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Abstract: The Internet of Things (IoT) is an industry-recognized next intelligent life solution that
increases the level of comfort, efficiency, and automation for citizens through numerous sensors,
smart devices, and cloud stations connected physically. As an important application scenario of IoT,
the Internet of Vehicles (IoV) plays an extremely critical role in the intelligent transportation field.
In fact, the In-Vehicle Network of smart vehicles that are recognized as the core roles in intelligent
transportation is currently the Controller Area Network (CAN). However, the In-Vehicle CAN bus
protocol has several vulnerabilities without any encryption, authentication, or integrity checking,
which severely threatens the safety of drivers and passengers. Once malicious attackers hack the
vehicular gateway and obtain the access right of the CAN, they may control the vehicle based on
the vulnerabilities of the CAN bus protocol. Given the severe security risk of CAN, we proposed
the CANsec, a practical In-Vehicle CAN security evaluation tool that simulates malicious attacks
according to major attack models to evaluate the security risk of the In-Vehicle CAN. We also show a
usage case of the CANsec without knowing any information from the vehicle manufacturer.

Keywords: Internet of Vehicles (IoV); Controller Area Network (CAN); security evaluation tool

1. Introduction

The development of sensors and communication technology promotes the evolution of the
Internet of Things (IoT). The number of devices connected to the Internet increases rapidly around
us, which constructs a network called IoT. The IoT consists of sensors, smart devices, vehicles, cloud
stations, and so on. These devices are connected through various communication protocols physically
and exchange data in the network, which increases the level of comfort, efficiency, and automation
for citizens [1]. With the help of sensors and smart terminals, intelligent transportation, an important
component of the smart city, has become an important application of IoV. As an extension of IoT,
the IoV efficiently connects smart vehicles, road infrastructures, mobile devices, and the Internet,
laying a foundation for building intelligent transportation.

Playing a critical role in IoV, the smart vehicle has been not only a transportation tool, but also an
increasingly sophisticated computer on wheels over the past two decades, with the rapid development
of automotive electronics. Current vehicles are equipped with WiFi access points, Bluetooth modules,
cellular communication modules, gateways, telematics, and dozens of Electrical Control Units
(ECUs) [2]. A modern vehicle, even if not fully featured, already has 70 to 100 ECUs, with over 2500
signals to transmit internally [3]. To coordinate communication among ECUs, In-Vehicle Networks
(IVNs) are composed of several kinds of bus protocols. The sensors, actuators, and processors connected
with several buses of IVNs provide modern information services in various scenarios according to the
need of drivers and manufacturers.
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There are five bus protocols for IVN communication as demonstrated in Figure 1.Sensors 2020, 20, x FOR PEER REVIEW 2 of 14 
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The Media Oriented System Transport (MOST) is deployed in high-end vehicles for entertainment
information data transmission [4]. The Vehicle-mounted Ethernet has received a great deal of attention
recently and is used in modern cars for the high-speed transmission of large amounts of data with
high bandwidth and very limited latency and jitter [5]. The Local Interconnection Network (LIN)
is used in low-speed data transmission scenarios without strict requirements for communication
latency [4]. The FlexRay is used as the backbone of the new generation of IVN with the characteristics
of efficient network utilization and system flexibility [6]. The Controller Area Network (CAN) is the
de facto standard in most IVNs due to its dramatically decreased communication lines and higher
data transmission reliability [7]. Through Ethernet, FlexRay, and the LIN bus protocol are also used,
the CAN bus offers advantages such as cost-effective wiring, immunity to electrical interference,
self-diagnosing, and error correction based on protocol characteristics, which makes the CAN bus the
most common in-vehicle communication protocol [8].

