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Abstract: In this paper, an actuator fault estimation technique is proposed for quadcopters under
uncertainties. In previous studies, matching conditions were required for the observer design,
but they were found to be complex for solving linear matrix inequalities (LMIs). To overcome
these limitations, in this study, an improved intermediate estimator algorithm was applied to the
quadcopter model, which can be used to estimate actuator faults and system states. The system
stability was validated using Lyapunov theory. It was shown that system errors are uniformly
ultimately bounded. To increase the accuracy of the proposed fault estimation algorithm, a magnitude
order balance method was applied. Experiments were verified with four scenarios to show the
effectiveness of the proposed algorithm. Two first scenarios were compared to show the effectiveness
of the magnitude order balance method. The remaining scenarios were described to test the reliability
of the presented method in the presence of multiple actuator faults. Different from previous studies
on observer-based fault estimation, this proposal not only can estimate the fault magnitude of the roll,
pitch, yaw, and thrust channel, but also can estimate the loss of control effectiveness of each actuator
under uncertainties.

Keywords: fault diagnosis; quadrotor; UAVs; sliding mode observer; sensor fault; quadcopter

1. Introduction

Unmanned aerial vehicles (UAVs) have attracted attention over many years owing to their
vital achievements and significant advantages in various applications, such as rescue [1,2],
coastal surveillance [3,4], forest monitoring [5,6], military, defense [7,8], and robust control with
uncertainties [9–11]. In comparison with manned aerial vehicles, the control of UAVs is more complex
since all tasks are operated autonomously through an embedded flight controller or by a pilot.

Quadcopter, a type of UAV system, has been used and developed for various applications owing
to its numerous advantages, such as simplicity, small size, indoor and outdoor operation, and agility,
which have rendered it more famous than other types of UAV systems. Quadcopters have been
widely investigated and developed for different tasks and environments, including tracking control,
formation flight, object tracking, remote sensing, and fault-tolerant control (FTC).

In recent years, studies on FTC have received significant study in the scientific community,
which could further increase the reliability of the quadcopter during flights. Normally, an FTC can be

Sensors 2020, 20, 4917; doi:10.3390/s20174917 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-4575-5952
https://orcid.org/0000-0003-1249-8005
https://orcid.org/0000-0001-5632-9399
http://dx.doi.org/10.3390/s20174917
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/17/4917?type=check_update&version=2


Sensors 2020, 20, 4917 2 of 20

classified as a passive FTC (PFTC) or an active FTC (AFTC). PFTC techniques have been extensively
used in previous studies [12–14], which have the advantage that fault identification is not required
in controller design. However, these approaches have a lower fault-tolerance capability. To deal
with this issue, AFTC approaches have been proposed to provide improved fault-tolerance capability
and condition-based control for flight systems. In these schemes, fault diagnosis (FD) is an essential
precondition to identify the magnitude and location of faults, which is combined with a nominal
controller to accommodate the effect of faults. Moreover, through FD information, the control law
allows for a landing action in an emergency case. As a result, FD is a major feature in the design of the
AFTC system.

The problem with the FD approach has been addressed in several studies. In [15–17], a model-
based FD was investigated to monitor the sensor fault and actuator fault, which was validated through
a set of observer residuals; however, this algorithm is inaccurate and unsuitable for the isolation and
identification of faults. In the same context, a polynomial observer was developed to estimate actuator
faults. In [18], Aguilar-Sierra et al. proposed an FD technique to estimate actuator faults using a
polynomial observer. In [19], an FD method based on a Kalman filter technique was investigated for
actuator faults presenting experimental results; but this method lacks robustness against disturbance.
In [20], a linear parameter varying technique was developed for a quadrotor helicopter to estimate the
faults. Using this fault estimation information, a fault-tolerant controller was designed to accommodate
faults. In [21,22], Cen et al. proposed an adaptive law for Thau observer to estimate the time-varying
actuator faults in a quadrotor. The FD strategies presented in the above studies show either valuable
simulation or experimental results. However, these methodologies do not examine the uncertainties in
their mathematical models.

To address the above statement, several effective strategies, such as high-gain observer [23],
neural network [24,25], and nonlinear descriptor observer [26], were previously proposed for nonlinear
systems, but none of these methods concentrated on the quadcopter model or real experimental
tests. Only a few studies investigated the fault diagnosis problem in quadcopter platforms. In [27],
actuator fault diagnosis approaches based on fuzzy techniques were investigated in the quadcopter
model showing simulation results. In [28], the adaptive observer based on H∞ was proposed for fault
estimation considering the simulation and experimental results. Other effective methods, such as
sliding mode observers (SMOs) have been developed to enhance the robustness of fault identification
and time convergence. In this sense, SMO based on a linear parametric varying technique was
proposed for actuator fault reconstruction [29]. In [30], a sliding- mode observer combined with Thau
observer was proposed to estimate the magnitude of the fault showing experimental works. However,
the current studies on quadcopters are still based on assumptions or observer-matching conditions.

