
bl

e 
Im

po
rt

an
ce

300 400 500 600 700 800
Wavelength/nm

-4

-3

-2

-1

0

1

2

A
bs

or
ba

nc
e

104

(d) 2nd-order derivative

0

2

4

6

8

10

12

14

V
ar

ia
bl

e 
Im

po
rt

an
ce

Figure 6. Characteristic variable selection and feature importance (VI) score results of zinc, copper,
cobalt, and nickel ions in the original (a), denoising (b), first-order (c), and second-order derivative (d)
spectra. The gray curves in each subplot are the spectra of the training set (Figure 6).

Table 3. The number of selected characteristic variables by XGBoost of zinc, copper, cobalt, and nickel
ions under different preprocessing methods.

Preprocessing
Number of Characteristic Variables

Zinc Copper Cobalt Nickel

Raw 57 77 78 68
Denoising 62 83 82 71
1st derivative 63 86 73 72
2nd derivative 59 75 81 87

The variables selection for multi-metal ions and their VI scores of different spectra are shown in
Figure 6. From Figure 6a,b, we can find that the original and denoising spectra have approximately the
same range of wavelength bands, indicating that the denoising pretreatment does not change feature
position in the selected variables. The selected variables of zinc are mainly located in the range of
280–380 nm. Copper has a strong concentrated feature band located at 460–510 nm. This is consistent
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with the characteristic peak at 490 nm in the single ion spectrum of copper, which can be clearly seen
at Figure 2. In the original and denoising spectra, the cobalt ions are distributed in a dispersed manner,
ranging from 280 nm to 580 nm. Nickel ions are mainly distributed around 280–400 nm and 500 nm,
which is related to the three characteristic peaks of nickel ions at 310 nm, 410 nm, and 500 nm in the
single ion spectrum. In general, the VI scores of the denoising spectrum is higher than that of the
original spectrum, especially for copper and nickel, which reflects that the elimination of random noise
is conducive to feature selection and information mining.

When taking the first-order and second-order derivations, the selected variables are distributed
to a wide range and move backwards. The selected feature bands of the different ions become
distinguished and more concentrated, suggesting that the derivations can effectively expand the
spectral data space for feature selection and separate overlapping spectral peaks of ions. For example,
in the first-order derivative spectrum, the characteristic regions of zinc move to 400–420 nm and
450–500 nm, while the variables of copper, cobalt, and nickel are relocated at 500–520 nm, 430–450 nm,
and 550–580 nm, respectively. These characteristic bands are all independent of each other and skillfully
avoid the high noise bands at 280–380 nm. In particular, the variable selection of the first-order
derivative spectrum is more concentrated, and the second derivative has a scattered distribution before
600 nm due to the large number of characteristic peaks and narrow peak shape.

The number of the selected characteristic variables of the corresponding metal ions under different
preprocessing methods is listed in Table 3. Compared with the full-spectrum prediction, the calculated
variable for one ion in the XGBoost model is reduced to below 87. Thus, using the selected feature
subset can not only highlight the characteristic information for a specific metal ion but also remarkably
improve the calculation speed of the model.

3.3. XGBoost Model with Variable Combination

To meliorate the prediction ability of the model, this approach also adopts the variable combination
strategy. Variable combination takes advantage of the diversity of feature variables. It is also worth
mentioning that to our best knowledge, the effect of variable combination is not considered in any
existing method to predict the metal ion concentrations. Hence, the selected subset of derivative
variables and their combinations are applied to retrain the XGBoost model, respectively. The prediction
results are compared and evaluated by the MAPE, MaxAPE, RMSEP, R2 in Table 4. The optimal model
usually exhibits the largest R2 and the lowest RMSEP value. To meet the needs of industrial on-line
detection, MAPE and MaxAPE are also required to be under 10%.

Table 4. Model prediction results of extracted variables subsets and their combinations under different
preprocessing methods for metal ion concentration prediction.

