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Abstract: The benefits of automatic identification technologies in healthcare have been largely
recognized. Nevertheless, unlocking their potential to support the most knowledge-intensive medical
tasks requires to go beyond mere item identification. This paper presents an innovative Decision
Support System (DSS), based on a semantic enhancement of Near Field Communication (NFC)
standard. Annotated descriptions of medications and patient’s case history are stored in NFC
transponders and used to help caregivers providing the right therapy. The proposed framework
includes a lightweight reasoning engine to infer possible incompatibilities in treatment, suggesting
substitute therapies. A working prototype is presented in a rheumatology case study and preliminary
performance tests are reported. The approach is independent from back-end infrastructures.
The proposed DSS framework is validated in a limited but realistic case study, and performance
evaluation of the prototype supports its practical feasibility. Automated reasoning on knowledge
fragments extracted via NFC enables effective decision support not only in hospital centers, but also
in pervasive IoT-based healthcare contexts such as first aid, ambulance transport, rehabilitation
facilities and home care.

Keywords: decision support; ubiquitous healthcare; knowledge graph; automated reasoning;
near-field communication

1. Introduction

Automatic identification (AutoID) technologies rely on information stored on transponders
(tags) and retrieved by interrogator devices (readers) through contactless short-range radio signals.
Widespread AutoID technologies include Radio Frequency IDentification (RFID) [1] and Near Field
Communication (NFC) [2]. Tags can be applied to or incorporated into objects, animals, or people
for identification and tracking. They typically contain: (i) either a unique code, which is read
by the interrogator and used to identify the associated object/subject or (ii) a Uniform Resource
Identifier (URI) to trigger interactions with Web applications/services. Technological progress in
transponder miniaturization, power consumption and memory availability opens new interesting
implementation possibilities [3]. If tagged items could expose an articulated annotation to readers
instead of a simple numeric identifier, they might self-describe without depending on a centralized
information server [4]. This would be particularly useful in case: (i) a stable network connection
toward the remote information repository is not available; (ii) accessing information regarding the
object/subject requires maximal availability and minimal latency; (iii) data stored within the tag has to
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provide an expressive representation of object/subject features and capabilities to enable knowledge
inference.

All the above situations are specifically relevant in ubiquitous healthcare (u-healthcare),
which includes applications and services both for clinical facilities and for tele-medicine,
tele-rehabilitation, and tele-homecare. In fact, AutoID technologies are increasingly adopted in
healthcare management systems as well as (self-)diagnosis, (self-)medication and assistive solutions [2].
Within hospital premises, current benefits mainly consist in error prevention in tracking equipment,
identifying staff, and regulating access to various locations for patients and practitioners [5]. A more
advanced exploitation of mobile and pervasive computing technologies like NFC—supported by
innovative Human–Computer Interaction (HCI) paradigms— could further enhance their impact in
e-healthcare, but there is no systematic framework yet for incorporating them.

This paper presents a ubiquitous Decision Support System (DSS) for innovative healthcare
solutions, based on a semantic enhancement of NFC standards. The proposed framework helps
physicians validate, confirm and choose the best personalized therapy for the patient’s medical record.
The NFC Data Exchange Format (NDEF) [6] of the NFC Forum has been extended to enable support
for knowledge representation. The Web Ontology Language (OWL) version 2 [7] by the World Wide
Web Consortium (W3C) is the adopted knowledge formalism. Any enhancement ensures compatibility
with legacy NFC applications. NFC tags attached to, e.g., pharmaceuticals packaging and patients’
NFC wristbands become able to store semantic metadata, which are exploited in a matchmaking
process evidencing possible problems in a given therapy with respect to the clinical profile of the
patient, as well as recommending further personalized treatment options to the healthcare practitioner.

The proposed framework complies with Cyber-Physical System (CPS) precepts in pervasive
Internet of Things (IoT) contexts. A background knowledge model, exploiting and expanding a given
medical Knowledge Graph (KG), provides the needed terminology for non-standard deductions [8].
By exploiting NFC and mobile computing devices, straightforward HCI patterns are applicable to
a range of u-healthcare contexts. They include not only hospital centers, but also rehabilitation
facilities, homecare and even fully mobile scenarios such as first aid and ambulance transport. Main
contributions of the proposed DSS framework and system prototype concern:

• A mobile and pervasive IoT architecture for context-aware decision support;
• A knowledge model for patient case history, diseases and treatments congenial to automated

inference and extensible to every medical branch;
• Adaptation of NFC to store semantic descriptions of patient case history and medications;
• Non-standard inferences set for semantic matchmaking in healthcare;
• A mobile user interface that provides context-aware automatic decision support during normal

therapy management workflows with visual suggestions and cues.

Both NFC and RFID AutoID technologies could be adopted theoretically in the proposed DSS.
NFC has been preferred by virtue of its ability to protect sensitive healthcare information from
eavesdropping and man-in-the-middle attacks—due to short radio range—and to support bidirectional
interactions [9]. Furthermore, NFC technology is universally standardized at the 13.56 MHz UHF
(Ultra-High Frequency) band, while several RFID standards exist for specific classes of use cases,
adopting different protocols and frequency bands. This has facilitated the integration of NFC reader
functionalities in a significant portion of currently available mobile devices (smartphones, tablets),
which are immediately compatible with the proposed DSS. Conversely, RFID reader peripherals or
dedicated devices should be purchased to enable the proposed vision. Moreover, all NFC tags are
passive, i.e., they need no power source to work: this helps drive costs down with respect to active
RFID tags. The framework architecture and HCI workflows have been designed to mitigate the main
challenges of NFC, which make it unsuitable to other scenarios:

• The very short communication range of NFC becomes a benefit rather than an issue in this case,
due to the above security reasons.
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• Data compression techniques integrated in the framework cope with the limited data storage
space of NFC tags.