Motivated by the above challenges, this article proposes a fault estimation strategy for a quadcopter
system with relaxing matching conditions. To be more specific, an intermediate variable combined
with an intermediate observer has been improved to estimate both states and faults. The stability of
the proposed algorithm was proved using the Lyapunov theory. It was shown that the error system is
uniformly ultimately bounded. In contrast to previous results, the main contributions of this article are
as follows:

• An intermediate estimator is provided in the quadcopter system to estimate states and faults in
the presence of uncertainties. The proposed method aims to relax the matching conditions or
equation constraints.

• Stability analysis is described to validate the convergence of the error system.
• The experimental works on the quadcopter are demonstrated to validate the proposed algorithm.

The remainder of this article is organized as follows. Section 2 provides the mathematical model
of the quadcopter system. In Section 3, the proposed FD method is introduced. Experimental results
are described in Section 4. The conclusions and further works are stated in Section 5.
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2. Mathematical Model of the Quadcopter

The body frame B and inertial frame E are used to present the dynamics of the quadcopter, as
shown in Figure 1. In the body frame, the XY plane is located at the surface, and the Z-axis follows the
right-hand rule. In the quadcopter system, the center of gravity is located at the origin of the body
frame. The rotation matrix is defined to transform from the body frame to the inertial frame as

R(φ,θ,ψ) =


cψcθ cψsθsφ− sψcφ cψsθcφ+ sψcφ
sψcθ sψsθsφ+ cψcφ sψsθcφ− sφcψ
−sθ cθsψ cθcθ

 (1)

where s and c denote sin and cos; φ,θ, ψ denote Euler angles.
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The quadcopter includes two motors (1, 2) rotating in a counterclockwise direction and the
remaining two motors rotating clockwise. The four control variables are expressed as:

U1 = F1 + F2 + F3 + F4

U2 = (−F1 + F2 + F3 − F4)L
√

2/2
U3 = (F1 − F2 + F3 − F4)L

√
2/2

U4 = τ1 + τ2 − τ3 − τ4

(2)

where τi ≈ Kdui and Fi ≈ Kthui denote the respective torques and forces produced by the ith motor;
ui is the pulse-width modulation; L is the arm length; U1 is the thrust force; and U2, U3, U4 are the
torques in the directions φ, θ, ψ, respectively.

Equation (2) can be rewritten as
U2

U3

U4

U1

 =

−KthL

√
2/2 KthL

√
2/2 KthL

√
2/2 −KthL

√
2/2

KthL
√

2/2 −KthL
√

2/2 KthL
√

2/2 −KthL
√

2/2
Kd Kd −Kd −Kd
Kth Kth Kth Kth




u1

u2

u3

u4

 (3)
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The body dynamics are described using the Newton–Euler equation as [31]:

m
..
r = R


0
0

U1

−


0
0

mg

− .
ω×m

..
r

I
..
ω =


U2

U3

U4

− .
ω× I

..
ω

(4)

where m is the total mass; g is the gravity; ω and I are the angular velocity and the inertia vector,
respectively; r is the position in an inertial frame.

The dynamics of the quadcopter can be presented through six equations [32]:

..
x =

{
U1(cosφ sinθ cosψ+ sinφ sinψ) −Kx

.
x
}
/m

..
y =

{
U1(cosφ sinθ sinψ− sinφ cosψ) −Ky

.
y
}
/m

..
z = −g +

{
U1(cosφ cosθ) −Kz

.
z
}
/m

..
φ =

(
U2 + (I2 − I3)

.
θ

.
ψ−Kφ

.
φ
)
/I1

..
θ =

(
U3 + (I3 − I1)

.
φ

.
ψ−Kθ

.
θ
)
/I2

..
ψ =

(
U4 + (I1 − I2)

.
φ

.
θ−Kψ

.
ψ
)
/I3

(5)

where I1, I2, I3 represent the moment inertia along the x, y, z axes; and Kφ, Kθ, Kψ, Kx, Ky represent
drag coefficients.

Let xT =
[
φ θ ψ

.
φ

.
θ

.
ψ

]
be the state vector, uT =

[
Uφ Uθ Uψ UT

]
be the control

input vector, and y =
[
φ θ ψ

.
φ

.
θ

.
ψ

]
be the output vector. Equation (4) is rewritten as{ .

x(t) = Ax(t) + Bu(t) + Nξ(t, x(t)) + G
y(t) = Cx(t)

(6)

where N = I4×4 is the distribution matrix d(t) denotes the disturbance vector; A =

[
04×4 I4×4

04×4 04×4

]
,

C = I8×8, B =


0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


T

, ξ(t, x(t)) =


(

.
θ

.
ψ(I2 − I3) − Jm

.
θΩ)/I1

(
.
φ

.
ψ(I3 − I1) − Jm

.
φΩ)/I2.

φ
.
θ(I1 − I2)/I3

0

;
G =

[
0 0 0 0 0 0 0 −g

]T
; Uφ = U2/I1; Uθ = U3/I2; Uψ = U4/I3; UT = U1/m.