However, the CAN bus was primarily designed for reliable communication without considering
cybersecurity. The lack of encryption, authentication, and integrity checking introduces vulnerabilities
for the CAN protocol making IVNs vulnerable to cyber-attacks, which behooves researchers to
evaluate the security of the CAN bus. However, before the release of vehicular security guidelines
and evaluation standards from a working group in WP.29, most of the research mainly focused on
CAN bus threat analysis and security analysis methodology. Few researchers have proposed practical
security assessment tools for the CAN bus. Practical evaluations of the security of the CAN must be
resolved. Koscher et al. developed a CAN network analysis tool called CarShark [7]. The tool only
distinguishes the critical control messages by visualization and does not evaluate the security of CAN.
Huang at al. designed and developed an Attack Traffic Generation (ATG) tool for security testing of
the in-vehicle CAN bus [9]. However, the evaluation items are not comprehensive for attack models.
Park at al. proposed a security evaluation methodology and tool that can analyze the security level
of the In-vehicle network covering only four evaluation vectors [10]. The tools in [11–13] only inject
malicious attack messages into the CAN bus as data generators and transceivers.
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The existing tools have limitations, as described above. In this paper, we designed an evaluation
tool called CANsec based on a more comprehensive evaluation methodology. The evaluation
methodology proposes four basic attack vectors against the CAN. In our evaluation methodology,
any attack models can be constructed with four basic attack vectors. CANsec consists of 11 evaluation
vectors based on target assets and basic attack vectors. The major contributions in this paper are
as follows.

We define six vulnerabilities after analyzing the security characteristics of CAN. Further, based on
vulnerabilities, we propose four basic attack vectors against CAN.

We propose the evaluation methodology: analyzing the target assets of CAN and constructing the
evaluation vector according to four basic attack vectors and assets.

We describe the procedure of the proposed evaluation tool and provide a usage case based on a
Ford car without knowing any information.

Accordingly, the rest of the paper is organized as follows. Section 2 provides a background study
on the CAN, followed by Section 3, which presents a detailed vulnerability assessment of the CAN.
Section 4 provides an in-depth description of the proposed evaluation tool. Section 5 discusses the
results of the experiment. We reach the conclusion in Section 6.

2. In-Vehicle CAN Bus Protocol

The CAN is an ISO bus standard proposed in 1993 and has been the de facto standard for
connecting ECUs in vehicles over the past 20 years. All ECUs are connected as nodes through a
physically conventional two-wire bus, which transmits differential wired-AND signals. In this section,
we focus on the CAN protocol before assessing the vulnerabilities.

In the CAN protocol, a sender ID-based broadcast protocol [14], the CAN frames used for ECU
communication consist of 7 main fields, as shown in Figure 2.
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The Start of Frame (SOF) that has 1 bit informs the start of transmission. The arbitration field
starts with the 11-bit ID, followed by the 1-bit Remote Transmission Request (RTR) in a standard frame
or by the 1-bit Substitute Remote Request (SRR) in an extended frame. The RTR is used to distinguish
the data frames (0 as dominant) from the remote request frames (1 as recessive). The SRR remains
recessive to guarantee the deterministic resolution of the arbitration field between a standard frame
and an extended frame. The Identifier (ID) in the arbitration field instead of an explicit address was
used to identify the receivers. According to the length of ID, there are two types of CAN frames in
the CAN protocol. Standard frames with an 11-bit ID and extended frames with a 29-bit ID can be
simultaneously transmitted on the CAN bus.

The Control field consisting of 6 bits plays a role in displaying the properties of a data frame [15].
The 1-bit Identifier Extension (IDE) is dominant in a standard frame and recessive in an extended
frame, which ensures the deterministic resolution of the contention when the first 11-bit IDs of two
frames are the same. The following 4-bit Data Length Content (DLC) defines the length of the data
field in bytes (0 to 64 bytes). The Cyclic Redundancy Code (CRC) can identify whether the data frame
was transmitted to the receiver normally. The ACK consists of 2 bits: the first is used to record an
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acknowledgement from the receiver, and the other is a delimiter. The receivers report that the received
frame is valid by overwriting the ACK slot with a dominant bit.

