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Abstract: Three-dimensional (3-D) imaging sonar systems require large planar arrays, which incur
hardware costs. In contrast, a cross array consisting of two perpendicular linear arrays can also
support 3-D imaging while dramatically reducing the number of sensors. Moreover, the use of an
aperiodic sparse array can further reduce the number of sensors efficiently. In this paper, an optimized
method for sparse cross array synthesis is proposed. First, the beamforming of a cross array based
on a multi-frequency algorithm is simplified for both near-field and far-field. Next, a perturbed
convex optimization algorithm is proposed for sparse cross array synthesis. The method based on
convex optimization utilizes a first-order Taylor expansion to create position perturbations that can
optimize the beam pattern and minimize the number of active sensors. Finally, a cross array with
100 + 100 sensors is employed from which a sparse cross array with 45 + 45 sensors is obtained via
the proposed method. The experimental results show that the proposed method is more effective
than existing methods for obtaining optimum results for sparse cross array synthesis in both the
near-field and far-field.

Keywords: phased array 3-D imaging sonar system; sparse cross array; compressed sensing;
perturbed convex optimization; multi-frequency algorithm

1. Introduction

Real-time 3-D sonar imaging technology is one of the most important innovations in underwater
applications in recent years [1–3]. The phased array 3-D imaging sonar system transmits acoustical pulse
signals penetrating the entire underwater detection scene, receiving sonar echo signals through a large
planar array. The phased array technology simultaneously generates entire beam intensity signals to
obtain real-time 3-D images [4]. With the development of underwater technology, an increased number
of array sensors is required for better image quality. However, the high cost, power consumption,
and computational complexity brought about by a large number of array sensors impede the practical
implementation of this technology [5].

To reduce the number of array sensors, redundant sensors can be eliminated. In [6], several array
configurations were proposed for analysis and comparison. These array configurations effectively
reduce the number of array sensors. Among these configurations, a cross array with two perpendicular
linear arrays has been employed in some sonar systems [7,8]. Experiments show that this cross array
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configuration can produce a beam pattern (BP) similar to that of a planar array [9]. However, the cross
array sonar system requires considerable time to scan the entire detection range, resulting in a low
frame rate. That is, the real-time performance of the system is poor. In [9], a multi-frequency (MF)
algorithm is applied to the cross array configuration. The MF algorithm subdivides the vertical direction
into several sectors. In each sector, a series of multiple frequency acoustical signals is transmitted
sequentially, thereby significantly reducing the number of transmissions and increasing the frame
rate. Using this method, a planar array with M × N sensors can be reduced to a cross array with only
M + N sensors.

In addition, the use of sparse array techniques [10] can be applied to the cross array to further
reduce the number of array sensors. A sparse array is an aperiodic array with a reduced number of
sensors. By means of repositioning the remaining sensors and changing the weights, the desired BP
can be maintained. Sparse array designs are grouped into two general categories [11]: (1) stochastic
optimization and (2) deterministic optimization. In stochastic optimization, the sidelobe peak (SLP),
main lobe width (MLW), beam pattern shape, etc., are chosen as the objective functions [12], after which
a stochastic optimization algorithm is utilized to produce a solution that is optimal according to certain
criteria. Using iterative techniques, the objective function gradually converges to the optimal solution.
Commonly used stochastic optimization algorithms are simulated annealing algorithms [12–14],
genetic algorithms [15], ant colony optimization [16], and particle swarm optimization [17]. However,
due to the randomness inherent to these techniques, the stochastic optimization algorithms yield
different results for each run. Furthermore, these algorithms are sensitive to variation in the initial
values. Consequently, stochastic optimization algorithms have difficulty achieving global optimization.
Multiple experiments as well as parameter adjustments are necessary to obtain optimal results [18].

The deterministic optimization algorithm approaches sparse array synthesis as a minimum l0-norm
problem. Since the minimum l0-norm is non-convex and difficult to solve, the deterministic optimization
algorithm approximates it by a similar, but easier to solve, problem [19]. Compared with stochastic
optimization algorithms, these methods can solve the sparse array synthesis more effectively [18].
Recently, deterministic optimization algorithms have been developed on the basis of the compressed
sensing (CS) theory. The main CS-based algorithms are Bayesian compressive sampling (BCS)
algorithms [20–22], focal under-determined system solver (FOCUSS) algorithms [23,24], and convex
optimization algorithms [25–27]. Moreover, some shaped beam patterns (such as flat-top BP and
asymmetric sidelobe BP) are employed in sparse array synthesis via CS-based methods [28–30].