3. Methodology

The aim of this section is to provide the fault estimation technique based on the intermediate
observer and reducing fault estimation error method for the quadcopter system. In detail, a robust
intermediate observer is presented in Section 3.1 to estimate the fault magnitude of the roll, pitch, yaw,
and thrust motion. In Section 3.2, a magnitude order balance method is applied to reduce the fault
estimation error, which is caused by an imbalance magnitude problem of the yaw motion. Moreover,
this section also presents a technique to obtain the loss of control effectiveness (LoCE) of each actuator
through the presented method in Section 3.1.
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3.1. Design of the Intermediate Observer

When a fault occurs, Equation (6) can be written as:{ .
x(t) = Ax(t) + Bu(t) + Nξ(t, x(t)) + G + Ea fa(t)
y(t) = Cx(t)

(7)

where Ea is the fault matrix, fa(t) is the fault vector.
To design a robust intermediate observer [33], some assumptions need to be considered.

Assumption 1. The unknown disturbance is norm-bounded with constant θ1 , i.e., ‖ξ(t, x(t))‖ ≤ θ1 ,
where 0 ≤ θ1 ≤ ∞.

Assumption 2. The first derivative of fa(t) satisfies ‖
.
f a(t)‖ ≤ θ2 , with 0 ≤ θ2 ≤ ∞.

Assumption 3. Ea has a full column rank.

Assumption 4. There exists a complex number λ with non-negative real part that satisfies

rank
[

A− λI Ea

C 0

]
= n + rank(Ea) (8)

An auxiliary variable is constructed as

τ = fa(t) − Sx(t) (9)

where S = αEa
T; α is a constant that needs to be chosen.

From Equations (7) and (9), we obtain

.
τ =

.
f a − S(Ax(t) + Bu + Eaτ+ EaSx(t) + Nξ(t, x(t) + G)) (10)

The intermediate estimator is introduced as:

.
x̂(t) = Ax̂(t) + Bu(t) + Ea f̂a(t) + G + L(y(t) − ŷ(t)) (11)

.
τ̂(t) = −S(Ax̂(t) + Bu(t) + Eaτ̂(t) + EaSx̂(t) + G) (12)

ŷ(t) = Cx̂(t) (13)

f̂a(t) = τ̂(t) + Sx̂(t) (14)

where x̂(t), τ̂(t), ŷ(t), f̂a(t) are the state observer vector, intermediate estimator, output observer
vector, and fault estimation of fa(t), respectively.

Let ex = x(t) − x̂(t) and e f (t) = fa(t) − f̂a(t). The error system is described as

.
ex = (A− LC)ex + Eae f + Nξ(t, x(t)) (15)

.
eτ =

.
f a − αET(Aex + Eaeτ + EaSex + Nξ(t, x(t))) (16)

Theorem 1. If we apply the intermediate estimator Equations (11)–(14) to state-space model (7) and using
Assumptions 1–4, and there exist scalars α > 0, ε > 0 and matrix L such that[

Π11 Π12

∗ Π22

]
< 0 (17)
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where Π11 = (A− LC)T + (A− LC) + 2αEaET
a + 1

εNNT, Π12 = E − µαATEa − µα2EaET
a Ea, then Π22 =

µ
ε − 2µαET

a Ea +
µα
ε ET

a NNTEa.

Then, the error systems (15) and (16) are uniformly ultimately bounded.

Proof. Choosing the Lyapunov function as:

V = eT
x ex + µeT

τ eτ (18)

The first derivative of V(t) is given as:

.
V =

.
eT

x ex + eT
x

.
ex +

.
eT
τ eτ + eT

τ
.
eτ

=
[
(A− LC)ex + Eae f + Nξ(t, x(t))

]T
ex

+eT
x

[
(A− LC)ex + Eae f + Nξ(t, x(t))

]
+µ

[ .
f a − S(Aex + Eaeτ + EaSex + Nξ(t, x(t))

]T
eτ

+µeT
τ

[ .
f a − S(Aex + Eaeτ + EaSex + Nξ(t, x(t))

]
= eT

x

[
(A− LC)T + (A− LC)

]
ex + 2eT

x Eae f

+2eT
x Nξ(t, x(t)) + 2µeT

τ

.
f a − 2µαeT

τET
a (A + αEaET

a )ex

−2µαeT
τET

a Eaeτ − 2µαeT
τETNξ(t, x(t))

(19)

Using the Lemma, we obtain

2eT
x Nξ(t, x(t)) ≤

1
ε

eT
x NNTex + εθ2

1 (20)

2eT
τ

.
f ≤

1
ε

eT
τ eτ + εθ

2
2 (21)

− 2eT
τET

a Nξ(t, x(t)) ≤
1
ε

eT
τET

a NNTEa + εθ
2
1 (22)

From (19)–(22) and e f = eτ + Sex = eτ + αETex, we obtain

.
V = eT

x

[
(A− LC)T + (A− LC)

]
ex + 2eT

x Eaeτ + 2αeT
x EaET

a ex +
1
ε eT

x NNTex

+
µ
ε eT
τ eτ − 2µαeT

τET
a (A + αEaET

a )ex − 2µαeT
τET

a Eaeτ
+
µα
ε eT

τET
a NNTEaeτ + ε(1 + µα)θ

2
1 + µεθ

2
2

(23)

Let us define ẽ(t) =
[

eT
x eT

τ

]T
, then, Equation (23) becomes

.
V ≤ ẽTΣ1ẽT + ε(1 + µα)θ

2
1 + µεθ

2
2 (24)

where

Σ1 =

[
Σ11 Σ12

∗ Σ22

]
(25)

with
Σ11 = (A− LC)T + (A− LC) + 2αEaET

a +
1
ε

NNT (26)

Σ12 = Ea − µαATEa − µα
2EaET

a Ea (27)

Σ22 =
µ

ε
In − 2µαET

a Ea +
µα

ε
ET

a NNTEa (28)
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If the following inequality holds, [
Σ11 Σ12

∗ Σ22

]
< 0 (29)

then, one can achieve
.

