
sensors

Article

Series AC Arc Fault Detection Method Based on
High-Frequency Coupling Sensor and Convolution
Neural Network

Ruobo Chu 1 , Patrick Schweitzer 2 and Rencheng Zhang 1,*
1 Key Laboratory of Process Monitoring and System Optimization for Mechanical and Electrical Equipment

(Huaqiao University), Fujian Province University, Xiamen 361021, China; cruobo@stu.hqu.edu.cn
2 Institut Jean Lamour (IJL), CNRS, University of Lorraine, F-54000 Nancy, France;

patrick.schweitzer@univ-lorraine.fr
* Correspondence: phzzrc@hqu.edu.cn; Tel.: +86-592-6162-566

Received: 28 July 2020; Accepted: 27 August 2020; Published: 31 August 2020
����������
�������

Abstract: Arc faults induced by residential low-voltage distribution network lines are still one of
the main causes of residential fires. When a series arc fault occurs on the line, the value of the fault
current in the circuit is limited by the load. Traditional circuit protection devices cannot detect series
arcs and generate a trip signal to implement protection. This paper proposes a novel high-frequency
coupling sensor for extracting the features of low-voltage series arc faults. This sensor is used to
collect the high-frequency feature signals of various loads in series arc state and normal working
state. The signal will be transformed into two-dimensional feature gray images according to the
temporal-domain sequence. A neural network with a three-layer structure based on convolution
neural network is designed, trained and tested using the various typical loads’ arc states and normal
states data sets composed of these images. This detection method can simultaneously accurately
identify series arc, as well as the load type. Seven different domestic appliances were selected
for experimental verification, including a desktop computer, vacuum cleaner, induction cooker,
fluorescent lamp, dimmer, heater and electric drill. Then, the stability and universality of the detection
algorithm is also verified by using electronic load with adjustable power factor and peak factor.
The experimental results show that the designed sensor has the advantages of simple structure and
wide frequency response range. The detection algorithm comparison confirms that the classification
accuracy of the seven domestic appliances’ work states in the fourteen categories could reach 98.36%.
The adjustable load in the two categories could reach above 99%. The feasibility of hardware
implementation based on FPGA of this method is also evaluated.

Keywords: series arc; fault diagnosis; high-frequency coupling sensor; convolution neural network

1. Introduction

Arcing can be considered as a complex electromagnetic reaction process. According to the
Under Laboratories (UL) Standard UL1699 [1], an arc fault is defined as a continuous luminous
discharge of electricity across an insulating medium and usually accompanied by the partial
volatilization of the electrodes. It is caused by the breakdown of the insulation medium in the
electrical circuit, the loosening of the electrical connection, the humidity of the air, the reduction of the
insulation strength. The high temperature generated by the arc fault discharge phenomenon is very
easy to ignite the surrounding combustibles, which is one of the main causes of electrical fires.

According to the statistics of the national fire and rescue situation of the Fire and Rescue Bureau
of the Chinese Ministry of Emergency Management in 2019 [2], a total of 233,000 fires were reported
throughout the year, causing direct property losses of 463 million dollars. Although urban and rural
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residential fires accounted for only 44.8% of the total, the number of casualties caused by the year
accounted for 78.3% of the total. In residential fires, electrical fires are still high. In total, 52% of the
fires that have been identified are caused by electrical causes, especially the fires caused by various
household appliances and electrical lines.

In July 2013, the International Electrotechnical Commission (IEC) published the international
standard IEC 62606:2013 [3]. In 2014, the American Electrical Code (NEC) [4] further required installing
a combined AFCI in all 15A and 20A circuits in residence. By then, China promulgated the national
standard GB/T 31143-2014 [5] and GB14287.4-2014 [6].

The arc fault detection device (AFDD) is a new type of circuit protection device to detect and
identify the arc fault in an electrical network, and make a trip or alarm action in time to prevent
electrical fires caused by the arc. An arc fault is an unintentional dangerous arc in electrical circuitry.
According to their location in the circuit, arc faults are categorized into three types: ground arc fault,
parallel arc fault, and series arc fault.

Parallel arc fault and ground arc fault are usually caused by short circuits between power lines,
which have higher current magnitude. So the traditional short circuit or over current protection
systems can detect and make protective actions more effectively. In contrast, the current magnitude of
series arc fault is limited by the load in the circuits. Series arc fault’s current is generally the same as the
normal working current, or even slightly smaller. As a result, the traditional short-circuit, over-current,
overload, and leakage protection technologies cannot effectively detect the series arc fault in the circuit.
Therefore, the emergence of AFDD and arc fault detection technology makes up for the vacancy in the
closed-loop protection system of electrical safety.