• The maximum data transfer rate of NFC is 424 kbit/s, slower than other wireless protocols.
Nevertheless, the reduced size of annotations allows a rapid data exchange between applications
and NFC tags.

• One NFC tag can be scanned at a time, whereas RFID protocols allow multiple tags to be scanned
simultaneously. This is not a problem, however, since healthcare professionals exploiting the
framework always interact with one patient at a time.

• NFC is unfitting for asset tracking applications: RFID remains a better choice for that kind of
scenarios in healthcare facilities, but the proposal in this paper does not need item tracking.

The remaining of the paper is organized as in what follows. The next section discusses relevant
related work on NFC and DSSs in the healthcare field. Section 3 describes the proposed approach,
outlining the system architecture and decision support framework. Section 4 illustrates the system
prototype and clarifies benefits of the proposal in two example scenarios extracted from a rheumatology
case study. Finally, Section 5 reports on system evaluation before conclusion.

2. Related Work

In healthcare, different types of practitioners interact with patients in various activities, which
are typically coordinated in complex workflows, possibly involving several territorial Point-of-Care
(POC) facilities [5,10]. Capabilities of NFC technology [9] can be leveraged to improve healthcare
operations. Within a hospital, readers can be deployed at key points of passage and locations to track
staff, equipment and patients tagged with NFC transponders. Actions triggered or recognized via
smart devices can be logged automatically, thus avoiding lengthy and error-prone manual data input
by personnel. Research studies and pilot projects have pointed out critical design and implementation
issues [11,12] and have evaluated the impact of such infrastructures in ordinary hospital activities [13]
as well as in Intensive Care Units (ICUs) [14]. This increases security and safety by automating checks
for authorization enforcement and prevention of human error, respectively, in critical activities like
medication administration [15]. Furthermore, medicine counterfeiting can be prevented [16] and
NFC-enabled wearable biosensors have been proposed [17,18]. So far, however, NFC has not been
exploited in more knowledge-intensive healthcare tasks, such as Clinical Decision Support (CDS).

The integration of radio-frequency devices with other pervasive computing technologies—such
as communications protocols and wireless sensor networks—is leading to further innovative
applications in the tele-medicine area [19], particularly for ubiquitous persistent monitoring [20,21]
Context-awareness is the key aspect of such approaches to improve quality of healthcare services.
Challenges and benefits have been clearly evidenced since the earliest RFID-based HMS (Healthcare
Management System) prototypes [22]. The HMS in [23] exploited NFC tags to store patients’ basic data
created during the first hospital admission. On the other hand, patient’s clinical history was stored only
in the hospital database and the doctor obtained access during visit or medication prescription by using
the patient’s NFC tag as a key; NFC was used to authorize wearable sensors to store tele-homecare
measurements in the hospital database as well. Similarly, in [24] NFC tags attached to hospital beds
stored unique hashes for accessing patients’ electronic health records in the hospital information
system and ensuring proper staff authentication and authorization. A smartphone app assisted
nurses in medication delivery, but it only allowed checking delivered medications off the patient’s
prescription list; no medication appropriateness check could be performed. Likewise, the bedside
medication administration system in [15] exploited NFC armbands to check the so-called “five rights"
(giving the right medication to the right patient in the right dose by the right route at the right time)
with lower error rates than other methods, thanks to context-aware nurse interaction, but it did not
facilitate checking medication interactions and contraindications: this remained a challenging task
for nurses, as it required pharmacological knowledge. Another security-focused IoT HMS is in [25],
designed to provide decision support in remote health monitoring. The system performed anomaly
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detection through Support Vector Machines (SVM) machine learning technique; correlation between
pairs of sensor data streams was exploited to cope with missing values and to provide decision
support in case of anomaly. The latter, however, relied on “medical rules” which were assumed but
neither formalized nor integrated in the proposed framework: that limitation highlights the need for
knowledge-based CDS like the one proposed in this paper. All the above systems, in fact, provided
only basic identification features and lacked more advanced knowledge-based capabilities.

Computerized CDS is acknowledged among the most significant benefits of medical informatics [26].
Specifically, research suggests rule-based and artificial intelligence systems can help health practitioners
avoid diagnosis and treatment errors [27]. Nevertheless, the first generation of Computerized Physician
Order Entry (CPOE) systems was mostly based on manual data entry and a fragmented collection of
non-integrated utilities. Experience, however, has taught the overall effectiveness of CDS depends on
multifaceted context, system and implementation factors [28], as “decision support is highly effective
only when it is automatic and seamless” [26]. A recent systematic review [29] has found three factors
making CDS more effective: automatic provision of decision support, on-screen display of advice
and patient-specific suggestions. The requirement of greater levels of personalization in CDS is in
accordance with findings that the adoption of computerized medical systems appears to yield poorer
outcomes for atypical cases [30].