V(t) < −σ‖̃e(t)‖2 + η, where η = ε(1 + µα)θ
2
1 + µεθ

2
2 and σ = λmin(−Σ1).

It follows that
.

V(t) < 0 for σ‖̃e(t)‖2 > η, which indicates that (ex(t), eτ(t)) converges to a small set
according to the Lyapunov theory. Therefore, the system error is uniformly ultimately bounded. �

3.2. Magnitude Order Balance and Fault Estimation of Each Actuator

The control input vector u =
[

Uφ Uθ Uψ UT
]T

is obtained from thrusts and torques in

Equation (6), and is used to estimate the actuator fault fa =
[

fφ fθ fψ fT
]T

using the intermediate
observer. However, the fault estimation from the yaw motion has a large error compared with the roll,
pitch, and thrust motions due to the imbalance of the magnitude order [21]. To overcome this issue,
the magnitude order of the four channels should be adjusted in the same range by using the following
modified control input vector

u =
[

Uφ Uθ υUψ UT
]T

(30)

where υ are adjustment gains.

Theorem 2. Assume that the new estimation values f̂ ∗ψ are obtained from the intermediate observer and the

estimation values of fψ do not change. If the former fault estimation of yaw motion is denoted by f̂ψ , then the
following relationship should hold:

f̂ ∗ψ = υ f̂ψ (31)

Proof. Recall the intermediate observer design

.
x̂(t) = Ax̂(t) + Bu(t) + Ea f̂a(t) + L(y(t) − ŷ(t)) (32)

If the error system converges to a small set as mentioned in Section 3.1, and the following
requirement is satisfied: ey = 0,

.
x̂(t) = 0 and x̂(t) = 0. The fault estimation vector f̂a(t) can be

obtained from
Bu(t) + Ea f̂a(t) = 0 (33)

For the yaw motion, Equation (12) is described as

Uψ + f̂ψ(t) = 0 (34)

If U∗ψ = υUψ then f̂ ∗ψ = υ f̂ψ.
When the new fault estimation algorithm is achieved, the desired real fault estimation can be

achieved as
f̂ψ = f̂ ∗ψ/υ (35)

�

Remark 1. The modification of the control input vector using the adjustment gain factor technique does not
affect the intermediate observer. However, it is applied to handle the magnitude order unbalance issue and reduce
the fault estimation errors, which is discussed in more detail in the experimental section described in Section 4.
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To estimate the fault magnitude of each motor, the dynamic system (7) is rewritten as{ .
x(t) = Ax(t) + B1u∗(t) − B1ΓΛ + Nξ(t, x(t)) + G
y(t) = Cx(t)

(36)

where B1 =



0 0 0 0 −
KthL

√
2

2I1

KthL
√

2
2I2

Kd
I3

Kth

0 0 0 0 KthL
√
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−
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√
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−
Kd
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Kth

0 0 0 0 −
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√
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−

KthL
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2
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−
Kd
I3

Kth



T

; Γ =


u1 0 0 0
0 u2 0 0
0 0 u3 0
0 0 0 u4

; u∗ =


u1

u2

u3

u4

;
Λ =

[
γ1 γ2 γ3 γ4

]T
is the control effectiveness matrix with 0 ≤ γi ≤ 1; i = 1, 2, 3, 4; γi = 0 and

γi = 1 indicate that the ith actuator is fault-free and fully damaged, respectively.
Because Bu(t) = B1u∗(t) and Equation (36) can be written as:{ .

x(t) = Ax(t) + Bu(t) − BΠΓΛ + Nξ(t, x(t)) + G
y(t) = Cx(t)

(37)

where Π =


−KthL

√
2/2 KthL

√
2/2 KthL

√
2/2 −KthL

√
2/2

KthL
√

2/2 −KthL
√

2/2 KthL
√

2/2 −KthL
√

2/2
Kd Kd −Kd −Kd
Kth Kth Kth Kth

.
From Equations (7) and (37), we can obtain Ea fa = −BΠΓΛ. In the quadcopter model, we can

design Ea = B. Therefore, LoCE of each actuator (fault estimation of each actuator) can be obtained as

Λ = −Γ−1Π−1 fa (38)

It should be noted that this method not only estimates the fault magnitude of the roll, pitch,
yaw, and thrust motion through Equation (14) but also presents the LoCE of each actuator through
Equation (38). The results of these equations are discussed in Section 4.