3. Vulnerabilities and Attack Vectors

In this sector, we analyze the intrinsic vulnerabilities of the CAN protocol and attack vectors that
can be exploited to attack the In-Vehicle system. The basic attack vectors that build any attack models
against the CAN in IVNs may exploit multiple CAN bus vulnerabilities. As described in Table 1,
we present the mapping between vulnerabilities and attack vectors that show the vulnerabilities
exploited by the specific basic attack vector.

Table 1. Mapping between vulnerabilities and attack vectors.

Attack
Vectors

No
Encryption

No
Authentication

No
Integrity
Checking

Broadcast
Transmission

Priority-based
Arbitration

Limited
Bandwidth

and
Payload

Eavesdropping
Attack • • •

Replay Attack • • •

Impersonation
Attack • • • •

Injection Attack • • • • • •

3.1. Vulnerabilities

The CAN bus lacks the fundamental security mechanism in the protocol [15], which makes the
vehicles vulnerable to malicious adversaries. According to CIA (Confidentiality, Integrity, Availability)
security model, there are six vulnerabilities. The vulnerabilities regarding the traffic of the CAN bus
include no encryption, no authentication, and no integrity checking. Moreover, the vulnerabilities
introduced by the protocol characteristics of the CAN bus consist of broadcast transmission,
priority-based arbitration, and limited bandwidth. No encryption violates the confidentiality principle.
No integrity checking and no authentication violate the integrity principle. Priority-based Arbitration,
Limited Bandwidth, and Payload make the DoS attack practical for malicious attackers, which violates
the availability. The Broadcast Transmission lays the foundation for the CAN frame eavesdropping
within a segment, which helps to reveal the content of the CAN frames.

(1) No Encryption. No encryption of the content in the CAN frame allows the adversaries to
easily analyze the functions of the target ECU based on the historically recorded CAN frames.

(2) No Authentication. As shown in Figure 2, the CAN frame has no authentication field to
indicate its source, which means a transmitter can indistinguishably transmit a CAN frame to any
ECUs connected on the CAN bus. The adversaries can command a compromised ECU to take control
of the target ECUs by transmitting fabricated CAN frames containing appropriate contents on the
CAN bus.

(3) No Integrity Checking. The CAN frame receiver does not check the integrity of the data.
The information received may be exactly different from what the sender has sent in the channel with a
malicious alternation of adversaries.

(4) Broadcast Transmission. The CAN frames are both physically and logically broadcasted to all
the connected ECUs. Every ECU receives the frames transmitted on the CAN bus and takes actions
according to the frame ID [16]. Although manufacturers segment the CAN networks with the help
of the CAN firewall, malicious ECUs can easily leverage the broadcast nature of the CAN bus to
eavesdrop on the CAN frames transmitted by other ECUs within one segment.

(5) Priority-based Arbitration. The ID field of a CAN frame determines its priority. The priority-based
arbitration mechanism allows a CAN frame with a smaller ID (higher priority) to be transmitted on the
CAN bus while forcing all the other CAN frames to back off. If a malicious ECU asserts a dominant state
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on the CAN bus indefinitely, none of the legitimate ECUs can transmit any CAN frames. In this way,
the adversaries can easily launch the Denial of Service (DoS) attack against IVNs.

(6) Limited Bandwidth and Payload. The high-speed CAN bus has a data rate of about 500 Kbit/s,
and the payload of a CAN frame is up to 64 bits [15]. Limited by the bandwidth and the payload,
the CAN bus cannot provide strong access control. For example, in order to protect ECUs against
certain operations without authorization, ECUs in diagnostic services are supposed to use fixed
challenges (seeds) and store the corresponding responses (keys) for the challenge-response pairs [7].
Since the length of the challenges and the responses are too short, the adversaries can crack the key of
an ECU within eight days through a brute-force attack [7].