When an arc fault occurs in power distribution network, many physical quantities that can
characterize it such as arc sound, arc light, arc voltage, and arc temperature [7,8]. However, because the
location where the arc fault occurs is unknown, the detection of the above physical parameters is more
difficult in practical applications because the sensors used to measure these physical parameters must
be installed near the position where the fault arc occurs. The convenience of current measurement
makes it an ideal parameter for arc fault detection.

Over recent years, relevant researchers have conducted extensive research on series arc
fault detection.

The research on the mathematical model of arc fault is helpful to understand the generation
principle of arc fault, and it is also the basis of arc fault identification. Liu et al. [9] and Qu et al. [10]
improved the Mayr and Cassie arc models and optimized the parameters of the original arc models.
The simulation results are closer to the experimental results.

The assumption of arc model research is stable arcing or high current. Due to the innovation
of various household appliances, especially the use of switching appliances widely, the arc fault in
low-voltage distribution systems becomes more complex, which makes the research on the model of
low-voltage arc faults mostly stay in the simulation stage.

The interests of arc fault diagnosis applications based on machine learning such as discrete
wavelet analysis (DWA), support vector machines (SVM), and artificial neural network (ANN)
is increasing [11–14]. In [15], the source data are sampled at a rate of 25 kHz for analyzing five
typical loads. According to the linear harmonic combination of the loads, these loads were divided into
three classes. By then, a specific fully connected neural network is designed for each class to identify
the arc. Yang et al. [16] analyze the frequency distribution of arc fault features when series arc faults
occurred in different loads, and pointed out that the frequency distribution characteristics of arc fault
mainly is concentrated in the frequency band of 2 kHz to 20 MHz. In [17,18], the voltage waveform
at the power source is used to implement series arc fault detection. Tisserand et al. [19] propose a
method for identifying series arcs in an AC or DC electrical installations by the algebraic derivative of
the current. Lezama et al. [20] present an embedded system for series arc detection by evaluating the
inter-period correlation coefficient of the line current to determine if an arc fault has occurred.
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These methods [11–13,15–20] determine a trigger threshold according to the change of
extracted eigenvalues. They are effective in some applications, but the diversity of load makes
them lack of reliability and generalization ability.

Most of the literature reported that the frequency band of arc feature signal extraction is within
200 kHz [15,20]. Arc current is an ideal parameter for arc fault detection but the measurement frequency
band of common current transformer (CT) and hall sensor (HS) is generally from 0 to 200 kHz [21,22].
Another reason is that the processing ability of the embedded system is generally less than 1 MHz.
However, it must be noted that the frequency components above 200 kHz are still abundant.

Hence, a novel high-frequency coupling (HFC) sensor is designed for extracting the features of
low-voltage series arc faults. It has the advantages of simple structure and wide frequency response
range A series arc fault acquisition experimental platform was built, and the HFC sensor is employed
to collect the high-frequency feature signals of various loads in arc state and normal state. The signal
will be transformed into a two-dimensional gray image. A three-layer artificial neural network based
on convolution neural networks is designed to accurately identify series arc and load, as well as the
load type.

The following parts of the paper is divided into five sections. Section 2 presents the characteristics
of HFC sensor including working principle, equivalent circuit, frequency response, etc. In Section 3,
the features on series current in time and frequency domain for typical appliances under different
working states would be analyzed. Section 4 designs a detection methodology named HCCNN
and introduces its framework, working procedure, and the method for generating data using the
HFC sensor. Section 5 designs the test bench and evaluates the performance of the proposed
method with experiments on data sets. Section 6 presents a comparison between the HCCNN and
prior methods. Section 7 is devoted to the conclusion.

2. HFC Sensor

In this section, the structure and principle of HFC sensor are introduced, and the transfer function
of sensor is analyzed and discussed.

2.1. Equivalent Circuit and Principle Analysis of the HFC Sensor

The schematics of the HFC sensor is shown in Figure 1. It consists of a polypropylene
film capacitor C1, a common-mode inductance M, a sampling resistor Rs, and a pair of transient
voltage suppression diodes TVS. R0 and L0 are the internal resistance and self-inductance of the
sensor respectively, while C0 is its parasitic capacitance. The common mode inductor M is used as the
isolation unit between strong and weak signals. The left coil of M and C1 constitute a high pass filter,
by which the fundamental frequency 50 Hz of power supply will be filtered out. The TVS ensures
that the following circuit components and high-speed acquisition equipment are protected from the
transient high-energy impact caused by arc fault.