4. Experimental Results and Discussion

4.1. Experiment Setup

The DJI450 quadcopter frame is used for flight tests in an outdoor environment. The intermediate
observer algorithm in the previous section was implemented and tested on a Pixhawk2 using a
C++ program executed on the Eclipse environment [34]. The firmware version 3.5.7 is used as an
open-source software. The implementation strategy of the proposed fault estimation is presented in
Table 1. In the first step, the control inputs from the rotation speeds of the actuator and system matrices
in (5) should be obtained. Next, the positive parameter µ is chosen with small values at the beginning
to reduce the overestimation problem. Then, the linear matrix inequality (LMI) matrix toolbox from
Matlab software is used to find the observer matrix L and constant value of α. After that, the fault
estimation of roll, pitch, yaw, and thrust motion in (14) is implemented in the Pixhawk2 flight controller
using the result from step 2. If there are some magnitude order imbalance problems, the adjustment
gain υ should be chosen in step 4. Finally, LoCE of each actuator in (38) is obtained through (14).

The experimental procedure of the flight test is summarized in Figure 2. First, the fault
estimation based on the intermediate observer is implemented on the Pixhawk2 flight controller.
Then, to demonstrate the fault scenario, a remote control is used to switch between position hold mode
and fault modes, which allows us to apply faults by reducing the pulse width modulation (PWM) of
actuators. The Mission Planner software was used to interface the ground station and quadcopter
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through Xbee telemetry communication [35], which can monitor all system states. The DJI F450
quadcopter parameter and the numerical values of the observer design are presented in Table 2.

Table 1. Fault estimation procedure.

Input: The control inputs and system matrices in (5) satisfying Assumptions 1–4.

Step 1: Choose small positive parameters of µ.
Step 2: Solving the LMI matrix to obtain matrix L and α.
Step 3: Fault estimation for roll, pitch, yaw, thrust motion in (14).
Step 4: Choose adjustment gain υ for magnitude order balance.
Step 5: Loss of control effectiveness of each actuator (Fault estimation of each actuator) in (38) is obtained.
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Table 2. DJI F450 quadcopter parameters and observer design values.

Parameter Description Value

L Arm length 0.225 m
Kth Thrust coefficient 0.0087
Kd Drag coefficient 0.0055× 10−2

m Total mass 1.776 kg
Ix; Iy; Iz Moments of inertia 0.0035; 0.0035; 0.0055 kg.m2

Jr Rotor inertia 2.8× 10−6 kg.m2

υ Adjustment gain 10
α Constant 1
ε Constant 0.02
η Constant 1

The fault in each motor is modeled as the following function:

Fi = (1− γi)Kthui (39)

where γi = 0 indicates the fault-free condition and γi = 1 indicates the complete motor failure of the
ith motor.
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4.2. Experimental Results

4.2.1. LoCE in One Actuator without Using Magnitude Order Unbalance

The quadcopter system hovered at the height of 4 m. Faults with different magnitudes were
injected into three actuators at time t = 68.5 s by 20% LoCE in the third motor. Figure 3 shows that the
faults affect the horizontal movement. In detail, the x-direction deviates from the desired position by
60 cm between time t = 68.5 s and t = 76 s, whereas the y-direction deviates from the desired point by
30 cm. Subsequently, the system is recovered to the desired point due to the PID controller. In the
vertical movement, the z-direction has a small deviation from the desired position because the fault
magnitude injected in the third direction is small. Figure 4 describes the PWM inputs of all motors. It is
shown that, before the fault is injected at t = 68.5 s, all PWM inputs have similar values. After faults
occur in the third motor, the PID controller can recover the system by increasing the PWM input of the
third actuator.
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The fault estimations of the control inputs are presented in Figure 5. This shows that the fault
estimation values converge to the desired values in the roll, pitch, and thrust control inputs, but the
fault estimation value in the yaw control has a larger error due to the magnitude unbalance problem.
Figure 6 shows the fault estimation of each actuator. The fault estimation values of the first, second,
and fourth actuators converge to zero. The fault estimation value of the third actuator cannot converge
to 0.2 owing to the magnitude unbalance issue.
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Remark 2. It is clear that the fault estimation in the yaw motion has a larger error compared with the other
motion due to the magnitude order imbalance problem. To deal with this issue, the magnitude order balance
method in Section 3.2 is applied to get a better performance, which is discussed in the next Sections 4.2.2–4.2.4.
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4.2.2. LoCE in One Actuator Using the Magnitude Order Balance Method

The quadcopter system hovers at a height of 2.4 m. The faults with different magnitudes are
injected into three actuators at time t = 73.5 s by 20% LoCE in the third motor. In the Figure 7, the faults
affect horizontal movement. In detail, the x-direction deviates from the desired position by 60 cm
between t = 73.5 s and t = 77.5 s and the y-direction deviates from the desired point by 30 cm. After that,
the system is recovered to the desired point due to the PID controller. In the vertical movement,
the z-direction has a small deviation from the desired position because the fault magnitude injected in
the third actuator is small. Figure 8 describes the PWM inputs of all motors. It was shown that before a
fault is injected at t = 73.5 s, all PWM inputs have similar values. After the faults occur in the third
motor, the PID controller can recover the system by increasing the PWM input of the third actuator.
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Figure 7. Horizontal and vertical movement of the quadcopter.
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Figure 8. PWM inputs.

The fault estimations of the control inputs are presented in Figure 9. This shows that the fault
estimation values converge to the desired values. Figure 10 shows the fault estimation of each actuator.
The fault estimation values of the first, second, and fourth actuators converge smoothly to zero,
while that of the third actuator converges to 0.2.
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Figure 9. Fault estimation of control inputs.
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Figure 10. Fault estimation of each actuator.