Semantic-based technologies are a key enabler of personalized and adaptive systems [31]. In the
healthcare sector, they can be leveraged to ensure that physicians get highly significant information
about the clinical status of a patient and the most appropriate treatments for the specific case, thus
supporting unobtrusive and context-aware decision support services for therapy management. So far,
semantic-based frameworks exploiting NFC have been mostly focused on capturing context-awareness
information [32] or personalizing application functionality [33]. In these works, however, NFC was
used just as a HCI facilitator: it conveyed merely low-level data either used to trigger semantic-enabled
information processing or collected to be analyzed through ontology-based models. No information
with explicit semantics was manageable on transponders. In [34] NFC wristbands were used to
store patients’ health data which could be read or updated by the various practitioners in a hospital
facility. While data mobility enabled designing clinical processes as workflows in a multi-agent system
architecture, the lack of formal and structured information representation prevented automating
knowledge-intensive tasks. On the contrary, the early RFID-based system in [22] provided decision
support capabilities in therapy assignment, although relying only on exact matches between the list
of adverse effects in a medicine record and the list of diseases and allergies in a patient’s record,
both retrieved from a centralized database through Structured Query Language (SQL)-like queries.
Logic-based matchmaking enables detecting also risks that are not explicit, but are consequences of
modeled knowledge concerning pharmaceuticals and diseases.

The use of widely-adopted KR languages and technologies—borrowed from the Semantic
Web initiative and adapted for efficiency in resource-constrained mobile contexts—can promote
interoperability and integration of solutions designed for hospital centers hosting tele-medicine
applications: an example can be found in [35], presenting an Ambient-Assisted Living (AAL) IoT
platform exploiting the oneM2M standard [36] for semantic interoperability in distributed systems.
Physical objects and devices are represented by virtual objects (VOs), annotated with respect to the
oneM2M Base Ontology (available at https://git.onem2m.org/MAS/BaseOntology) in OWL language,
serialized in JSON (JavaScript Object Notation) or XML (Extensible Markup Language) syntax. VOs can
be discovered by means of SPARQL [37] queries and composed through a semi-automatic tool,
exploiting a customized OWL-S [38] (Semantic Markup for Web Services) ontology. Unfortunately,
the proposal only supports full match in VO discovery and composition: the lack of approximate
match support limits recall—and thus, usefulness—in practical contexts, where objects are highly
heterogeneous and annotations should be as detailed as possible to enhance the precision of retrieval.

As pointed out in [39], pervasive computing technologies allow gathering health data at
an unprecedented scale: knowledge-based approaches can assist in the management, analysis

https://git.onem2m.org/MAS/BaseOntology
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and interpretation of such data for research purposes and/or to improve clinical best practices.
The framework presented in [40] and updated in [41] took a first step in this direction, by combining a
semantic-based enhancement of EPCglobal RFID protocol with healthcare decision support features
based on Knowledge Representation (KR) technologies. This paper updates the above frameworks
from several viewpoints: (i) technological, by integrating currently pervasive mobile devices and
NFC communication; (ii) algorithmic, by expanding the inference capabilities and adding new
decision support features; (iii) standardization, by adopting OWL instead of DIG (Description Logic
Implementation Group) language as well as providing a clearer and more complete specification of the
proposed Knowledge Graph to support inferences, also referencing well-known KGs in the medical
domain as per Linked Data best practices [42].

Pervasive computing technologies are prevalent in decision support systems for remote health
monitoring and tele-homecare, which rely on methods for AAL and Human Activity Recognition
(HAR). Differently from the above proposal [25] relying on machine learning, the AAL DSS in [43]
adopts a knowledge-based approach, using semantic representations of dwellers and domestic
environments to recommend the adoption of home appliances able to assist elderly people in coping
with their limitations and living an independent life. Like in this paper, the International Classification
of Functioning, Disability and Health (ICF) framework of the World Health Organization (WHO) [44]
is exploited to characterize individual impairment levels. Dweller and appliance profiles are annotated
with reference to an OWL ontology. The discovery of appliances suitable to help dwellers occurs
through SPARQL queries based on Semantic Web Rule Language (SWRL) [45] rules: unfortunately,
the system can retrieve full matches only, while the approach proposed in this paper ranks approximate
matches as well, by means of non-standard inferences, when retrieving treatment options.

Machine learning (ML) is increasingly adopted for HAR. In [46] nine well-known ML techniques
were compared in a HAR problem with two different frameworks, based on wearable sensors and
smartphone sensors respectively. SVN provided the best results in both tests; unfortunately, it is a
black box technique, i.e., the trained model is not transparent and the outcome is a trivial classification
label, without interpretable information annotation. This affects other machine learning approaches
as well [47], preventing both outcome explainability and integration with knowledge-based systems
like the one proposed in this paper. A semantic-based posture and gesture recognition system can
be found in [48], based on popular three-dimensional (3D) motion sensors like Asus Xtion Pro Live:
sequences of skeleton representations returned by the sensing device are annotated with respect to an
OWL ontology, so that it undergoes semantic matchmaking with a knowledge base of attitude and
gesture templates to retrieve the best matching ones.

Table 1 summarizes the comparison of the proposed approach with related systems integrating
identification and/or tracking technologies. With the exception of [41,48], other works provide only
exact query support or machine learning black-box algorithms, lacking ranking and explanation
capabilities. While this work is an upgrade of [41] in several aspects, ref. [48] has some similarities as a
knowledge-based system, but the underlying sensing technologies (Kinect vs. NFC) and use cases
(HAR vs. CDS) are different. Finally, it is useful to remark how this work, refs. [35,43] demonstrate the
benefits of Linked Data by leveraging and expanding well-known ontologies.
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Table 1. Comparison of the proposed approach with related Clinical Decision Support systems.

Work Year Main Use Cases AutoID or Tracking
Technology

Repre- Sentation
Language

Decision Support
Mechanism Match Types Resource Ranking Main Contribution

[22] 2009
Patient location tracking, med-
ication verifi- cation, inventory
management.

RFID (simulated) N/A SQL-like query Exact only No Early RFID- based HMS with
rigorous design and test.

[41] 2010 Medication administration and
verification.

EPCglobal RFID
(simulated)

Semantic (DIG, in
XML syntax) Semantic match- making Exact, approx- imated Yes

Non-standard inferences for
patient-medica- tion verification
and discovery.