3.2. Attack Vectors

The CAN bus protocol has no encryption, no authentication, and no integrity checking.
Furthermore, the CAN bus cannot determine whether the data was replayed by a malicious node
even if a corresponding cryptographic mechanism is adopted to tackle the previous vulnerabilities.
According to the above security vulnerabilities, we propose four basic attack vectors. The eavesdrop
attack exploits the vulnerability of no encryption. The impersonation attack exploits the vulnerability
of no authentication. The impersonation attack can manipulate the CAN frames because there is
no integrity checking. The replay attack may be effective if no countermeasure has been deployed.
The attackers can launch the basic attack vectors with the weakly and fully compromised ECUs. Since
a practical attack model is a combination of one or more basic attack vectors, we explain how to use
the weak attacker and the strong attacker to launch the attack vectors in this section.

(1) Eavesdrop Attack. As mentioned before, the CAN frames are broadcasted to all ECUs without
encryption. A weak attacker, ECU-A in Figure 3a, is able to eavesdrop on the CAN bus to collect and
analyze the CAN frames.
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Through the fuzzing test [7] on the historically recorded CAN frames, the functions of the
target ECUs can be determined. Therefore, the eavesdropping attack is the foundation of all the
practical attacks.

(2) Replay Attack. Without authentication and integrity for the CAN frames, a strong attack is
able to launch the replay attack [18,19]. As shown in Figure 3b, a fully compromised ECU-A transmits
the CAN frames received from ECU-C without modifying it. As a result, the receiver ECU-B will
function abnormally under the replayed control information.

(3) Impersonation Attack. Having known the content and frequency of the CAN frames from
ECU-B, the strong attack is able to launch the impersonation attack, as shown in Figure 3c [20].
The weak attacker first suspends the transmission of ECU-B, and the strong attacker then controls
ECU-A to transmit CAN frames using ECU-B’s ID to manipulate the target ECU-C.

(4) Injection Attack. As shown in Figure 3d, a strong attacker ECU-A is able to inject CAN frames
with arbitrary IDs and content [11]. On the one hand, the injected frames with the highest priority ID
will always occupy the CAN bus [16]. On the other hand, an appropriate ID makes the target ECUs
accept the content in the fabricated CAN frames.

4. Proposed Security Evaluation Tool

4.1. Evaluation Methodology

The evaluation methodology includes evaluation assets and evaluation vectors. The In-Vehicle
CAN is composed of several ECUs communicating through CAN packets [21]. From the angle of the
application layer, there are two main types of CAN packets. Normal packets are transmitted on the
CAN bus at any given time to be interpreted as commands for receivers. Diagnostic packets are sent
form diagnostic tools to communicate with ECUs only when the automotive need to be diagnosed.
The ECUs and two types of CAN packets will be the targets of malicious attackers if there are no
security mechanisms in the In-Vehicle CAN. There are seven major assets in the automotive CAN
network: the CAN architecture, CAN frames, ECU diagnostic services, the ECU communication matrix,
ECU access rights, ECU data, and ECU functions.

CANsec supports 11 evaluation vectors predefined. The evaluation vector constructed based on
four basic attack vectors simulates the actual attack models against the target assets. Adversaries may
launch the attack described in the evaluation vectors. Accordingly, the security evaluator can attack
the target with the evaluation vector to evaluate its security. The role of each evaluation vector with
the target asset is shown below.

(1) The CAN Architecture Scan. The In-Vehicle CAN network is composed of multiple
sub-networks. The ECU is connected to different sub-networks depending on its function.
By continuously eavesdropping on CAN data frames, the malicious attacker can infer the CAN
architecture of the target vehicle according to the CAN IDs of the CAN data frames. The CAN
architecture scan regards the CAN architecture as the target asset. Through the CAN architecture,
the malicious attackers can obtain the location of critical ECUs in the automotive CAN networks.

(2) ECU Drop-Off. The CAN bus has an arbitration mechanism based on ID priority.
When messages of high priority are sent to the CAN bus continuously, messages sent by other
senders will be blocked, resulting in a denial of service or an interruption of service for ECUs on the
bus, which is called the ECU drop-off. The evaluation vector of the ECU drop-off targets the ECU
function. Adversaries may take actions to deplete the CAN bus communication resources to force the
ECU to fail to provide normal service.