4.2.3. LoCE in the Three Actuators Using Magnitude Order Unbalance

The quadcopter system hovers at an altitude of 2.4 m. Faults with different magnitudes are injected
into the third actuator with 22% LoCE at t = 73 s, a fourth actuator with 16% LoCE at t = 91 s, and a second
actuator with 13% LoCE at t = 110 s. In Figure 11, the faults affect the horizontal movement. From t = 73 s
to t = 80 s, when the third actuator is faulty, the x-direction deviates from the desired position by 60 cm,
while the y-direction deviates from the desired point by 25 cm. From t = 90 to 110 s, when the fourth
actuator is faulty, the x-direction deviates from the desired position with 50 cm, while the y-direction
experienced a small deviation from the desired point by 10 cm. From t = 110 to 1300 s, when the second
actuator is faulty, the y-direction deviates from the desired position by 60 cm, whereas the x-direction
deviates slightly from the desired point. Compared to the horizontal movement, the vertical movement
has a very small deviation when faults occur in each actuator.
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Figure 11. Horizontal and vertical movement.

Figure 12 shows the PWM inputs of all actuators. It is shown that before the fault is injected,
all PWM inputs are almost the same. After faults occur in each actuator, the PID controller can recover
the system by increasing the PWM input of the faulty actuator. Figure 13 reveals the fault estimations
of the control inputs. This shows that the fault estimation values converge quickly to the desired
values. Figure 14 describes the fault estimation of each actuator. The fault estimation values of the first,
second, and fourth actuators converge to values of 0.22, 0.16, and 0.13, respectively, whereas the first
actuator converges to zero.
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4.2.4. Loss of Control Effectiveness in Four Motors Using Magnitude Order Unbalance

The quadcopter system hovers at the height of 3.8 m. The faults are injected into all actuators
at time t = 50 s by 30% LoCE. As can be seen in Figure 15, the faults do not affect the horizontal
movement, while the vertical movement drops to 0.4 m. The PWM inputs of all motors are shown in
Figure 16. Before the faults are injected from time t = 0 to 50 s, all PWM inputs are almost the same.
After faults occur in all motors, the PID controller can recover the system by increasing the PWM input
of all motors.

Figure 17 presents the fault estimations of the control inputs. It shows that the fault estimation
values converge quickly to the desired value. Figure 18 describes the fault estimation values of each
actuator. It is shown that the fault estimation values of all motors converge to 0.3.
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Remark 3. It should be mentioned that the previous observer-based fault diagnosis studies on quadcopter
platform only consider the fault estimation of the roll, pitch, and yaw motion. In this article, the proposed method
not only estimate the magnitude of the roll, pith, and yaw motion but also estimate the fault level of each actuator
which is the differentiating point compared with other studies. The advantage of the presented fault estimation
algorithm is the estimation of the actuator fault under model uncertainties.

Remark 4. The presented method was applied and tested in the quadcopter platform. For other multicopters
(with more than four actuators), the matrix Π is not invertible. A pseudo-inverse matrix can be applied but it
may cause inaccuracy in the fault estimation algorithm, which is a limitation of this study.
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5. Conclusions

In this study, an intermediate observer is investigated for a fault estimation scheme of a quadrotor
under actuator faults. The improved fault estimation algorithm and magnitude order unbalance
method were validated through a flight test on the DJI F450 quadcopter platform. Four experiments
are presented. The first two scenarios present the effectiveness of the magnitude order balance method
under a faulty third actuator. The remaining scenarios are shown to evaluate the reliability of the
presented algorithm in the presence of multiple faults. The results reveal that the investigated method
can accurately estimate the fault magnitude of the roll, pitch, yaw, and thrust motion. Different from
other studies on observer-based fault estimation, this work can obtain the loss of control effectiveness of
each actuator (fault estimation of each actuator) in the presence of uncertainties. However, the limitation
of this article is that it does not provide a reconfiguration controller to give a completely active fault
tolerant control system. Moreover, the drawback of this method is that it may not applied for
multicopters with higher than four actuators due to the pseudo-inverse matrix mentioned in Remark 3.
Future work should discuss and implement the reconfiguration controller for the quadcopter system
using the proposed fault estimation algorithm. Furthermore, the difficulty with the pseudo-inverse
matrix problem is also discussed for a general multicopter platform. The investigated algorithm needs
the Assumptions 3–4, but some mathematical models may not meet these assumptions. Further studies
will consider the relaxing technique for these assumptions.

Author Contributions: Conceptualization, N.P.N. and S.K.H.; Methodology, N.P.N.; Software, N.P.N.; Validation,
N.X.M.; Formal Analysis, N.P.N.; Investigation, N.P.N.; Resources, N.P.N.; Data Curation, N.P.N.; Writing—Original
Draft Preparation, N.P.N.; Writing—Review and Editing, X.P.D., T.T.H.; Visualization, N.P.N.; Supervision, S.K.H.;
Project Administration, S.K.H.; Funding Acquisition, S.K.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This paper received no external funding.