[23] 2017
Patient admis- sion, remote health
mon- itoring, medica- tion
prescription.

NFC N/A SQL-like query Exact only No Integration of NFC and wire- less
sensors.

[34] 2017 Patient admission, visit, treatment. NFC N/A SQL-like query Exact only No Multi-agent architecture for clinical
process design.

[35] 2017 Ambient-assisted living. NFC, general IoT
sensors

Semantic (OWL, in
JSON or XML syntax)

SPARQL query, OWL-S
composition Exact only No Virtual objects, semantic-based

service composition.

[24] 2019 Medication prescription and
administration. NFC N/A SQL-like query Exact only No Secure mutual patient-staff

authentication.

[15] 2018 Medication administration and
verification. NFC N/A SQL-like query Exact only No Rigorous de- sign and tests with

nurses.

[25] 2020 Remote health monitoring. General IoT sensors Numeric SVM + correlation + rules Exact, approx- imated No Secure authen- tication, anom- aly
detection, cope with missing data.

[43] 2018 Ambient-assisted living. General IoT sensors Semantic (OWL) SPARQL query + SWRL
rules Exact only No Semantic-based personalized

appliance discovery.

[48] 2019 Human Activity Recognition. 3D motion sensor
(Kinect) Semantic (OWL) Semantic match- making Exact, approx- imated Yes Posture/gesture recognition via

semantic matchmaking.

[46] 2020 Human Activity Recognition. General IoT sensors
(simulated) Numeric Machine learning Exact, approx- imated No Comparison of machine learn- ing

techniques.

This paper 2020 Medication administration and
verification. NFC Semantic (OWL, in

various syntaxes) Semantic match- making Exact, approx- imated Yes
Verification of medication
interactions and contraindi- cations
via non-standard inferences.
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3. Proposed Approach

In the following subsections, both architecture details and the algorithms supporting the DSS
inferences are presented.

3.1. Architecture

As depicted in Figure 1, the proposed clinical decision support system runs on a mobile device
(smartphone or tablet) equipped with: (i) NFC reader peripheral for extracting annotated descriptions
stored in NFC tags attached to patients’ wristbands, caregivers’ badges, pharmaceutical packagings and
medical equipment; (ii) touchscreen for interaction with the caregiver, via a Graphical User Interface
(GUI); (iii) a lightweight embedded reasoning engine [8], providing an optimized implementation of
standard and non-standard inference services. The above core architectural elements do not require
centralized back-end infrastructures. Consequently, the proposed framework allows on-the-fly, in-place
decision support to caregivers not only within hospital premises, but also in rehabilitation facilities,
for (tele-)home care and in ambulances.

NFC Reader

Embedded 
Matchmaker

Touch-based
UI

Medication

Caregiver

Patient

Mobile DSS

NFC

NFC

NFC

interacts with

Figure 1. Clinical decision support system architecture.

The groundwork for the overall infrastructure consists in a semantic enhancement of the NFC
protocol. All tags compliant with the NDEF standard [6] can be used to host semantic descriptions
and data-oriented contextual parameters. Through novel exploitation of the NDEF record fields,
no modification is needed to standard NFC equipment and communication primitives, so allowing
u-healthcare deployments to save on hardware investments. Basically, each NDEF message contains
multiple records whose format is shown in Figure 2. The Type Name Format (TNF) field is a 3-bit
identifier of the type and the content of a record, as reported in Table 2. The proposed approach
exploits Multipurpose Internet Mail Extensions (MIME) record type (TNF = 2) to share rich and
unambiguous semantic annotations about relevant healthcare entities. Web Ontology Language
(OWL) 2 [7] has been adopted as reference language. As OWL provides different serialization
syntaxes, the following standard MIME types can be specified in the Type field of the NDEF
record to identify the right format of the annotation carried in the Payload: application/rdf+xml
for RDF/XML [49]; application/owl+xml for OWL/XML [50]; text/owl-functional for functional-style
syntax [51]; text/owl-manchester for Manchester syntax [52]; text/turtle for Turtle syntax [53]. A record
ID is also associated to each NDEF message—as shown in Figure 2—to unambiguously identify the
payload. Only the first record in a message contains the ID, whereas for subsequent ones this field will
be empty. The identifier is generated according to the unique Internationalized Resource Identifier
(IRI) of the reference knowledge graph (KG) and the selected task (e.g., retrieve patients, caregivers or
pharmaceutical annotations). In this way, a reader is able to purposely filter given messages. Moreover,
the framework supports compression algorithms (detailed in Section 5) aiming to decrease the size of
OWL annotations, fitting the limited memory amounts of current NFC tags.
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7 6 5 4 3 2 1 0
MB ME CF SR IL TNF

TYPE LENGTH
PAYLOAD LENGTH (4 Bytes)

ID LENGTH
TYPE
ID

...PAYLOAD...

Figure 2. Structure of NDEF records.

Table 2. NDEF Type Name Format values.

TNF Name Description

0 Empty No payload data, typically used for newly formatted tags.

1 Well-known Payload data format defined by the Record Type Definition (RTD) specification [54].

2 MIME Payload data format specified through a MIME type.

3 URI Reference to a resource identified by a generic Uniform Resource Identifier (URI).

4 External User-defined data defined according to the RTD specification.

5 Unknown Unknown data format, in this case the type length field is always zero.

6 Unchanged Used for chunked record, the specific TNF is defined in the first record of the chunked set.

7 Reserved Reserved for future use

3.2. Knowledge Graph Modeling

The Entity-Relationship diagram in Figure 3 provides a high-level view of the Knowledge Graph
(KG) underlying the proposed framework. Each instance of patient, caregiver and treatment is
described by an annotation along with a set of quantitative attributes. Annotations are stored in
individual NFC tags.