Figure 1. High-frequency coupling sensor schematic.
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The value of the mutual inductance of the M (which represents the magnetic coupling).
Depends on the geometry, size, relative position, number of turns of its two coils, and the magnetic
permeability of the medium around. The mutual inductance can be measured by experiment.
The induced electromotive force generated by mutual inductance can be expressed by (1).

e(t) = M
di(t)

dt
(1)

According to Kirchhoff voltage and current theorem, the expression of (2) and (3) can be derived
from Figure 1:

e(t) = R0i1(t) + L0
di1(t)

dt
+ u(t) (2)

i1(t) = i2(t) + i3(t) = C0
du(t)

dt
+

u(t)
Rs

(3)

Since the ferrite core used for the coupling have high value of inductance, which is far greater
than the impedance of internal resistance R0 and sampling resistance Rs. The current flowing through
C0 is much smaller than that flowing through Rs, because the value of C0 is small. In summary,
Equations (4) and (5) can be obtained.

L0
di1(t)

dt
� R0i1(t) + u(t) (4)

u(t)
Rs
� C0

du(t)
dt

(5)

The simplification of (2)–(5) gives (6). It can be noted that the output voltage of the HFC sensor
has a linear relationship with the input current of the common mode inductor. The input side of the
sensor is a high pass filter, so the measured current is an alternating current.

u(t) ≈ MRs

L0
i(t) (6)

2.2. Frequency Response Analysis of HFC Sensor

The most important parameters of HFC sensor are the bandwidth and sensitivity, which both can
be obtained from the frequency response curve. The frequency response analysis chart was measured
by oscilloscope (DSOX-1204G, Keysight Technologies, Santa Rosa, CA, USA). According to the source
data measured by oscilloscope, the transfer function is estimated. The frequency response curve and
its estimate curve are shown in Figure 2. The sensor contains a two-order oscillation section and its
corner frequency is around 13 kHz. Equation (7) shows the general form of the estimated transfer
function of HFC sensor.

H(s) =
a0s3 + a1s2 + a2s + a3

b0s3 + b1s2 + b2s + b3
(7)

where a0, a1, a2, and a3 are −1.01, 7.76× 102, −2.08× 109, and 1.09× 1013, respectively. b0, b1, b2,
and b3 are 1.00, −8.45× 104, 8.17× 109,and −7.64× 1014, respectively. A high pass filter can be found
by analyzing the frequency response of the HFC sensor whose low-frequency cut off frequency is
around 10 kHz. When the frequency is 1 kHz, its frequency response is close to −50 dB.

The HFC sensor is designed to connected to a low-pass filter in series to form a specific band-pass
filter sensor. Details of the design are discussed in the next section
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Figure 2. The frequency response analysis (Bode) of the HFC sensor.

3. Time and Frequency Characteristic Study

In this section, seven different domestic appliances were selected for investigation,
including desktop computer, vacuum cleaner, induction cooker, fluorescent lamp, dimmer, heater,
and electric drill. Their waveforms in time domain and frequency domain and their grayscale
feature image generated from HFC sensor will be analyzed to get multiple perspectives for
further identification.

3.1. Time Domain

Figure 3 shows the current waveforms, which have been normalized, for the two circuit states
(normal and arcing) from different typical appliances. Current signatures can be downloaded freely on
Zenodo. Subgraphs in the left column is the current waveform in normal state, while the right column
is that of arcing state. The loads’ working current is obviously different due to different load types.
Figure 3a is the normal working current of the electric heater, with complete sine waveform. When an
arc fault occurs, abnormal behaviors such as “flat shoulder” in the zero-crossing, increment of the
harmonic component and amplitude distortion impulse might be observed. Particularly, the normal
state of dimmer load that has very pronounced “flat shoulder” could imitate the arc state of electric
heater, causing misjudgment. An electrical drill may produce several arc features at zero crossing,
the same as the vacuum cleaner. The randomness of current variation can also be mimicked by the
desktop computer load. Whether in the arc state or normal state, the load of induction cooker has rich
frequency components.

Therefore, methods only based on the analysis of the appliances’ current generally cannot content
with the requirements of accurate and reliable of arc fault detection, on account of the variety and
complexity of arcing.
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Figure 3. The current waveforms of seven representative appliances in normal and arcing state.
Sub-graphs in the left column (green curve) are the current waveform in normal state, while the right
(green curve) column are that of arcing state. (a,b) Heater, (c,d) Vacuum cleaner, (e,f) Desktop computer,
(g,h) Induction cooker, (i,j) Dimmer, (k,l) Electric drill, (m,n) Fluorescent lamp.