However, in some existing CS-based algorithms, the candidate sensor positions are constrained to
initial discrete positions, which cannot ensure the degree of freedom for candidate sensor positions.
To obtain better sparse array results, a denser initial sensor array is required to enhance the degree
of freedom, which results in a large amount of calculation. In [23], first-order Taylor expansion is
introduced to create position perturbations. Through this method, sensors can be placed in continuous
positions instead of being placed in discrete grid positions.

In this paper, a perturbed convex optimization (PCO) method is proposed to synthesize a cross
array in the near-field and far-field. The proposed method synthesizes the sparse array via iterative
reweighted l1 minimization and uses a first-order Taylor expansion to create the position perturbations.
The PCO method enhances the degree of freedom for candidate sensor positions, thus obtaining better
sparse array results and BP performance. A sparse cross array in a 3-D imaging sonar system is
designed via the PCO method. The sonar system is characterized by multiple frequency acoustical
transmitting signals ranging from 205 to 300 kHz and a 50λmin aperture at 300 kHz. An MF algorithm
is applied to achieve near-field and far-field beamforming, with the near-field divided into several
focus sections to simplify the calculation. The experimental results are presented and compared with
those of other methods to verify the effectiveness of the proposed method.

This paper is organized as follows. In Section 2, a simplified beamforming of cross arrays for
near-field and far-field is presented, and a PCO method is proposed and analyzed. In Section 3, a sparse
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cross array for a 3-D imaging sonar system is designed and simulated to evaluate the efficiency of the
proposed method. In Section 4, experimental results are discussed. In Section 5, conclusions are drawn.

2. Methods

A cross array for a low-complexity real-time 3-D sonar imaging system consists of two
perpendicular linear arrays [6], as shown in Figure 1. The receiving array, comprising N array
sensors, is oriented in the horizontal direction, while the transmitting array, comprising M array
sensors, is oriented in the vertical direction. The spacing of the array sensors of the transmitting array
and the receiving array are dx and dy, respectively.
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2.1. Multi-Frequency Cross Array Beamforming in the Near-Field and Far-Field

The cross array has the same effective 3-D acoustic imaging capability as the two-dimensional
(2-D) planar array [7]. Under the same sonar signal frequency and array aperture condition, while a
2-D planar array requires M × N sensors, the cross array can obtain the same angular resolution with
only M + N sensors, yielding a tremendous reduction in the number of array sensors. The main factor
of the cross array that allows for such a large reduction in the sensor number is the orientation of
the transmitting and receiving arrays with respect to each other, with the transmitting and receiving
arrays performing beamforming in the vertical and horizontal directions, respectively. Through the
joint action of the transmitting and receiving arrays in this configuration, the 3-D acoustic image
is constructed.

In conventional cross array systems, the transmitting array sequentially transmits an acoustical
signal to a predetermined sequence of Q vertical beam directions [8]. For each predetermined vertical
beam direction, the receiving array receives the acoustical echo signals and performs beamforming in
the P horizontal directions within the beam range. When all the vertical beam direction transmissions
are completed and the horizontal receiving beamforming calculations have been performed, a complete
3-D acoustic image can be formed. The beam distribution diagram is shown in Figure 2.

The cross array sonar system requires considerable time to scan the entire detection range,
which leads to a low frame rate and poor real-time performance of the system. In [9], a multi-frequency
(MF) algorithm is proposed on the basis of a cross array to improve the real-time performance.
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Figure 2. Beam distribution diagram.