Patient Treatment Caregiver

Ontology
Extra-logical
propertyreferences contains

Instance

Figure 3. Knowledge model.

Description Logics (DLs) are a family of logical languages adopted as reference formalism in the
proposed framework—the readership is assumed to be familiar with basics of DLs and is referred
to [55] for examples and wider argumentation—and specifically the OWL 2 subset whose semantics
maps to the ALN (Attributive Language with unqualified Number restrictions) DL. The proposed
KG is composed by: (i) a formal conceptual model of the medical domain (the ontology a.k.a.
Terminological Box T in DL words), shown in Figure 4 and intended as background knowledge
for the DSS; (ii) assertions about instances (a.k.a. the Assertion Box), i.e., patients’ medical record and
pharmaceuticals annotations, retrieved on-the-fly via NFC. In detail the KG is structured as:

• Ontology (T ):

– Anatomy: taxonomy of body structures and systems;
– Taxonomy of treatment classes, enriched with general adverse effects and interactions (either

positive, negative or dangerous ones) with other treatment classes;
– Taxonomy of diseases, related with affected body structures and typical treatment classes;
– Healthcare professional specialties.

• Instances:
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– Healthcare practitioner’s profile;
– Patient’s medical record: general information (e.g., age), disease(s) and current treatment(s);
– Treatment description, particularly treatment class and specific adverse effects.

(a) Anatomy (b) Treatments (c) Diseases

Figure 4. Conceptual model of the medical domain.

According to Linked Data principles and best practices [42], the proposed Smart Health (SH) KG
(available at http://sisinflab.poliba.it/swottools/onto/sh/) reuses and combines well-known KGs.
Basically, the Systematized Nomenclature of Medicine—Clinical Terms (SNOMED-CT) [56] has been
adopted as upper ontology to model the taxonomy of both human anatomy and medical specialties.
Moreover, specific clinical terms have been borrowed from the Uber Anatomy Ontology (UBERON) [57]
and the Foundational Model of Anatomy (FMA) [58], extending the basic anatomical taxonomy with
additional entities about human systems. The Ontology for General Medical Science (OGMS) [59] has
been referred for terms pertaining to diseases, diagnoses and clinical phenotypes; Human Disease
Ontology Identifiers (DOID) [60] for modeling concepts for human disease representation; the Chemical
Entities of Biological Interest Ontology (ChEBI) [61] for proposing a structured classification of chemical
compounds useful to feature medicines.

Since the system validation has been conducted in a rheumatology ward (see Section 4), the KG
includes a complete model only for connective tissue diseases, a specific class of rheumatic pathology.
Other disease classes have been modeled using more generic concepts. This has allowed to control the
modeling effort while being able to fully evaluate the effectiveness of the proposed knowledge-based
approach for decision support, albeit in a single medical branch. By extending the KG along the
adopted patterns, other diseases and therapies can be modeled in order to expand the domain
knowledge to further medical fields.

Extra-logical data-oriented attributes are used to integrate and refine the automated reasoning
outcomes, in order to take context-aware parameters into account in decision support. They are
modeled as OWL annotation properties related to the instances of patients, caregivers and medicines.
Also in this case, well-known semantic vocabularies have been exploited. For patients: name, surname,
gender and weight are defined through the schema.org vocabulary [62]; age is modeled following the
FOAF specification [63]; severity of condition is represented in a scale from 0 to 4, following the WHO
ICF framework [44]. Figure 5 shows an example of patient model. As depicted in Figure 6, attributes
for pharmaceuticals include: name, manufacturer and generic description defined by schema.org;
dosage and frequency of adverse effects using the drugUnit and warning properties of the Health and
Lifesciences vocabulary (https://health-lifesci.schema.org/), an extension of schema.org proposed

http://sisinflab.poliba.it/swottools/onto/sh/
https://health-lifesci.schema.org/
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for medical entities; Anatomical Therapeutic Chemical (ATC) identification code, based on the WHO
ATC classification system [64]; AIC code (https://www.fascicolosanitario.gov.it/sistemi-codifica-dati/
informazioni/aic), an authorization number issued by the Italian Drug Agency (Agenzia Italiana per
il Farmaco, AIFA) for verifying the authenticity of a medicine package. The last two attributes refer
to specific properties defined in the Smart Health KG as sub-properties of schema:code provided
by schema.org. Finally, caregivers’ annotations include name, surname and description in terms of
position or task.

sh:Salvatore_Panda

“Salvatore” (xsd:String)

schema:name

“Panda” (xsd:String)

schema:familyName

“M” (xsd:String)

schema:gender

“100” (xsd:short)

schema:weight

schema “26” (xsd:short)

foaf:age foaf

“3” (xsd:byte)

sh:disabilityIndex

sh

Figure 5. Example of context-aware attributes modeling for patients.

sh:Cortisone

“Cortisone Acetate ” 
(xsd:String)

schema:name

“Cortisone Acetate Tablets 
25 mg” (xsd:String)

schema:description

“Teofarma S.r.l.” (xsd:String)

schema:manufacturer health:drugUnit

schema

“6” (xsd:byte)

health:warning

“H02AB10” 
(xsd:String)

sh:atcCode

“25” (xsd:short)

health

“004561015” 
(xsd:String)

sh:aicCode sh

Figure 6. Example of context-aware attributes modeling for medications.