3.2. Frequency Domain

In order to eliminate the bias issue of instruments and eliminate the influence of power
between different load types, the sampling current is Max-Min normalized by (8) before frequency
domain conversion.

yi =

xi − min
1≤j≤N

{xj}

max
1≤j≤N

{xj} − min
1≤j≤N

{xj}
(8)

where {xj} represents the current time series input, N is the number of elements in a current series,
and {yi} represents the result. The expression of fast Fourier transform (FFT) in discrete form is
illustrated by (9).

zk =

∣∣∣∣ N

∑
m=1

yme−i 2π
N km

∣∣∣∣; 1 ≤ k ≤ N (9)

where {ym} represents the normalized current time series input ,{zk} is the result of FFT operation,
and N is the number of elements in a current series. The current is sampled at a rate of 1 MHz with
a digitizer. Figure 4 gives the spectrum distribution of seven domestic appliances in the arcing and
normal current.
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Figure 4. The frequency spectrum distribution of current in normal and arcing state. Sub-graphs in the
left column (green curve) are the current waveform in normal state, while the right (green curve)
column are that of arcing state. (a,b) Heater, (c,d) Vacuum cleaner, (e,f) Desktop computer,
(g,h) Induction cooker, (i,j) Dimmer, (k,l) Electric drill, (m,n) Fluorescent lamp.

It should be noted that the features of arc appear in both low-frequency and high frequency region.
In arcing state, the low frequency component for the majority of appliances decreases, while the
high-frequency component increases. The change of heater that belongs to the resistive load is the
high-frequency region mainly between normal and arcing state. The dimmer is off more than half
of the cycle, and its power is relatively small, resulting in a thin line after transform. In arcing state,
the frequency of inductive load (vacuum cleaner and electric drill) and induction cooker load shows
irregular wave shape.

The spectrum of diverse load types is different in normal and arcing state. If there is switching
load or dimmer load in the circuitry, even in normal state, its current also contains quite a lot of
harmonic components. It is unreliable to diagnose the arc according to the change of frequency
component value in a specific frequency band.

3.3. Gray-Scale Image Generated from HFC Sensor

Seven domestic appliances are sampled with the designed HFC sensor, and the sampling rate is
1 MHz. If the frequency of the residential power distribution network is 50 Hz, 10,000 sampling data
will be obtained from every half-cycle, which is considered an identification object. The signal collected
by the HFC sensor will generate the feature image through the following three steps. Firstly, the signal
data (half-cycle, 10,000 data) are converted into absolute values and normalized. Then the data are
mapped to the two-dimensional gray space of 0–255, as shown in (10):

s(i, j) = 255− 255
x100(j−1)+i − min

1≤n≤N
{xn}

max
1≤n≤N

{xn} − min
1≤n≤N

{xn}
(10)
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Finally, the gray image is transposed for better observation and analysis. This step is not necessary
and will be removed from the hardware implementation. As shown in Figure 5, each column represents
a kind of load. The normal state sub-images are in the first row, and the arc state sub-images are in the
second row.

Figure 5. Gray image of of seven representative loads in normal and arcing state generated from
HFC sensor. The normal state sub-graphs are in the first row, and the arcing state sub-graphs are in the
second row.

These sub-images have their own features. For example, there are two stripes on the left and
right sides of the arc state image of the heater, which is caused by the “flat shoulder” features of the
heater in the time domain, while heater image in the normal state has obvious harmonic fringes and
high-frequency noise. The feature image of the electric drill in the arc state will appear pinstripes
randomly. However, in the normal state, it is full of noise. The feature images of fluorescent lamps
have wide stripes, but there are some harmonics and bottom noise in normal images. The computer
characteristic image also has this kind of appearance, but the stripe is lighter. When the induction
cooker is in the arc state, its regular image will be destroyed by the arc. With respect to the dimmer,
there are obvious cut-off fringes in the middle of the characteristic image of the dimmer due to the
switch action of the silicon tube.

Figures 6 and 7 show the grayscale images of the electrical heater and induction cooker passing
through a high pass filter with different cut-off frequencies in normal and arcing state. With the
increase of the cut-off frequency of the high pass filter, the background signal brought by the load itself
is eliminated in the arc gray image.