If it is assumed that the number of vertical transmitting beam directions is Q and the number
of horizontal receiving beam directions is P, the specific process of the MF algorithm is described
as follows. First, the set of vertical beam directions is divided into K different sectors. Within each
sector, the sensor array is transmitted in J = Q/K different preset vertical beam directions. Through the
phase shift compensation between the array sensors, the acoustical signals of different frequencies are
sequentially transmitted to the preset J vertical beam directions, with each frequency (from f 1 to fJ)
corresponding to a vertical beam direction. Subsequently, after the acoustical signal transmission of all
frequencies in the sector completes, the receiving array receives the acoustical echo signal, and the
beamforming calculation is performed in the frequency domain to generate P × J beam intensity results.
The process is repeated for each sector yielding the complete P × Q beam intensity results. Figure 3
shows the transmitting process of the MF algorithm.
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In the far-field where distance exceeds D2/λ [4], the transmitting and receiving beamforming can
be regarded as the beamforming of two linear arrays, with the BP given respectively as follows:

BPT(u, λ) =

∣∣∣∣∣∣∣
M∑

m=1

wm exp
(
i
2π
λ

uxm

) ∣∣∣∣∣∣∣ (1)

BPR(v, λ) =

∣∣∣∣∣∣∣
N∑

n=1

wn exp
(
i
2π
λ

vyn

) ∣∣∣∣∣∣∣ (2)

where u = sinα-sinα0, v = sinβ − sinβ0; xm = (m − (M + 1)/2)dx gives the sensor positions for the
transmitting array; yn = (n − (N + 1)/2)dy gives the sensor positions for the receiving array; wm and wn

are the weights of the transmitting and receiving sensors, respectively; λ is the acoustical wavelength;
(α, β) is the arrival direction, and (α0, β0) is the steering direction.

The BP of the cross array in the far-field can be regarded as the product of the transmitting BP and
the receiving BP [9], as follows:

BPC(u, v, λ) =
∣∣∣∣∣∑M

m=1
wm exp

(
i
2π
λ

uxm

) ∣∣∣∣∣·∣∣∣∣∣∑N

n=1
wn exp

(
i
2π
λ

vyn

) ∣∣∣∣∣. (3)

The conventional near-field beamforming algorithm differs at different distances, which leads to a
higher computational burden. Furthermore, the optimization of sparse cross arrays in the near-field
requires huge computational cost to fulfill the conditions required to cover the entire near-field.
In Zhao et al. [31], to simplify the near-field BP calculation, distances in the near-field are divided
into several focus regions, and the focal distance r0 of each focus region is selected as shown in
Figure 4. Through this simplification, the optimized transmitting and receiving BP of a cross array in
the near-field can be approximated as follows:

BPOT(u, λ, δ) =

∣∣∣∣∣∣∣
M∑

m=1

wm exp
(
i
2π
λ
(ux m + δ

x2
m
2
)

) ∣∣∣∣∣∣∣ (4)

BPOR(v, λ, δ) =

∣∣∣∣∣∣∣
N∑

n=1

wn exp
(
i
2π
λ
(vy n + δ

y2
n

2
)

) ∣∣∣∣∣∣∣ (5)

δ =
1
r
−

1
r0

(6)

where r is the distance between the object and the array center, and r0 is the distance between the focal
and the array center.
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The optimized BP of a cross array can be regarded as the product of the transmitting beamforming
and the receiving beamforming as follows:

BPO(u, v, λ, δ) = BPOT(u, λ, δ) · BPOR(v, λ, δ). (7)

It is shown that when r = r0, the near-field beamforming is equal to far-field beamforming, and
when the quantity |δ| is large, the near-field beam pattern distortion becomes problematic. To better
satisfy the BP constraints, we impose the following maximum [31]:

|δ|max =
2λmin

D2 . (8)

The simplified beamforming stays the same in each focus region, which greatly reduces the
computational complexity of the 3-D imaging sonar system. At the same time, the BP constraint on the
entire near-field and far-field can be achieved by constraining the entire δ in the sparse cross arrays
synthesis, which is easier to accomplish in the case of convex optimization.

2.2. Sparse Cross Array Synthesis Method

2.2.1. Iterative Reweighted l1 Minimization

The synthesis of a sparse cross array can be regarded as an l0-norm problem as follows:

variable w min ‖ w ‖0
s.t. BPO under (BP.C)

(9)

where w = [wm wn]; wm and wn are the weight matrices of the transmitting and receiving arrays;
‖ w ‖0 is the l0-norm of the w matrix, i.e., the number of non-zero elements of w. BP.C represents the
BP constraints including SLP, MLW (at −3 dB), and the beam pattern shape shown in Figure 5 [18].
The solution w is a sparse matrix: non-zero elements are active, and zero elements are inactive.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 17 

 

It is shown that when r = r0, the near-field beamforming is equal to far-field beamforming, and 
when the quantity |δ| is large, the near-field beam pattern distortion becomes problematic. To 
better satisfy the BP constraints, we impose the following maximum [31]: |δ|max = 2λmin

D2 . (8)

The simplified beamforming stays the same in each focus region, which greatly reduces the 
computational complexity of the 3-D imaging sonar system. At the same time, the BP constraint on 
the entire near-field and far-field can be achieved by constraining the entire δ in the sparse cross 
arrays synthesis, which is easier to accomplish in the case of convex optimization. 