3.3. Reasoning for Healthcare Decision Support

Non-monotonic inference procedures in [55] are leveraged to discover suitable treatments for a
given patient’s disease, personalized for the individual medical history. The matchmaking engine [8]
embedded in the DSS is able to compute a score based on the semantic consistency between patient’s
disease(s) and available medication profiles, in order to: (i) detect possible incompatibilities between
a proposed therapy and the patient’s condition; (ii) find out interactions with treatments the patient
is already undergoing, which may result in lower therapy effectiveness or health risks; (iii) rank
treatment options by appropriateness; (iv) explain the outcomes of matchmaking in all cases.

The proposed framework compares DL concept expressions for a patient’s medical profile P
and a medication description D by means of Concept Contraction (CC) and Concept Abduction
(CA) non-standard reasoning services [55]. Particularly, in case of a partial match between D and P
(i.e., D and P clash in some part), the result of CC is a pair 〈G, K〉 representing what has to be given up
(i.e., retracted) G and what can be kept K in D, respectively, in order for K to achieve a potential match
with P. Basically, G consists in the elements of D conflicting with P, while K is the (best) contraction of
D compatible with P. On the other hand, in case of a potential match of D with P (i.e., there are no
conflicting aspects, but P does not completely satisfy D), CA returns the concept H representing what
has to be hypothesized in P to reach a full match with D (or its contracted version K). Penalty scores

https://www.fascicolosanitario.gov.it/sistemi-codifica-dati/informazioni/aic
https://www.fascicolosanitario.gov.it/sistemi-codifica-dati/informazioni/aic
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computed on G and H are associated to Concept Contraction and Concept Abduction, respectively,
and formal minimality criteria exist to give up or hypothesize as little as possible [55].

The final purpose of the proposed approach is to assess how much a given medication fits the
patient’s diseases, in order to provide therapy decision support to practitioners. This is achieved by
enriching the disease annotation with pharmaceutical classes appropriate to treat the disease itself.
This allows Concept Abduction to check whether a given treatment is appropriate or not. Moreover,
descriptions of diseases and treatments use disjoint concepts to refer to affected bodily organs and
systems. In this way, if a given pharmaceutical exhibits adverse effects for the specific patient’s profile,
the Concept Abduction check will fail due to semantic inconsistency and the Concept Contraction
algorithm will detect what parts of a therapy annotation are the cause of the contraindication. A similar
approach, based on disjoint concepts, is adopted also to detect interactions between the new treatment
to be administered and previous treatments the patient is already undergoing.

Figure 7 shows the DSS workflow for therapy verification. Steps are summarized hereafter:

1. The system executes Concept Abduction of treatment description D with respect to patient’s
profile P, both extracted via NFC:

1.a. If D and P are compatible (i.e., their conjunction D u P is satisfiable with respect to the
reference ontology T ), the proposed therapy is approved;

1.b. If D and P are incompatible, instead, Concept Contraction extracts the contraindications
and the therapy interactions of the treatment;

2. The patient’s profile is submitted to a matchmaking process against treatments defined in the KG
in order to find a new medication D′; this step yields a list of substitution therapy options sorted
by relevance. Penalty functions associated to CA and CC solutions [55] are used to measure
the semantic distance (hence the affinity level) between the patient’s medical profile and each
medication annotation;

3. In order to improve flexibility of decision support, the semantic distance is combined with
context-specific variables through a utility function, whose details are provided in Section 4.
Results are ranked according to the overall score.

MEDICATION
ANNOTATION

PATIENT’S
MEDICAL PROFILE

EMBEDDED
MATCHMAKER

CONCEPT 
ABDUCTION

COMPATIBILITYINCOMPATIBILITY

THERAPY
CHECKED

ADVERSE EFFECTS

CONCEPT 
CONTRACTION

DISPLAY 
ADVERSE 

INDICATIONS

SEMANTIC MATCHMAKING with
PENALTY FUNCTIONS

ADVERSE EFFECTS FREQUENCY

AGE ICF SCORE

CONTEXTUAL PROPERTIES

RANKED LIST OF
SUBSTITUTION 

THERAPIES

UTILITY FUNCTION

THERAPHY CONFLICTS

2a
1

2b
3

4

Figure 7. Reference framework for therapy verification.
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4. Case Study

A fully functional mobile prototype has been developed using Android SDK Tools (revision
26.1.1) for the Android Platform version 8.1 (Application Programming Interface—API—level 27).
Illustrative examples should clarify the proposed framework by presenting the therapy verification
and decision support workflow in a rheumatology unit, with patients affected by connective tissue
diseases. Let us consider two purportedly simple examples:

Example 1. A patient named S. P. has paraneoplastic dermatomyositis (PDM) and anemia. This is expressed
(in OWL 2 Manchester syntax) with respect to the DSS KG as:
S_P: PDM and Anemia

A practitioner approaches his/her bed with a mobile device running the decision support system.
The doctor activates the system by placing the NFC reader near his/her badge. Information extracted
from the embedded tag is shown and authorization is checked. If the DSS is activated by an
unauthorized person—e.g., a medical student or a physician from another ward—it blocks interaction
with an alert and logs the event. In a similar way, the patient’s profile is retrieved by placing the
mobile device near his/her NFC wristband and it is shown on the screen (Figure 8a). The doctor
intends to administer cortisone as therapy. During therapy assignment, the DSS supports physicians
by retrieving the proposed therapy annotation from the KG, while during therapy administration
it assists practitioners—e.g., nurses—by checking the medicine annotation extracted from the NFC
tag on the package. In either case the mobile graphical user interface (GUI) shows basic information
stored in the tag as displayed in Figure 8b. In the example, the semantic annotation for cortisone
includes potential adverse effects towards eyes, bones and cardiovascular system:
Cortisone: Corticosteroid and (therapy only Corticosteroid) and (affects only (Eye
and Bone and CardiovascularSystem))