(3) Normal packets Reverse based on the frame frequency. Reversing the normal packets reveals
the communication matrix preserved by the manufacturers. With the help of the communication
matrix, the adversaries can compromise the CAN bus system to control the action of the vehicles.
The ECUs broadcast normal packets at a certain frequency. However, when the vehicular status
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changes frequently, the ECU will broadcast the corresponding normal packets at a higher frequency,
which can be used to figure out the mapping between the CAN ID and the vehicular action.

(4) Normal packets Reverse based on the data bit feature. CANsec introduces eigenvalues as
the length of the valid data bits in the CAN frame. For each automobile action, the evaluation tool
determines the eigenvalue through a large number of statistical analyses of the corresponding CAN
frames. Based on the eigenvalues, CANsec gradually changes the value of the valid data bits and
analyzes the corresponding automobile actions to obtain the communication matrix.

(5) Normal packets Replay. The replay attack is an active attack based on the eavesdropping
attack, and the evaluation vector can be launched on both normal packets and diagnostic packets.
By eavesdropping on and recording all messages on the CAN bus when the vehicular status changes,
CANsec can identify and replay the recorded messages to control the behavior of the vehicle. The replay
attack regards the CAN frames as the target assets.

(6) Normal packets Fuzzing. In the fuzzy test module of CANsec, the fuzzy data generator uses
the mutation mechanism to generate massive normal packets. Based on the legal normal packets
collected from the vehicle, the fuzzy frames for the tests are generated by a combination of random
ID and data. By monitoring a change in vehicular status while transmitting the fuzzy frames to the
In-vehicle CAN, the tool can discover unknown vulnerabilities and effectively evaluate the security of
the In-vehicle CAN.

(7) Diagnostic Service Scan. The Unified Diagnostic Services (UDS) defines a diagnostic packet
that includes diagnostic IDs, primary services, and subfunctions. The diagnostic service scan is helpful
to understand that whether the target vehicle ECU supports the specific diagnostic service, which lays
an important foundation for reversing diagnosis instruction. The asset of the evaluation vector is the
diagnostic service that the target vehicle provides.

(8) Diagnostic packets Reverse. The diagnostic service provided by the vehicle can be obtained
through the diagnostic service scan. Further analysis of the diagnostic service parameters can reverse
effective diagnostic control instructions. Malicious attackers can obtain ECU data through the diagnostic
packets reverse.

(9) ECU Access. The UDS diagnostic protocol specifies that some important diagnostic
services involving ECU reading and writing require the identification of external diagnostic tools.
The authentication mechanism is a seed-key algorithm. The diagnostic client sends a seed request to
the target vehicle and then receives a randomly generated seed. Both the diagnostic client and the
target vehicle calculate the key based on the encryption algorithm defined by the manufacturer and
the seed. If the client provides the correct key for the target vehicle, it will be authenticated. External
clients that have passed the security authentication will access the data in the ECUs.

(10) Diagnostic packets Replay. The diagnostic packets replay is familiar with the normal packets
replay. By eavesdropping on and recording all diagnostic messages on the CAN bus from the
session between diagnostic tool and ECUs, CANsec can identify and replay the recorded messages to
manipulate the behavior of the ECU to access the ECU or obtain the ECU data.

(11) Diagnostic packets fuzzing. The diagnostic package only comes from the session between the
diagnostic tool and the ECU. It is not possible to collect a large number of diagnostic packages from
the vehicle itself for mutation. Therefore, based on UDS protocol specification, CANsec generates a
large amount of fuzzy diagnostic frames, which greatly improves the efficiency of the fuzzy test.

The evaluation vector builds an attack model for the target assets and simulates the actual attack
scenarios. Table 2 presents the mapping between Evaluation vectors and attack vectors that show the
attack vectors exploited by a specific evaluation vector.



Sensors 2020, 20, 4900 8 of 15

Table 2. Mapping between evaluation vectors and attack vectors.