2.2. Sparse Cross Array Synthesis Method 

2.2.1. Iterative Reweighted l1 Minimization 

The synthesis of a sparse cross array can be regarded as an l0-norm problem as follows: 

variable w  min ‖w‖0 

s.t. BPO under (BP.C) 
(9)

where w = [wm wn]; wm and wn are the weight matrices of the transmitting and receiving arrays; ‖w‖0  is the l0-norm of the w matrix, i.e., the number of non-zero elements of w. BP.C represents the 
BP constraints including SLP, MLW (at −3 dB), and the beam pattern shape shown in Figure 5 [18]. 
The solution w is a sparse matrix: non-zero elements are active, and zero elements are inactive. 

 
Figure 5. Beam pattern (BP) constraints. 

This optimization problem is very difficult to solve directly because the minimum l0-norm is 
non-convex. According to the CS theory, the optimization problem of Equation (9) can be 
approximated by the following iterative reweighted l1 minimization problem based on a convex 
optimization algorithm [32]: 

variable wi min wi ◦ ρi
1
 

s.t. BPO  under (BP.C.) 
(10)

ρi = 1/(wi-1 + ϵ) (11)

where  ‖w‖1 is the l1-norm of the w matrix, which is the sum of the absolute values of all elements 
in w; wi ◦ ρi is the Hadamard product of the two matrices wi and ρi; i is the number of iterations; and 
ρ is the coefficient related to the optimization result of the last iteration, which makes the minimum 
l1-norm problem of Equation (10) gradually approximate the minimum l0-norm problem of 
Equation (9). Moreover, in the minimum l1-norm, the value of w cannot be equal to zero, but it 

Figure 5. Beam pattern (BP) constraints.

This optimization problem is very difficult to solve directly because the minimum l0-norm is
non-convex. According to the CS theory, the optimization problem of Equation (9) can be approximated
by the following iterative reweighted l1 minimization problem based on a convex optimization
algorithm [32]:

variable wi min ‖ wi ◦ ρi
‖ 1

s.t. BPO under (BP.C.)
(10)

ρi = 1/(w i−1 + ε) (11)
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where ‖ w ‖1 is the l1-norm of the w matrix, which is the sum of the absolute values of all elements in w;
wi
◦ ρi is the Hadamard product of the two matrices wi and ρi; i is the number of iterations; and ρ is the

coefficient related to the optimization result of the last iteration, which makes the minimum l1-norm
problem of Equation (10) gradually approximate the minimum l0-norm problem of Equation (9).
Moreover, in the minimum l1-norm, the value of w cannot be equal to zero, but it approaches zero,
and the elements less than 1 × 10−6 in magnitude can be considered as zero elements [18]; ε is slightly
less than the minimum value of w, which ensures that the zero elements are likely to be non-zero in the
next iteration. In the first iteration, ρ1 is set to a matrix of all ones; a MATLAB software for disciplined
convex programming CVX [33] is used to solve the minimum l1-norm problem of Equation (10) to
obtain w1 and determine ε, which is slightly less than the minimum value of w1. In the following
iteration, ρi is obtained using Equation (11), and the minimum l1-norm problem of Equation (10) is
then solved to obtain wi until the sparse array results converge.