Figure 6. Gray images of induction cooker in normal and arcing state after filtering by a high pass filter
with different cut-off frequencies.
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Figure 7. Gray images of heater in normal and arcing state after filtering by a high pass filter with
different cut-off frequencies.

If the cut-off frequency is 400 kHz, the characteristic high-frequency signal of the arc
becomes weaker, but still exists. Therefore, we can draw a conclusion that although the spectrum of
characteristic signal generated by arc fault is vast wide, the rich characteristic information is mainly
concentrated within 400 kHz.

4. The HCCNN Method

In the previous section, through the analysis of the gray image generated by the HFC sensor, it is
found that the images of various loads have their characteristics, which enlightens the development of
the arc recognition algorithm. The high-frequency coupling convolutional neural network (HCCNN)
method is proposed for series arc fault detection. In this section, the structure of the HCCNN method
and its parameters will be introduced in detail.

4.1. Preliminary Theory of CNN

The deep convolution neural network (CNN) has the characteristics of feature extraction and
data dimension reduction [23]. The basic structure of CNN includes input layer, convolution layer,
pooling layer, full connection layer, and output layer. The convolution layer uses multiple moving
convolution kernels to learn high-dimensional features from the image and performs the convolutional
operation in a certain stride along with the input signal in horizontal and vertical directions. For an
image x(i, j) with one channel, the convolution operation Fconv2D() is as follows:

Fconv2D = ∑
m

∑
n

x(i + m, j + n)w(m, n) (11)

y(l)i = factiv.(b
(l)
i + Fconv2D(W

(l)
i , y(l−1)

i )) (12)

where y(l)j is the result of convolution, W is the weight coefficient matrix, B is the bias coefficient,
and factiv.() is the activation function. The pooling layer (lower sampling layer) [23] is usually
placed after the convolution layer, which can not only retain the feature information extracted
from the previous layer but also significantly reduce the amount of calculation. The output of the
convolutional layer is the input of fully connected layer. The essence of the fully connected layer is
matrix multiplication, which can be expressed as follows:

yi = factiv.(WTxi + b) (13)

where factiv.() is the activation function. For multi-classification problems, the softmax
activation function, as shown in (14), is generally employed. {xi} represents the input from the
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upper layer, {yi} is the prediction probability, and W and B represent the weight coefficient and bias
coefficient, respectively.

fso f tmax,i(xi) =
ex

i
N
∑

j=1
ex

j

(14)

4.2. The HCCNN’s Structure

The HCCNN method consists of a high-frequency coupling pretreatment layer, a convolutional
network (ConvNet) layer, and a fully connected layer, as shown in Figure 8. These three layers
work together to distinguish the type of load and diagnose from arc fault that occurs in the circuitry.
The detailed parameters and architectures of the CNN layer and fully connected layer are summarized
in Table 1.

Figure 8. Composition of the HCCNN method.

Table 1. The detailed parameters of the CNN layer and fully connected layer.

No. Layer Type Activation No. of Kernel Padding Kernel Size Stride Output

1 Conv. ReLU 8 2 5 × 5 1 8 × 100 × 100
2 Max-Pooling - - - 2 × 2 2 × 2 8 × 50 × 50
3 Conv. ReLU 16 2 5 × 5 1 16 × 50 × 50
4 Max-Pooling - - - 2 × 2 2 × 2 16 × 25 × 25
5 Linear - 1 - 16 × 25 × 25 - 16 × 25
6 Linear Softmax 1 - 16 × 25 - 14

The high-frequency coupling pretreatment layer consists of a HFC sensor and a low-pass filter,
both of which are combined to collect signals in the frequency band (10 kHz–500 kHz) in the circuit.
Then, these feature signals are processed into gray images. The convolutional network layer has two
sub-convolution layers with 16 and 32 convolution kernels, respectively. This layer also uses the max
pooling operation and the Relu activation function. The expression of the Relu activation function is
as follows:

fReLU(x) =

{
0, x ≤ 0,

1, x > 0.
(15)

The artificial neural network (ANN) optimization procedure is minimizing the loss function as
close to 0 as possible by training with an amount of data. For the HCCNN method, the cross entropy
loss function is employed and its expression [24] is as follows:

Loss = − 1
N

N

∑
n=1

M

∑
i=1

yn,i lg Pn,i (16)
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where Pn,i is the output of the fully connected layer, N is the size of the input batch, yn,i is the
corresponding targets, and M is the number of categories. The parameters are updated iteratively by
the gradient of the loss function to the parameters. The gradient g requires computing:

g← 1
N
5W,b

N

∑
n=1

Loss
(

factiv.(x(n); W, b), t(n)
)

(17)

where Loss is the per-batch loss function, N is the size of the mini batch, O is the derivative operation,
W and b are the weight and bias matrices, respectively. The gradient g and learning rate(lr) work
together to update the parameters of neural network. This paper uses the Adam optimizer [25] to
optimize the gradient update process.