Evaluation Vectors Eavesdropping
Attack

Replay
Attack

Impersonation
Attack

Injection
Attack

CAN Architecture
Scan •

ECU Drop-Off • • •

Normal packets
Reverse:

Based on frame
frequency

• •

Normal packets
Reverse:

Based on data bit
feature

• •

Normal packets
Replay • •

Normal packets
fuzzing • •

Diagnostic Service
Scan • •

Diagnostic packets
Reverse • •

ECU Access • •

Diagnostic packets
Replay • •

Diagnostic packets
fuzzing • • •

4.2. In-depth Knowledge of CANsec

4.2.1. Overview of CANsec

As shown in Figure 4a, CANsec is composed of hardware and software written mainly in Python.
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Like other tools, the tool has conventional functionality, such as traffic tracking, transmitting,
logging, and monitoring. The tool supports 11 evaluation vectors that target various assets of IVNs,
which comprehensively evaluates the security of CAN bus in IVNs. Users can choose the evaluation
vector in the function window to execute the specific evaluation. The user-specified evaluation vector
calls several of the four basic attack vectors for a combined attack to evaluate the security of the CAN.
All evaluation vectors support a flexible configuration defined by the configuration window to adapt
various evaluation scenarios before evaluations.

The data processing module processes the CAN traffic for display. The status monitor keeps
an eye on whether the status of the target vehicle has changed when CANsec executes the fuzzy
evaluation. The logging module logs critical events such as vehicular status changes and software
crashes. The communication layer sends and receives the CAN application data, which is called by
the upper layer for communication with the target vehicle. The hardware with the driver software,
called the CAN transceiver, automatically completes the analysis and encapsulation of CAN frames,
which makes the application layer focused on the CAN ID and data field. The primarily supported
hardware is a cost-effective CAN USB adapter.

4.2.2. Details of CANsec

As shown in Figure 4b, before the evaluation, users should choose the evaluation vector and
configure the chosen evaluation vector. The CAN architecture scan must be the first evaluation item
to obtain the architecture of the in-vehicle CAN. When launching the normal packets reverse item,
CANsec reverses the CAN ID based on the frame frequency before reversing the communication matrix
based on the bit feature. When evaluating the security of the diagnostic functionality, the tool will scan
the CAN to find the diagnostic services provided by the target vehicle, which is the cornerstone of the
follow-up evaluation. The user-specified evaluation vector invokes the basic attack vectors to generate
test data streams to attack the target vehicle. At the same time, the tool will monitor the change of
the target vehicle under test and record the evaluation log. The detailed procedure of the evaluation
vector is as follows.

(1) CAN Architecture Scan. The purpose of the evaluation vector is obtaining the architecture of the
In-Vehicle CAN. Users initiate the vehicle and connect the evaluation hardware device to the
OBD-II port of the target vehicle. Users then eavesdrop on the CAN bus frames and record the
CAN IDs that helps to indicate the architecture of the In-Vehicle CAN.

(2) ECU Drop-Off. The evaluation vector tries to deny the services of the ECU. After initiating the
vehicle and connecting the evaluation hardware device to the OBD-II port of the target vehicle,
users eavesdrop on the CAN bus frames and record the CAN IDs. Users send the CAN frames
based on the target CAN ID at a certain frequency and record the CAN IDs again. If the CAN IDs
in two records change, the attack is valid, and the CAN communication is not secure.

(3) Normal packets Reverse based on the frame frequency. The asset of the evaluation vector is the
mapping between CAN IDs and vehicular actions. After initiating the vehicle and connecting
the evaluation hardware device to the OBD-II port of the target vehicle, users eavesdrop on
and record the CAN bus frames. After manipulating the target vehicle to trigger the vehicular
action, users eavesdrop on the CAN bus communication and record the CAN frames again.
By comparing the two records, users can find the CAN ID that occurs more frequently and replay
the CAN frame related to the CAN ID. If the vehicular action occurs again, the CAN ID is related
to the vehicular action.
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(4) Normal packets Reverse based on the data bit feature. The asset of the evaluation vector is the
communication matrix. After initiating the vehicle and connecting the evaluation hardware
device to the OBD-II port of the target vehicle, users eavesdrop on and record the CAN bus
frames. After manipulating the target vehicle to trigger the vehicular action, users eavesdrop on
the CAN bus communication and record the CAN frames again. By analyzing the two records,
users can figure out the communication matrix. Users then send the CAN frame constructed
according to the communication matrix to the vehicle to verify if the communication matrix is
correct. If the vehicular status changes as expected, the communication matrix is correct.