CVX is a modeling framework for solving disciplined convex problems, including linear and
quadratic programs, semidefinite programs, l1-norms, etc. CVX is implemented in Matlab, conveniently
solving constrained norm minimization, entropy maximization, and many other convex optimization
problems. The general convex optimization problems can be expressed in the following form:

min f 0(x)
s.t. f i(x) ≤ 0, i = 1, . . . , M

(12)

where x is the objective variable, f 0 is the objective function, and f 1, . . . , fM are the constraint functions.

f0(x) = Cx
Aix = bi, i = 1, . . . , M

(13)

where C, Ak and bi are given matrices. The dual problem associated with Equation (12) is solved as
follows:

max bT y∑M
i=1 yiAi + z = C

(14)

where yi and z are variables.
SDPT3 [34] is the default solver of CVX to solve convex optimization problems. SDPT3 is

a primal-dual interior-point algorithm via the path-following paradigm. In each iteration of the
algorithm, a predictor search direction is calculated to decrease the duality gap as much as possible.
The solver uses two search directions: the Helmberg–Kojima–Monteiro (HKM) direction [35–37]
and the Nesterov–Todd (NT) direction [38]. Then, the algorithm generates a Mehrotra-type corrector
step [39] to approach the central path. The algorithm does not impose any neighborhood restrictions
and tries to achieve feasibility and optimality simultaneously.

x0, y0 and z0 are initialized in the first iteration. Suppose the variables in the current and the next
iterations are (x, y, z) and (x+, y+, z+) respectively. The step-length parameter in the current and the
next iterations are (α, β, γ) and (α+, β+, γ+). Set γ0 = 0.9. The iteration stops if the relative duality gap
(relgap) is less than 1 × 10−8.

relgap =
xz

1 + max
(
|Cx|,

∣∣∣bT y
∣∣∣) (15)

(x+, y+, z+) are set as following:

x+ = x + α∆x, y+ = y + β∆y, z+ = z + β∆z (16)

AT∆y + ∆z = c− z−AT y
A∆x = b−Ax

(17)

α = min
(
1,

−γ

Emin(x−1∆x)

)
, β = min

(
1,

−γ

Emin(z−1∆z)

)
(18)
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where (∆x, ∆y, ∆z) are search directions. Emin(x−1∆x) is the minimum eigenvalue of (x−1∆x).
Set γ+ = 0.9 + 0.09 min(α, β).

The search directions (∆x, ∆y, ∆z) are obtained via the symmetrized Newton equation with respect
to an invertible matrix P. If semidefinite blocks are present, the HKM direction is selected; otherwise,
the NT direction is selected. The HKM direction is corresponding to P = z1/2; the NT direction is
corresponding to P = N−1, where NTzN = N−1

× N−T.
Problems that can be solved by CVX must be disciplined convex problems, and CVX is not efficient

for very large problems (for example, a very large sparse planar array synthesis). For the problem of
this paper, CVX is an effective solution.

2.2.2. Perturbed Convex Optimization

To enhance the degree of freedom for candidate sensor positions, a PCO method is proposed to
optimize sparse array synthesis. The beamforming can be approximated as in Equations (19) and (20)
using first-order Taylor expansion [23].

BPOT(x + ∆x) ≈ BPOT(x) + ∆x dBPOT(x)dx (19)

BPOR(y+ ∆y) ≈ BPOR(y) + ∆y dBPOR(y)dy (20)

where dBPOT(x)dx is the derivative of BPOT with respect to x; |∆x| < dmin/2 and
∣∣∣∆y

∣∣∣ < dmin/2 are
the position perturbations; and dmin is the minimum distance between sensors. On the basis of the
first-order Taylor expansion, a PCO method is proposed to optimize the position perturbation and
weight simultaneously. For the transmitting array, the optimization solves the following PCO problem
to find the optimal position perturbation and weight.

variable vi min‖wi ◦ ρi
‖1

s.t. BPOT

(
x + ∆xi

)
under (BP.C.) && wi

· dmin/2 −
∣∣∣si

∣∣∣ > 0
(21)

where vi = [wi si]; si = wi
· 4xi; and i is the number of iterations. The matrix vi contains the position

perturbation and weight information. The PCO method obtains the minimum number of active
array sensors, while the BP satisfies the constraint, and the position perturbations are constrained
within dmin/2. Moreover, in the sonar system, the sensor positions are fixed, but the weight can vary
under different conditions. To obtain better BP performance under different conditions (transmitting
frequency and δ), Equation (22) can be solved independently at different transmitting frequencies and δ.

variable w min SLP
s.t. BPO under (BP.C)

(22)

Through this method, sensors can be placed in continuous positions instead of being placed on
discrete grid points. The proposed method provides more degree of freedom for the sensors.