Feature Subset MAPE(%) MaxAPE(%) RMSEP(mg/L) R2

Denoising \ \ \ \
Zinc 1st derivative 6.942 9.433 3.569 0.948

2nd derivative 6.271 9.185 3.412 0.956
Combination 4.098 7.986 3.107 0.987

Denoising 4.241 9.452 0.056 0.977
Copper 1st derivative 3.924 8.404 0.051 0.984

2nd derivative \ \ \ \
Combination 3.515 6.939 0.043 0.990

Denoising \ \ \ \
Cobalt 1st derivative \ \ \ \

2nd derivative 3.083 7.414 0.041 0.993
Combination \ \ \ \

Denoising 6.879 9.922 0.078 0.946
Nickel 1st derivative 4.612 9.067 0.072 0.953

2nd derivative \ \ \ \
Combination 4.331 8.323 0.054 0.989
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According to model results, it can be observed that the modeling outcome of selected variable
subsets is superior to that based on the whole spectrum variables (Table 2). More interestingly, through
the combination of subsets of characteristic region in the denoising and multi-order derivation spectra,
the prediction ability of ions is further optimized. It is apparent from Table 4 that the RMSEP and
MAPE are effectively reduced. The MAPE of zinc, copper, cobalt, and nickel are 4.098%, 3.515%,
3.083%, and 4.331%, respectively. The MaxAPE of the four ions is less than 8.323%. Hence, it concludes
that feature variable subset combination can make better use of the richness and diversity of the
multi-order derivative spectra and contain characteristic variables to the greatest extent. Moreover,
it further proves that even when some of the less important variables are combined, they can achieve
good predictive performance. Especially for nickel with the strongest instability and the weakest
absorbance, the MaxAPE and MAPE of the model prediction are greatly reduced, which meet the
industrial requirements of accuracy.

The scatter points in Figure 7 illustrate the comparison of actual concentration and predicted
concentration in the test set. The black lines are the fitted lines of actual and predicted concentration
scatter points. The blue shaded areas stand for the gap between the 1:1 lines and the fitted lines.
When the fitted line is closer to the 1:1 line, the blue shaded area is smaller, indicating a better
correlation between the prediction result and actual concentration. As exhibited, the fitted lines of each
ion closely approach to the 1:1 lines and the R2 values of each ion are higher than 0.987, suggesting
that the proposed method has favorable accuracy and promising effect in detecting the concentrations
of zinc, copper, cobalt, and nickel ions in zinc sulfate solution.
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Figure 7. The fitting curves of zinc (a), copper (b), cobalt (c), and nickel (d) ions in the test set
(10 samples).

To further verify the performance of the proposed model, different derivatives pretreatment
methods, such as Savitzky-Golay (SG) derivative algorithm and traditional modeling methods
(CARS-PLS, UVE-LS-SVM), are also carried out and compared in Figure 8. Note that CARS-PLS
and UVE-LS-SVM are shortened as PLS and SVM in the figure, respectively. All the methods are
conducted 10 times to obtain the statistical results. Only the variable combination method of SPSE uses
subset combination of characteristic variables, while the other methods are all based on the full spectral
variables. From Figure 8, the performances of the different algorithms are distinct. For the single
preprocessing methods, the original spectral data almost have the highest RMSEP due to the noise
and masking problems in the raw spectrum. The exceptions are the first-order derivative for cobalt
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and the second-order derivative for nickel, which have been interpreted in Section 3.1. The derivative
spectra using SPSE always achieve lower RMSEP than the corresponding SG, indicating that SPSE
is superior to SG. For the modeling methods, the XGBoost outperforms the other two traditional
calibration methods as shown in the figure. It is worth mentioning that the combination of variables
has a significant effect on model promotion and yields the lowest RMSEP, signifying the best prediction
ability of SPSE-XGBoost in general.
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Figure 8. Comparison results among different preprocessing and modeling methods for zinc, copper,
cobalt, and nickel ions.

All in all, it is easily concluded that the SPSE and XGBoost algorithms have better capabilities in
expanding the spectral information, extracting the effective variables, and predicting ion concentrations
in the UV-vis spectrum analysis. When all of the feature subsets from the derivative spectra are
combined, the developed SPSE-XGBoost method can further enhance the measurement accuracy.
Therefore, our proposed “Expand-Extract-Combine” strategy of SPSE-XGBoost in this article has
a great potential for the real-time and on-line detection of multi-metal ion concentrations in
hydrometallurgy wastewater.

4. Conclusions

In this work, we developed the SPSE-XGBoost approach to simultaneously measure the
multi-metal ion concentrations by UV–vis spectroscopy in the complex zinc sulfate solutions. At first,
the spectral data was expanded by the denoising and multi-order derivative preprocessing in SPSE.
Then, the feature variables were extracted by accounting the VI score ranking using the ensemble
XGBoost algorithm. Finally, the feature subsets from the derivative spectra were combined to further
promote the accuracy in determining zinc, copper, cobalt, and nickel ion concentrations. The adequate
analyses indicate that the “Expand-Extract-Combine” strategy in the SPSE-XGBoost approach has
the properties of suppressing the redundant noises, extending the spectral feature data to a broad
space, extracting the spectral feature band for a specific metal ion, improving the computing speed,
and obtaining the high-precise results, and so on. The comparisons with the conventional SG
preprocessing, CARS-PLS, and UVE-LS-SVM methods illustrate the superior performances of our
proposed method. With such analyses, our developed approach was proven to be suitable for real-time
and on-line detection of multi-metal ion concentrations in hydrometallurgy wastewater.
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