S. P. is affected from a blood disease, while the KG ontology specifies PDM can affect the circulatory
and skeletal systems. Attention is required in the treatment of PDM with cortisone. When the doctor
touches the “continue" button, the system performs this inference automatically and issues a warning
along with the semantic-based affinity level between cortisone and the patient’s profile (Figure 8c).
In the example, the algorithm in Section 3.3 produces the following result:
Give up: affects only (CardiovascularSystem and Bone)
Keep: Corticosteroid and (therapy only Corticosteroid) and (affects only Eye)

According to the inference outcome, the embedded matchmaker computes penaltyCA with
the patient’s description. If it detects incompatibility, it executes Concept Contraction to extract
the conflicting Give-up part of the request and evaluates the induced penaltyCC value, then it
computes penaltyCA again on the remaining Keep part. An overall score combination function (a.k.a.
utility function) combines results of the matchmaking framework with the following context-specific
parameters:

1. Patient’s age;
2. Incidence rate of medication adverse effects;
3. WHO ICF severity of patient’s disease-related impairment, represented in integer scale as follows:

0 = no impairment, 1 = mild, 2 = moderate, 3 = severe, 4 = complete [44].

The utility function is defined as follows:

fsc =
penaltyCC+penaltyCA

maxpenaltyCA
· tanh age

α · severity · tanh adv_rate
β

Since penaltyCC and penaltyCA are computed as semantic distance measures, also the overall
function is modeled to represent better matches with lower values. The first factor measures the
compatibility of medications with the patient’s medical profile: in particular, maxpenaltyCA is the highest
Concept Abduction penalty among all medications in the KG (i.e., the least effective treatment).
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The next two factors take into account the fact that, in general, patients with younger age or lower ICF
impairment can tolerate treatments better (notice that the model does not apply to pediatric patients).
Contraindications are modeled in the final factor, with adv_rate the number of occurrences of adverse
events per 100 patients. the Weights α and β are tunable: empirical evaluation has suggested values
α = 50 and β = 10.

The description of the conflicting characteristics is shown in the Adverse Effects tab depicted in
Figure 8d, highlighting anatomical parts actually affected by the administration of the medication.
The final decision is left to the doctor, who can confirm the therapy or query the DSS for additional
treatment options. In the latter case, by applying the above inference task to the other medication
instances in the KG, the system returns an ordered list of substitution therapies as depicted in Figure 8e,
which is shown to the physician in the "Suggestions" tab. For each treatment, the GUI displays the
affinity score, calculated through the above formula and converted into an ascending [0, 100%] range,
the incidence rate of adverse events and an explanation section showing possible adverse effects and
interactions of the substitution therapy. In our running example, adalimumab differs from cortisone as
it is an Anti TNFα, but it is equally suitable for PDM. Also in this case the system identifies its risks
related with the medical profile of patient S. P. and displays them as in Figure 8f; however adalimumab
is preferable as its adverse events incidence rate is lower (1 in 100 vs. 6 in 100). The physician selects
an appropriate therapy. By scanning the NFC tag in the patient’s transponder again, the mobile device
stores the updated profile including the assigned therapy.

(a) Patient’s information (b) Medication profile (c) Inference result

(d) Personalized contraindications (e) Substitution therapies (f) Medication profile

Figure 8. Screenshots of the mobile DSS user interface for Example 1.
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Example 2. The second example aims to clarify how the proposed system manages conflicts that could occur
between a new therapy and the ones the patient is already undergoing. The profile for patient C. C. includes
information about the medication(s) s/he already assumes, namely a beta blocker. As shown in Figure 9a,
the patient is affected by a mild form of Systemic Lupus Erythematosus (SLE) and a generic disease of the
muscular and skeletal system. This is expressed with the following formula:
C_C: MildSLE and MusculoskeletalSystemDisease and (seriousEffect only BetaBlocker)
and (reduces only BetaBlocker) and (reducedBy only BetaBlocker) and (increases only
BetaBlocker) and (increaseBy only BetaBlocker)

A rheumatology nurse tries to give her ibuprofen (a nonsteroidal anti-inflammatory drug, NSAID).
For this patient the system is able to recognize not only the adverse indications between the new
medicine and the patient’s diseases, shown in Figure 9b like in the previous example, but also possible
undesired therapy interactions: matchmaking of ibuprofen and the patient’s profile reveals that
NSAID class reduces the effect of beta blockers. The detected interaction is therefore displayed on the
"Interactions" tab, as shown in Figure 9c.

The proposed examples show that non-standard inferences on KGs can be leveraged to provide
useful decision support, even though expressiveness of the logical language is limited by the need to
provide acceptable reasoning performance on mobile devices.

(a) Medical profile (b) Contraindications (c) Therapy interactions

Figure 9. Screenshots of the mobile DSS user interface for Example 2.