(5) Normal packets Replay. The purpose of the evaluation vector is verifying if the replay attack
against the In-Vehicle is valid. After initiating the vehicle and connecting the evaluation hardware
device to the OBD-II port of the target vehicle, users eavesdrop on and record the CAN bus
frames. Users replay the CAN frame recorded to the In-Vehicle and observe the vehicular action.
If the vehicle acts as the CAN frame defined, the replay attack is valid.

(6) Normal packets fuzzing. The evaluation vector tries to find unknown vulnerabilities of the
In-Vehicle. After initiating the vehicle and connecting the evaluation hardware device to the
OBD-II port of the target vehicle, users eavesdrop on and record the CAN bus frames. Users then
construct massive fuzzy normal packets based on the mutation of recorded packets, send the
fuzzy normal packets, and observe the status of the vehicle. If the vehicle crashes and has another
abnormal status, the fuzzy test is valid.

(7) Diagnostic Service Scan. The evaluation vector aims to figure out the diagnostic services of the
ECUs. After initiating the vehicle and connecting the evaluation hardware device to the OBD-II
port of the target vehicle, users construct the diagnostic request according to the UDS protocol.
The request should cover all diagnostic services by configuring the diagnostic frames. Users send
the diagnostic frames constructed to the vehicle and record the response from the vehicle and
determine if the vehicle opens the corresponding diagnostic service according to the response
code from the vehicle and the UDS protocol specification.

(8) Diagnostic packets Reverse. The purpose of the evaluation vector is obtaining the diagnostic
command. After initiating the vehicle and connecting the evaluation hardware device to the
OBD-II port of the target vehicle, users construct the diagnostic packets according to the UDS
protocol by configuring the data field of the diagnostic CAN frame, send the diagnostic packets
to the vehicle, and verify whether the vehicle responds with the diagnostic CAN frame correctly.
If the vehicle responds with the diagnostic CAN frame correctly, we reverse the diagnostic
command correctly.

(9) ECU Access. The asset of the evaluation vector is the access right of the ECU. After initiating the
vehicle and connecting the evaluation hardware device to the OBD-II port of the target vehicle,
users choose the diagnostic session mode that needs authentication, send the authentication
request constructed based on the UDS protocol to the vehicle, and record the seed from the vehicle.
Users then calculate the key based on the seed and send the key to the vehicle. If the CANsec can
access the ECU in security mode, the attack is valid.

(10) Diagnostic packets Replay. The evaluation vector tries to verify whether the diagnostic replay
attack for the In-Vehicle is valid. After initiating the vehicle and connecting the evaluation
hardware device to the OBD-II port of the target vehicle, CANsec eavesdrops on and records
the session between the diagnostic tool and vehicle. Users then replay the diagnostic packets
recorded to the In-Vehicle CAN and observe the vehicular action. If the vehicle response to the
diagnostic packets, the replay attack is valid.

(11) Diagnostic packets fuzzing. The evaluation vector tries to find unknown vulnerabilities in the
diagnostic services. After initiating the vehicle and connecting the evaluation hardware device to
the OBD-II port of the target vehicle, CANsec constructs massive fuzzy normal packets based
on the UDS protocol, sends fuzzy normal packets, and observes the status of the vehicle. If the
vehicle crashes and has another abnormal status, the fuzzy test is valid.
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4.2.3. Advantages of CANsec

According to Table 3, most tools, like CarShark, are only CAN traffic generation tools. ATG and
the tool in [10] are familiar with CANsec. However, the ATG and the tool in [10] can only launch
a basic attack, such as an injection attack, a replay attack, or a DoS attack. They do not construct
more elaborate attack scenarios based on basic attack vectors. CANsec is not only an attack traffic
generation tool, but also a security evaluation tool that includes 11 evaluation vectors. Reversing
the CAN traffic is a key feature of CANsec that other tools do not have. With the help of reverse
traffic functionality, CANsec can obtain the communication matrix to manipulate the CAN traffic more
precisely. In particular, CANsec has the following advantages:

(1) CANsec allows users to configure the evaluation flexibly after selecting the evaluation vectors.
(2) CANsec supports the 11 evaluation vectors defined above based on four basic attack vectors.