Acknowledgments: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the
ITRC (Information Technology Research Center) support program (IITP-2020-2018-0-01423) supervised by the
IITP (Institute for Information & communications Technology Promotion).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gordon, O.; Arinze, O.; James, O.; Nnaemeka, O. Design and Implementation of a Real Time Wireless
Quadcopter for Rescue Operations. Am. J. Eng. Res. 2016, 5, 130–138.

2. Eid, S.E.; Dol, S.S. Design and development of lightweight-high endurance unmanned aerial vehicle for
offshore search and rescue operation. In Proceedings of the 2019 Advances in Science and Engineering
Technology International Conference, Dubai, UAE, 26 March–10 April 2019.

3. Ian, L.T.; Mitchell, D.H.; Christopher, D.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24.
4. Kingston, D.; Rasmussen, S.; Humphrey, L. Automated UAV tasks for search and surveillance. In Proceedings

of the 2016 IEEE Conference on Control Applications Part of 2016 IEEE Multi-Conference on Systems and
Control, Buenos Aires, Argentina, 19–22 September 2016.

5. Tenmuulen, S.; Jonathan, D.; Jason, M.; Joel, B.S. UAV lidar and hyperspectral fusion for forest monitoring in
the southwestern USA. Remote Sens. Environ. 2017, 195, 30–43.

6. Krause, S.; Sanders, T.G.; Mund, J.-P.; Greve, K. UAV-Based Photogrammetric Tree Height Measurement for
Intensive Forest Monitoring. Remote Sens. 2019, 11, 758. [CrossRef]

7. Zhang, M.; Li, H.; Xia, G.; Zhao, W.; Rem, S.; Wang, C. Research on the Application of Deep Learning Target
Detection of Engineering Vehicles in the Patrol and Inspection for Military Optical Cable Lines by UAV.
In Proceedings of the 2018 11th International Symposium on Computational Intelligence and Design (ISCID),
Hangzhou, China, 8–9 December 2018.

8. Butt, A.; Shah, S.I.A.; Zaheer, Q. Weapon Launch System Design of Anti-Terrorist UAV. In Proceedings of the 2019
International Conference on Engineering and Emerging Technologies, Lahore, Pakistan, 21–22 February 2019.

9. Brossard, J.; Bensoussan, D.; Landry, R.; Hammami, M. Robustness studies on quadrotor control. In Proceedings
of the 2019 International Conference on Unmanned Aircraft Systems, Atlanta, GA, USA, 11–14 June 2019.

http://dx.doi.org/10.3390/rs11070758


Sensors 2020, 20, 4917 19 of 20

10. Mystkowski, A. An application of mu-synthesis for control of a small air vehicle and simulation results.
J. Vibroeng. 2012, 14, 79–86.

11. Tunik, A.A.; Nadsadnaya, O.I. A Flight Control System for Small Unmanned Aerial Vehicle. Int. Appl. Mech.
2018, 54, 239–247. [CrossRef]

12. Xu, D.; Whidborne, J.F.; Cooke, A. Fault tolerant control of a quadrotor using L1 adaptive control.
Int. J. Intell. Unmanned Syst. 2016, 4, 1–20.

13. Ghandour, J.; Aberkane, S.; Ponsart, J.C. Feedback linearization approach for standard and fault tolerant
control: Application to a quadrotor UAV testbed. J. Phys. Conf. Ser. 2014, 570, 082003. [CrossRef]

14. Li, T.; Zhang, Y.; Gordon, B.W. Nonlinear fault-tolerant control of a quadrotor UAV based on sliding mode
control technique. In Proceedings of the 8th IFAC Symposium of Fault Detection, Supervision and Safety of
Technical Processes, Mexico city, Mexico, 29–31 August 2012.

15. Freddi, A.; Longhi, S.; Monteriù, A. A diagnostic thau observer for a class of unmanned vehicles.
J. Intell. Robot. Syst. 2012, 67, 1–13. [CrossRef]

16. Freddi, A.; Longhi, S.; Monteriù, A. A model-based fault diagnosis system for a mini-quadrotor. In Proceedings
of the 7th Workshop on Advanced Control and Diagnosis, Zielona Gora, Poland, 19–20 November 2009.

17. Freddi, A.; Longhi, S.; Monteriu, A. Actuator fault detection system for a mini-quadrotor. In Proceedings of
the 2010 IEEE International Symposium on Industrial Electronics, Bari, Italy, 4–7 July 2020.

18. Aguilar-Sierra, H.; Flores, G.; Salazar, S.; Lozano, R. Fault estimation for a quad-rotor MAV using a
polynominal observer. In Proceedings of the 2013 International Conference on Unmanned Aircraft Systems,
Atlanta, GA, USA, 28–31 May 2013.

19. Amoozgar, M.H.; Chamseddine, A.; Zhang, Y. Experimental test of a two-stage Kalman filter for actuator
fault detection and diagnosis of an unmanned quadrotor helicopter. J. Intell. Robot. Syst. 2013, 70,
107–117. [CrossRef]

20. Liu, Z.; Yuan, C.; Zhang, Y. Active fault-tolerant control of unmanned quadrotor helicopter using linear
parameter varying technique. J. Intell. Robot. Syst. 2017, 88, 415–436. [CrossRef]

21. Cen, Z.; Noura, H.; Susilo Younes, Y.A. Robust fault diagnosis for quadrotor UAVs using adaptive Thau
observer. J. Intell. Robot. Syst. 2014, 73, 573–588. [CrossRef]

22. Cen, Z.; Noura, H. An Adaptive Thau Observer for estimating the time-varying LOE fault of quadrotor
actuators. In Proceedings of the 2013 Conference on Control and Fault-Tolerant Systems (SysTol), Nice,
France, 9–11 October 2013.