As shown in Equation (7), the beamforming of the cross array can be regarded as the product of the
transmitting beamforming and the receiving beamforming. In addition, the transmitting beamforming
and receiving beamforming can be regarded as the beamforming of two linear arrays. Therefore,
sparse cross array synthesis can be divided into two sparse linear array syntheses. The flow diagram
of a sparse cross array synthesis via the PCO method is shown in Figure 6. The procedure is described
as follows:
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The transmitting array of M sensors is considered. The transmitting frequency is set from f 1 to fJ. δ
is set from δ1 to δA (−δmin to +δmax). In the first iteration, ρ1

m is set to a matrix of all ones, and CVX [33]
is employed to solve the PCO problem of Equation (21) to obtain 4x1 and w1

m, which makes the BPOT

satisfy the constraints over the entire frequency range, as well as the near-field and far-field conditions.
ε is determined to be slightly less than the minimum value of w1

m. In the following iterations, the PCO
problem is solved to obtain 4xi and wi

m and iterated until the number of active sensors remains
unchanged for five iterations. At this point, the iterations are concluded, and the positions and weight
values of the sparse transmitting array are considered optimal. Next, Equation (15) is applied to
optimize the BP performance under different conditions.

The receiving array of N sensors is synthesized in the same way as the transmitting array. Since
the PCO method is deterministic optimization, the results of the sparse receiving array are the same as
those of the transmitting array when M = N at the same conditions.

3. Results

3.1. Sparse Cross Array Synthesis

A cross array with 100 + 100 sensors is employed, and a sparse cross array is synthesized
using the proposed methods. We compare the sparse array result with those in [14] and [31].
The transmitting frequency ranges from 205 to 300 kHz, with frequency steps of 5 kHz.
The sensor spacing is λmin/2 = 2.5 mm at 300 kHz. The critical distance between the near-field and
far-field is D2/λmin = 12.5 m. The near-field is divided into three sections: 2–3 m, 3–5.5 m, and 5.5–12.5 m.
The focal points are at 2.4 m, 4 m, and 9 m, respectively. Therefore, δ is within the range of –0.083 to
0.083, which satisfies Equation (6) (2λmin/D2 = 0.16). The (u, v) space is set within (−1 to 1, −1 to 1)
which is divided equally into 400 × 400 beams. The SLP is set to –23 dB. The main lobe in (u, v) is
restricted to within 0.022 at 300 kHz. The optional positions are expanded into 500 + 500 with sensor
spacing of λmin/10. The parameter ε is set to 0.004.
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Through the proposed method, a sparse cross array with 45 + 45 sensors was achieved. The BP
satisfies the constraints well in both the near-field and the far-field. The experimental codes and results
are attached in supplementary materials. Table 1 provides a comparison of the sparse array results
between the proposed method and those proposed in [14,31].

Compared with the existing sparse cross array synthesis methods, the proposed method obtains a
smaller number of active sensors and achieves better BP performance. Moreover, the sparse cross array
syntheses in [14,31] are based on the simulated annealing (SA) algorithm and thus produce a different
result each time they are executed. In these methods, the number of iterations required to obtain an
optimal solution is large and unpredictable. The method proposed in this paper is not stochastic in
nature and thus does not suffer from these shortcomings.

Table 1. Comparisons of sparse cross array synthesis results among the proposed method and the
existing methods.

Method Ns 1 SLP (dB)
RES (◦) 2

Near-Field Far-Field

Liu et al. [14] 110 −18.7 −22 1.28

Zhao et al. [31]
1st optimization 118 −21.61 −21.9 1.28

2nd optimization 107 - −22 1.28

Proposed method 90 −23.67 −23.67 1.22

Ns 1: number of active sensors; RES 2: angular resolution at 300 kHz. SLP: sidelobe peak.