W∗, b∗ ←W, b− lr · g (18)

5. Experimental Setup and Results

In this section, experiments are carried out to evaluate the performance of the proposed
HCCN method. A database consisting of seven domestic appliances was built for training and
testing the HCCNN method. In order not to lose generality, the database generated by the electronic
load is constructed.

5.1. Experimental Setup

In order to construct a large number of labeled normal samples and fault samples for the
convolution neural network, a series arc fault acquisition experimental platform was built according to
the Chinese standard GB14287.4-2014 [6]. The schematic of experimental platform is shown in Figure 9
The main equipment includes an adjustable arc generator with carbon and copper as electrodes,
HFC sensor, PXI Chassis (PXIe-1071, National Instruments, Austin, TX, USA), the digitizer module
(PXI-5122, National Instruments, Austin, TX, USA), AC power supply (IT-7626, ITECH, Nanjing,
China) and current probe (N2783B, Keysight Technologies, Santa Rosa, CA, USA). A double series
EMI filter is used for providing the external trigger signals for the digitizer to collect half-wave data
completely, because of the frequency fluctuation of power grid.

Figure 9. Schematic of the experimental platform.
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The arc generator is ignited between a carbon electrode and a copper electrode, as shown in
Figure 9, is designed. A stepper motor with a programmable logic controller is used to accurately
control the distance between electrodes with suitable speed. An IGBT device is connected to two
electrodes of arc generator to precisely control the number of series arc by programmable arc
generation system. Figure 10 represents the actual test bench.

The computers used for data processing is a computer with Intel CORE i7-9750H CPU and 16 GB
DDR4 memory. The training and test procedure are primarily implemented within PyTorch and
achieve comparable results.

Figure 10. The test bench.

5.2. The Arc Fault Database of Typical Appliances

Seven different domestic appliances were selected for experimental verification, including
desktop computer, vacuum cleaner, induction cooker, fluorescent lamp, dimmer, heater,
and electric drill. Seven typical appliances, corresponding powers, and manufacturers for this platform
are illustrated in Table 2. All raw data are digitized at a sampling rate of 1 MHz using the HFC
sensor and each half-cycle signal is considered to be a complete identification object. Because the
frequency of the residential power distribution network is 50 Hz, each half-cycle signal will contain
10,000 sampling data, which will be converted into a gray image with a resolution of 100 × 100 pixels.
The fully connected layer of the HCCNN method has fourteen output neurons, which correspond to
fourteen categories from seven typical appliances.
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Each load can be in arc state or normal state. In each state, 1000 half-wave data are collected to form
1000 gray images. Because there are seven typical domestic appliances for experimental verification,
the database has a total size of 14,000 gray images. In total, 10% of the images to build the test set were
randomly selected, so the size of the test set is 1400, while the size of the training set is 12,600.

Table 2. Typical loads and the corresponding data set labels.

Appliance Power Model, Manufacturer Data Set Label

Electric heater 1.2 kW HZ-04, WAHIN Normal: 0, Arc: 1
Vacuum cleaner 800 W D1108, Bull Normal: 2, Arc: 3

Computer 450 W Lx-9, Haier Normal: 4, Arc: 5
Dimmer 600 W ZCY-08, Midea Normal: 6, Arc: 7

Fluorescent lamp 40 W 40YT-MR, Philips Normal: 8, Arc: 9
Induction cooker 1.8 kW TW12-B2, Konka Normal: 10, Arc: 11

Electric drill 1.2 kW B5-JB02, Bosch Normal: 12, Arc: 13

5.3. Analysis HCCNN’s Output with t-SNE Method

t-SNE method [26] is employed to analyze the output of the HCCNN’s ConvNet layer. The output
of ConvNet layer is the high-dimensional features of image after convolution operation. The t-SNE
method can map each sample into two-dimensional space, and try to separate each category from
each other as far as possible. Figure 11 gives the dimension reduction distribution of the output of the
ConvNet layer for seven domestic appliances. The load corresponding to the label of color point group
can be found in Table 2. Odd labels are in arc state (1, 3, 5, 7, 9, 11, 13), and even labels are in normal
state (0, 2, 4, 6, 8, 10, 12). The 14 load states shrink into a group and are far away from each other,
and even tags and odd tags tend to separate from each other, which indicates that ConvNet layer has a
good ability to extract load characteristics and arc features. However, some points are calculated to the
wrong location, indicating that a fully connected layer is required for deeper classification.
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Figure 11. Visualization of the ConvNet layer’s output using the t-SNE method.