5. Evaluation

Performance assessment of the proposed framework and implementation are outlined hereafter.
The mobile prototype has been tested on a Samsung Galaxy S6 smartphone with Exynos 7420 quad
core CPU at 1.5 GHz, 3 GB RAM, 64 GB internal memory, and Android version 7.0. The choice
of a 5-year-old smartphone model has had the purpose to assess whether the proposed approach
could achieve acceptable computational performance even on relatively resource-constrained mobile
hardware. For this experiment, NFC tags have been emulated via the Android Beam API (https:
//developer.android.com/guide/topics/connectivity/nfc) on a Google LG Nexus 4 smartphone with
Qualcomm APQ8064 Snapdragon S4 Pro quad core CPU at 1.5 GHz, 2 GB RAM, 16 GB internal
memory, and Android version 5.1.1.

https://developer.android.com/guide/topics/connectivity/nfc
https://developer.android.com/guide/topics/connectivity/nfc
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NFC data exchange. In order to reduce the size of annotations stored in each tag, the proposed
implementation supports the following compression algorithms: (i) EXI (Efficient XML Interchange) [65],
a compact representation for XML-based OWL syntaxes; (ii) HDT (Header, Dictionary, Triples) [66],
proposed to compress Turtle syntax while maintaining query capability without decompression;
(iii) LZMA, GZIP and Deflate, general-purpose algorithms suitable for all OWL syntaxes and
provided by the Apache Commons Compress library (http://commons.apache.org/proper/commons-
compress/). Selected algorithms were tested on 19 OWL 2 annotations corresponding to different
patients, caregivers and treatments profiles. Table 3 reports on the average size of the annotations
with and without compression. Deflate provided the overall shortest annotations, achieving a
2.79 compression ratio on the OWL 2 Functional syntax (which is by itself the least verbose syntax).
In this way, each tag must contain only 530 B on average, allowing compatibility with several
off-the-shelf NFC products, e.g., the NXP NTAG216 (https://www.nxp.com/products/rfid-nfc/
nfc-hf/ntag/ntag-for-tags-labels) endowed with 888 B of memory.

Table 3. Average size of compressed annotations.

Compression OWL/XML OWL/RDF Functional Manchester Turtle

Plain Text 3915.00 6388.74 1480.74 1968.00 4984.95
EXI 668.11 645.63 – – –
HDT – – – – 3534.42
LZMA 814.68 994.05 568.32 641.26 880.42
GZIP 796.42 996.89 542.32 619.11 869.32
Deflate 784.42 984.89 530.32 607.11 857.32

Processing times. Experiments have been carried out on a Samsung Galaxy S6 by performing the
four tasks reported in Figure 10.

• Initialize reasoner: the mobile reasoner is initialized and the reference knowledge graph is loaded
from file and parsed.

• Retrieve annotation: a sample compressed annotation containing a complete patient profile is
retrieved from an NFC tag (annotation length was 848 B to fill up the tag memory and evaluate
the longest communication delay).

• Check therapy: the selected therapy is verified with respect to the patient’s profile via Concept
Abduction and Concept Contraction.

• Suggest alternatives: the system provides a ranked list of appropriate therapies.

Each test was repeated five times and average values were taken. Reasoner initialization resulted
as the slowest task. However, this is not a relevant issue, since it occurs only once at DSS start-up.
On the contrary, both NFC-based communication and matchmaking tasks can be deemed as compatible
with on-the-fly CDS, thanks to the optimized data structures and inference algorithms specifically
developed for mobile architectures.

10

3

167

372

1 10 100 1000

Suggest alternatives

Check therapy

Retrieve annotation

Init reasoner

Figure 10. Processing time (ms).

http://commons.apache.org/proper/commons-compress/
http://commons.apache.org/proper/commons-compress/
https://www.nxp.com/products/rfid-nfc/nfc-hf/ntag/ntag-for-tags-labels
https://www.nxp.com/products/rfid-nfc/nfc-hf/ntag/ntag-for-tags-labels
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6. Conclusions and Future Work

This paper presented a novel clinical decision support framework, based on an evolution of
NFC standard data exchange format to support knowledge representation languages. The proposed
approach leverages annotated descriptions of medications to be administered and patient’s medical
profile to assist healthcare practitioners with therapy management. An OWL 2 knowledge graph
provides the background conceptualization on the medical domain, while semantic metadata are
stored in NFC tags attached to pharmaceuticals packaging, patients’ wristbands, practitioners’ badges
and medical equipment. Architecture and user interaction of the proposed DSS are oriented toward
fully mobile and pervasive usage. It helps the domain expert in an unobtrusive way, by automatically
invoking inference procedures upon relevant knowledge fragments extracted directly via NFC.
Semantic matchmaking is exploited to detect therapy contraindications and interactions, as well
as to suggest the best care options.

The pervasive CDS has been validated in a therapy verification case study in rheumatology,
therefore the proposed KG currently focuses on a rather narrow set of diseases.This can be considered
as the main limitation of the approach from a theoretical point of view. Nevertheless, scalability and
the capability of being extendable to multiple applications is one of the main benefits of the proposed
approach, as no centralized infrastructure is required and the described knowledge modeling patterns
are inherently general.

Other weaknesses of the proposed framework, depending on the particular application scenario,
are as in what follows:

• Integration with local and regional standards for electronic health records has not been studied
yet. In combination with the limited storage space of NFC tags, it may require minimum-loss
semantic summarization methods [67] in addition to lossless data compression.

• Further case studies have been envisioned but not developed yet. In particular, first aid,
ambulance transport and tele-homecare scenarios provide additional challenges: due to this
reason they are necessary for a full validation—and possibly a refinement—of the framework
from architectural and technological viewpoints.

• The interoperability between the patient’s NFC tag and wearable health monitoring sensors
is a particularly meaningful development, as the latter may be exploited to update the health
status by means of semantic-based data mining and annotation [47] in a fully decentralized and
automated fashion.

• Prospective clinical studies are needed to assess the effective impact of the proposal on healthcare
quality. Differently from the conducted case study, they must involve a large number of healthcare
professionals in multiple facilities for a long time span.

Future work aims to expand the scope of the knowledge graph for decision support toward
further medical fields, to investigate novel HCI models exploiting e.g., Mobile Augmented Reality
(MAR) [68], and to address all the above aspects.
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