The BPs of the sparse cross array under different conditions are shown in Figure 7. In Figure 7a,
δ is 0 and the transmitting frequency is 300 kHz; in Figure 7b, δ is 0.083 and the transmitting frequency
is 300 kHz; in Figure 7c, δ is 0 and the transmitting frequency is 205 kHz; and in Figure 7d, δ is 0.083
and the transmitting frequency is 205 kHz.
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The transmitting BPs under different conditions are shown in Figure 8. In Figure 8a, δ is 0 and the
transmitting frequency is 300 kHz; the SLP is −23.67 dB and the MLW is 1.22◦. In Figure 8b, δ is 0.083
and the transmitting frequency is 300 kHz; the SLP is −23.67 dB and the MLW is 1.22◦. In Figure 8c, δ is
0 and the transmitting frequency is 205 kHz; the SLP is −23.82 dB and the MLW is 1.75◦. In Figure 8d,
δ is 0.083 and the transmitting frequency is 205 kHz; the SLP is −23.82 dB and the MLW is 1.75◦.
The experiment shows that in the same cross array, the SLP and MLW are related to the transmitting
frequency, but not to δ.Sensors 2020, 20, x FOR PEER REVIEW 11 of 17 
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The positions and weight values of the optimized active sensors at 300 kHz in the far-field are
shown in Figure 9 and Table A1 in Appendix A; the minimum spacing between sensors is 0.889λmin at
300 kHz; the array aperture of the proposed method is 249.42 mm (49.88λ at 300 kHz), which is slightly
larger than those of the methods in [14,31]. Therefore, the proposed method obtains higher angular
resolution. The number of active sensors in the transmitting array versus the number of iterations is
shown in Figure 10.
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3.2. Flat-Top BP Synthesis

A linear array with flat-top BP is employed, and a sparse linear array is synthesized using the
proposed methods. We compare the sparse array result with those in [29]. The aperture and sensor
spacing of the initial linear array are 14λ and 0.7λ, respectively. The main beam width is 40◦ and the
SLP of the shaped beam is constrained less than −35 dB. The parameter ε is set to 0.01.

Through the proposed method, a sparse linear array with 18 sensors was achieved. The beam
width (at −3 dB) is 41.4◦, and the SLP is −35.27 dB. Table 2 provides a comparison of the sparse array
results between the proposed method and those proposed in [29].

Table 2. Comparisons of flat-top BP synthesis results among the proposed method and the
existing methods.

Method Ns 1 SLP (dB) Beam Width (◦)

Liang et al. [29] 20 −33.25 41.0

proposed method 18 −35.27 41.4

Ns 1: number of active sensors.



Sensors 2020, 20, 4929 13 of 17

The flat-top BP of the sparse linear array is shown in Figure 11. The positions and weight values
of the optimized active sensors are shown in Table 3.
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Table 3. Positions and weight values of the sparse linear array with flat-top BP.

Position (λ) Weight Position (λ) Weight Position (λ) Weight

0.48 0.0080 4.93 −0.0685 9.05 −0.0753
0.78 0.0011 5.25 −0.0421 10.00 0.0169
1.14 0.0266 6.34 0.2849 10.40 0.0479
2.31 −0.0266 6.99 0.4608 11.68 −0.0272
3.58 0.0454 7.64 0.2938 12.85 0.0145
3.98 0.0225 8.74 −0.0365 13.26 0.0115

3.3. Asymmetric Sidelobe BP Synthesis

A linear array with asymmetric sidelobe BP is employed, and a sparse linear array is synthesized
using the proposed methods. We compare the sparse array result with those in [29]. The aperture and
sensor spacing of the initial linear array are 12λ and 0.6λ, respectively. The left SLP of the shaped beam
is constrained less than −35 dB and the right SLP of the shaped beam is constrained less than −25 dB.
The parameter ε is set to 0.01.

Through the proposed method, a sparse linear array with 14 sensors was achieved. The beam
width (at −3 dB) is 6.21◦. The left SLP is −37.01 dB and the right SLP is −26 dB. Table 4 provides a
comparison of the sparse array results between the proposed method and those proposed in [29].

Table 4. Comparisons of asymmetric sidelobe BP synthesis results among the proposed method and
the existing methods.

Method Ns 1 Left SLP (dB) Right SLP (dB) Beam Width (◦)

Liang et al. [29] 20 −37.02 −25.46 6.88

proposed method 14 −37.01 −26.00 6.21

Ns 1: number of active sensors.

The asymmetric sidelobe BP of the sparse linear array is shown in Figure 12. The positions and
weight values of the optimized active sensors are shown in Table 5.
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Table 5. Positions and weight values of the sparse linear array with asymmetric sidelobe BP.