5.4. The Detection Result of Typical Appliances

The general distribution of the classification confusion matrix of the test data set with exact values
is shown in Figure 12, in which labels and corresponding loads can be found in Table 2. The green
borders indicate that the prediction of the working state is correct, but the prediction of the type is
wrong. The red borders indicate that both the working state and the type of appliance are mispredicted.
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Figure 12. Confusion matrix of the test set.

Table 3 gives the classification results of the HCCNN method. The general prediction accuracy of
each sample is 98.36%. In particular, the samples in green borders can be regarded as correct prediction
if only concern weather arc fault occurs and ignore the type of appliance. If the type of appliance is
not considered, the prediction accuracy of arc detection is further improved to 99.20%.

Table 3. Classification results of the HCCNN method.

Category (Normal) 0 2 4 6 8 10 12

Identification accuracy 99% 100% 100% 100% 100% 99% 100%

Category (Arcing) 1 3 5 7 9 11 13

Identification accuracy 99% 100% 98% 98% 94% 92% 98%

Prediction accuracy of each sample: 98.36%

Prediction accuracy (ignore the load type): 99.20%

5.5. The Result of Electronic Load Recognition

Without loss of generality, the HCCNN method is evaluated using a test data set generated by an
electronic load (IT-8616, ITECH, Nanjing, China) with adjustable power factor (PF) and CF (CF refers
to the ratio of the peak value to the effective value of the periodic waveform). The CF is set to 1.45,
2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0. The PF is set to 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. The overall size
of the test set is 1600, of which 800 samples are arc state and the other 800 samples are normal state.
Under the condition of each parameter, 50 normal and arcing state samples were collected. A script for
recording and counting labels will be used to convert fourteen neurons in the HCCNN’s output layer
into the arc or normal state.

Figure 13 gives the t-SNE distribution by testing database composed of feature images from the
electronic load. The distribution that the selected 500 samples of normal and arcing state cluster into
different areas reflects the extensive ability of HCCNN method. The overall recognition accuracy of
the test samples is more than 99%.
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Figure 13. Visualization of the ConvNet layer’s output using t-SNE method.

However, in the multi load’s parallel experiment, the HCCNN can accurately identify the arc and
the load type as the load which accounts for the larger proportion of current in the circuit, but the
accuracy will be reduced. The probability distribution of the combination of two typical loads is shown
in Figure 14. Four experiments of two load combination (heater and fluorescent lamp, dimmer and
fluorescent lamp, vacuum cleaner and desktop computer, electric drill and desktop computer) are used
to verify the recognition results of the HCCNN method. For example, the heater load and fluorescent
lamp load are combined and an arc fault occurs in the circuit. The predicted value of the heater is about
60% and that of the fluorescent lamp is about 30%. With a high power, the heater can be considered as
a masking load.
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Figure 14. The probability distribution of the combination of two typical loads. (a) Heater and
fluorescent lamp, (b) Dimmer and fluorescent lamp, (c) Vacuum cleaner and desktop computer,
(d) Electric drill and desktop computer.
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5.6. Assessment of Embedded System Implementation

The implementation of the HCCNN method is based on a development board NAVIGATOR with
a Zynq-7020 chip (xc7z020clg200, Xilinx, San Jose, CA, USA), which is a System-on-Chip (SoC) with a
dual-core ARM Cortex-A9 processor and FPGA. Embedded system also employs a high-speed AD
(AD9280, Analog Devices, Norwood, MA, USA), which is an 8-bit, 32 MSPS (sampling million times
per second) analog-to-digital converter. The embedded system test bench is shown in the Figure 15.

Figure 15. Embedded system test bench.

Figure 16 shows an experimental real-time result. The HCCNN method is able to accurately
detect series arc fault generated by the electrical heater and dimmer. The embedded arc detection
system will not only send out the tripping signal of the series arc fault but also send out the pulse of
the corresponding load type. The proposed diagnosis scheme can detect series arc events at around
40 ms. In fact, a decision is done only after collecting a complete cycle signal, so the average detection
time of every half cycle is about 10ms, meeting the requirements of detection time and having a
significant margin.