23. Ma, H.; Liu, Y.; Li, T.; Yang, G. Nonlinear High-Gain Observer-Based Diagnosis and Compensation for
Actuator and Sensor Faults in a Quadrotor Unmanned Aerial Vehicle. IEEE Trans. Ind. Inform. 2019, 15,
550–562. [CrossRef]

24. Witczak, P.; Patan, K.; Witcak, M.; Mrugalski, M. A neural network approach to simultaneous state and
actuator fault estimation under unknown input decoupling. Neurocomputing 2017, 250, 65–75. [CrossRef]

25. Cho, C.N.; Hong, J.T.; Kim, H.J. Neural Network Based Adaptive Actuator Fault Detection Algorithm for
Robot Manipulators. J. Intell. Robot. Syst. 2019, 95, 137–147. [CrossRef]

26. Wang, Z.; Shen, Y.; Zhang, X. Actuator fault estimation for a class of nonlinear descriptor systems.
Int. J. Syst. Sci. 2014, 45, 487–496. [CrossRef]

27. Mallavalli, S.; Fekih, A. A fault tolerant tracking control for a quadrotor UAV subject to simultaneous actuator
faults and exogenous disturbances. Int. J. Control 2018, 93, 655–668. [CrossRef]

28. Chen, F.; Lei, W.; Tao, G.; Jiang, B. Actuator fault estimation and reconfiguration control for quad-rotor
helicopter. Int. J. Adv. Robot. Syst. 2016, 13, 33. [CrossRef]

29. Bharani, K.P.; Alwi, H.; Edwards, C. Fault reconstruction for a quadrotor using an LPV sliding mode observer.
In Proceedings of the 9th IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes
SAFEPROCESS 2015, Paris, France, 2–4 September 2015.

30. Nguyen, N.P.; Hong, S.K. Sliding Mode Thau Observer for Actuator Fault Diagnosis of Quadcopter UAVs.
Appl. Sci. 2018, 8, 1893. [CrossRef]

31. Dong, W.; Gu, G.-Y.; Zhu, X.; Ding, H. Modeling and Control of a Quadrotor UAV with Aerodynamics
Concepts. World Acad. Sci. Eng. Technol. 2013, 7, 901–906.

32. Zhang, Y.; Chamseddine, A. Fault tolerant flight control techniques with application to a quadrotor UAV
testbed. In Automatic Flight Control Systems-Latest Developments; Thomas Lombaerts, IntechOpen: London,
UK, 2012. [CrossRef]

http://dx.doi.org/10.1007/s10778-018-0876-0
http://dx.doi.org/10.1088/1742-6596/570/8/082003
http://dx.doi.org/10.1007/s10846-012-9650-4
http://dx.doi.org/10.1007/s10846-012-9757-7
http://dx.doi.org/10.1007/s10846-017-0535-4
http://dx.doi.org/10.1007/s10846-013-9921-8
http://dx.doi.org/10.1109/TII.2018.2865522
http://dx.doi.org/10.1016/j.neucom.2016.10.076
http://dx.doi.org/10.1007/s10846-018-0781-0
http://dx.doi.org/10.1080/00207721.2012.724100
http://dx.doi.org/10.1080/00207179.2018.1484173
http://dx.doi.org/10.5772/62224
http://dx.doi.org/10.3390/app8101893
http://dx.doi.org/10.5772/38918


Sensors 2020, 20, 4917 20 of 20

33. Zhu, J.-W.; Yang, G.-H.; Wang, H.; Wang, F. Fault estimation for a class of nonlinear systems based on
intermediate estimator. IEEE Trans. Autom. Control 2016, 61, 2518–2524. [CrossRef]

34. Editing/Building with Eclipse on Windows. Available online: http://ardupilot.org/dev/docs/editing-the-
code-with-eclipse.html (accessed on 31 August 2018).

35. Telemetry. Available online: http://ardupilot.org/copter/docs/common-telemetry-landingpage.html
(accessed on 31 August 2018).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TAC.2015.2491898
http://ardupilot.org/dev/docs/editing-the-code-with-eclipse.html
http://ardupilot.org/dev/docs/editing-the-code-with-eclipse.html
http://ardupilot.org/copter/docs/common-telemetry-landingpage.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mathematical Model of the Quadcopter 
	Methodology 
	Design of the Intermediate Observer 
	Magnitude Order Balance and Fault Estimation of Each Actuator 

	Experimental Results and Discussion 
	Experiment Setup 
	Experimental Results 
	LoCE in One Actuator without Using Magnitude Order Unbalance 
	LoCE in One Actuator Using the Magnitude Order Balance Method 
	LoCE in the Three Actuators Using Magnitude Order Unbalance 
	Loss of Control Effectiveness in Four Motors Using Magnitude Order Unbalance 


	Conclusions 
	References