Position (λ) |Weight| Weight (rad) Position (λ) |Weight| Weight (rad)

0.00 0.005 0.1284 5.57 0.1292 −0.0293
0.81 0.0188 0.5582 6.42 0.1225 −0.0334
1.51 0.0387 0.3489 7.26 0.1094 −0.0626
2.28 0.0625 0.2164 8.08 0.0885 −0.1500
3.07 0.0842 0.0674 8.91 0.0641 −0.1971
3.92 0.1040 0.1162 9.72 0.0388 −0.2684
4.75 0.1232 0.0733 10.48 0.0264 −0.5216

4. Discussion

The experimental results demonstrate that the proposed method is efficient for synthesizing a
sparse cross array in the near-field and far-field compared with the existing methods. The proposed
method introduces position perturbations via first-order Taylor expansion and optimizes the sensor
position and weight simultaneously. The proposed method enhances the degree of freedom for
candidate sensor positions; thus, the sparse array results and BP performance achieved are better
than those of existing methods. In Figure 9, since the PCO method is a deterministic optimization
and M = N = 500, the results of sparse transmitting and receiving arrays are equal under the same
condition. In Figures 7 and 8, the experimental results demonstrate that the BPs stay the same in the
near-field and far-field at the same transmitting frequency. BPs are related to transmitting frequency,
but not to δ. In Equation (15), wm is optimized independently at different λ and δ values. Referring to
Equation (4), when wm satisfies Equation (23) at the same λ, BPOT is the same at different δ values
(near-field and far-field).

wm(xm, δ, λ) = wm(x m , 0, λ)· exp(−i
πx2

m
λ

δ) (23)

Table 1. provides the positions and weight values of the sparse transmitting array at 300 kHz
(λ = 5 mm) in the far-field (δ = 0). Based on Equations (4) and (23), in Figure 8a,b, the transmitting BPs
are the same in the near-field and far-field at 300 kHz. Therefore, the experimental results verify the
effectiveness of the proposed method.

5. Conclusions

In this paper, an optimized method of sparse cross arrays synthesis was proposed and used
to design a 3-D sonar system. An MF algorithm was utilized to accomplish near-field and far-field
beamforming, with the near-field divided into several focus regions to simplify the calculation. A PCO
method was proposed for the synthesis of the aperiodic sparse cross array. The optimization method is
based on an iterative reweighted l1 minimization algorithm and uses first-order Taylor expansion to
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create the position perturbations of the sparse array to enhance the degree of freedom for candidate
sensor positions. The experimental results show that the proposed method obtains optimum results
for sparse cross array synthesis in both the near-field and far-field.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/17/4929/s1,
PCO_for_cross_array.m: experimental codes, A_f1_freq_i.mat: beamforming matrix, delta_x.mat and loc.mat:
positions of optimized sparse array, w_freq_i.mat: weight values of optimized sparse array.
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Appendix A

Table A1. Positions and weight values of the sparse transmitting array at 300 kHz in the far-field.

Position (mm) Weight (10−2) Position (mm) Weight (10−2) Position (mm) Weight (10−2)

0.1038 2.2558 96.6578 2.2060 167.1522 2.2554
19.3194 1.7564 101.4893 2.2573 171.9609 2.6090
24.2500 1.8013 106.1168 2.6589 176.7500 1.2704
29.1723 2.0939 110.8537 2.7175 181.5949 2.4367
33.8341 2.0196 115.2992 2.4747 186.2500 1.8669
38.7665 2.5215 120.2500 2.8603 191.2500 2.2790
48.4842 2.0765 124.7500 3.1827 196.0028 1.7698
53.2712 1.7036 129.2546 2.7464 200.9293 1.2983
62.9700 2.4015 134.1519 3.0842 205.9162 2.0464
67.8223 2.0669 138.6537 2.8710 210.7037 1.3387
72.7500 2.3144 143.5647 2.3834 215.5961 1.6287
77.3822 2.7078 148.1585 3.1962 220.5116 1.0982
82.2757 2.3153 152.8504 2.3721 225.2500 1.4520
87.1984 2.1662 157.6643 2.5370 230.1645 1.5396
91.8423 2.8201 162.4364 2.4557 249.5222 2.0865
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