Figure 16. Examples of real-time experimental validation results using dimmer load and
electrical heater: loop current (blue), voltage at both sides of the arc (red), tripping signal (yellow),
load type pulse (green).
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6. Comparison with Prior Methods

Comparison with some related methods in recent literatures, aspects such as the principle,
detection accuracy, detection accuracy, sampling rate, etc. are contrasted to evaluate the HCCNN
method and show the properties, as summarized in Table 4.

Table 4. Comparison of the HTFNN with Prior Methods.

Method Wang et al. [15] Lezama et al. [20] Tisserand et al. [19] Yang et al. [27] HCCNN Method

Principle

Fundamental
frequency
components and
fully connected
neural network.

The inter-period
auto correlation
coefficient of the
line current.

The algebraic
derivative method
of the line current.

Using current
transformer and
convolution
neural network.

Design of high
frequency
coupling sensor
and convolution
neural network.

Detection
accuracy

Above 99.0% (3919
out of 3950 tests)

Not introduced in
the paper.

Not introduced in
the paper.

98.7% (987 out of
1000 tests).

99.2% (23 out of
1400 tests)

Sampling rate 20 kHz 5 kHz 1 MHz 1 MHz 1 MHz

Application
range

Resistive,
inductive,
capacitive, and
switching loads.

Resistive,
capacitive,
switching loads,
but no
inductive loads.

Resistive, reactive
load, but no
switching loads.

Resistive,
inductive,
capacitive, and
switching loads.

Resistive,
inductive,
capacitive, and
switching loads.

Device
implementation
assessment

The algorithm is
implemented by
STM32F407ZG
and the time
response of the
method is 3 ms for
one sample.

The algorithm is
implemented by
LCP1768 and the
time response of
the algorithm is
10 ms.

Declares that the
implementation in
FPGA has been
implemented but
few details
about it.

Not introduced in
the paper.

The method is
implemented by
Zynq-7020 and the
time response of
the method is
11 ms for
one sample.

In respect to principle of diagnosis, HCCNN uses the HFC sensors to collect high-frequency
coupling signal. It does not set the threshold value in advance but is based on data supervised learning.
It can also detect which load onsets an arcing fault and give a probability distribution. On the one hand,
according to the relevant arc fault detection standards, it is not necessary to identify the load type,
but it can help users to find the approximate position of the arc fault, which may be a research interest
in the future. On the other hand, the load identification method is one of the major technical difficulties
of non-intrusive composite load monitoring (NILM). The proposed method can be combined with
NILM technology. Through the NILM, the power grid company can understand the actual energy
consumption level of various loads of users, master the power consumption situation and behaviors of
all kinds of users in real-time, guide users to reasonably arrange power consumption time, and provide
energy-saving suggestions.

In the aspect of detection accuracy, the goal of each method is to identify the arc fault perfectly.
The HCCNN method has higher precision (above 99%) than other methods and could be even higher
by adjusting parameters perfectly. If a diagnosis scheme has an accuracy rate of more than 99%, it is
generally believed in meeting the design requirements.

In the aspect of application range, the HCCNN method could be applied to switching,
inductive, resistive, capacitive loads—more general than the methods in [19,20], which is not available
to inductive loads application [19] or switched mode loads [20].

With respect to sampling rate, the HCCNN has a high sampling rate, and the highest sampling
rate can be set to 16 MS/s because its hardware implementation is based on the FPGA target and
high-speed ADC.
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7. Conclusions

A study of series arc fault detection using the high-frequency coupling convolution neural
network (HCCNN) method has been presented in this paper. The method is dedicated to series arc
fault detection in a domestic network (220 V, 50 Hz), and detects arc fault in the following procedure:
The gray images of various loads are obtained by using the designed high-frequency coupling (HFC)
sensor that has the advantages of simple structure and wide frequency response range. A three-layer
artificial neural network based on convolution neural network is designed to accurately identify series
arc and load, as well as the load type.

Seven different domestic appliances, including a desktop computer, vacuum cleaner,
induction cooker, fluorescent lamp, dimmer, heater, and an electric drill, generate an extensive
generalized database for training and testing of the HCCNN method. The identification of arc
fault can rely on the frequency information from 10 kHz to 500 kHz.

The experimental results confirm the HCCNN method’s effectiveness and good accuracy for
series arc fault detection. If the load type is ignored, the detection accuracy reaches above 99%, and the
accuracy of the electronic load test is also more than 99%. Besides, the detection method is currently
implemented on an embedded system based around a Zynq-7020 FPGA microcontroller, and the time
response is 11 ms for one sample.
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