And CANsec provides a comprehensive assessment of IVNs, including normal packets assessment
and diagnostic packets assessment.

(3) CANsec can monitor the change in vehicular status and log the evaluation activity.
(4) Besides the replay attack, the DoS attack, and the fuzzing attack, CANsec can also reverse CAN

traffic to obtain the communication matrix of the manufacturers.

Table 3. Comparison of different CAN bus tools.

Tool Tracing
Traffic

Reverse
Traffic

Packets
Generation Configuration Logging Monitor System

ATG [9] X X X X X Linux, Win

CarShark
[7] X X Win

CANUtils X X X Linux

BusMaster X X X Win

CANoe X X X X Win

SavvyCAN X X X X Linux, Win

OCTAN X X X X Win

Tool [10] X X X X X Win

CANsec X X X X X X Linux, Win

5. Experiments

To verify the function of the proposed evaluation tool, we conducted an experiment based on
a Ford vehicle. We found that the vehicle consists of two types of CAN bus, a high-speed CAN
bus with 500 kbit/s and a low-speed CAN bus with 250 kbit/s. The PCM, the instrument panel, the
PSCM, and the ABS are connected to a high-speed CAN bus. The electronic control unit of the turn
signal, the electronic control unit for the door lock, and the air conditioning electronic control unit are
connected to a low-speed CAN bus.

As for the evaluation of the replay attack, our experiment captured 1000 CAN frames with the help
of CANsec, which consists of a CAN USB adapter and corresponding application software that can
count the number of CAN frames received after triggering vehicular actions. After receiving frames,
the tool replays them. The result indicated that the replay attack against the instrument panel was valid.
Figure 5 shows that the engine speed on the dashboard, the turn signal on the dashboard, the door
status on the dashboard, and the wiper status can reappear under a replay attack. The success of the
replay attack experiment reveals the security vulnerability of the CAN bus broadcasting mechanism.
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The communication matrix from the experiment is displayed in Table 4. In the Ford vehicle,
the communication matrix can control the light system and the door of the vehicle physically. However,
the communication matrix only controls the dashboard status of the back gear, clutch, and engine.
In addition, our experiment showed that the instrument panel has a defense mechanism for handling
message conflicts. However, the mechanism introduces the risk of DoS.

Table 4. Communication matrix of Ford vehicle.

CAN ID Data Field Functionality

0x231 Byte0 = 0xe1, Byte1 = 0x69 Turn on the back gear

0x235 Byte0 = 0x00 Open or close the door

0x265 Byte0 = 0x20 Turn on the left turn signal

0x265 Byte0 = 0x40 Turn on the right turn signal

0x285 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff Air-conditioning heating mode

0x240 Byte4 = 0x9a Clutch down

0x60d Byte1 = 0x01 Open the fog lamp

0x60d Byte1 = 0x08 Turn on high beam

0x358 Byte0 = 0x40 Car horns

0x201 Byte0, Byte1 The vehicle speed

0x201 Byte4, Byte5 The engine speed
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The diagnostic service provided in the Ford vehicle is shown in Table 5. According to the result,
we can conclude that Request ID = Respond ID +0 × 08. The table lists the primary diagnostic service
supported by a specific diagnostic request ID. The primary diagnostic services provide methods
defined in the UDS protocol for malicious attackers to manipulate the vehicle.

Table 5. Diagnostic services of the Ford vehicle.

Diagnostic Request ID Diagnostic Response ID The Primary Service ID

0x726 0x72e
0x10 0x11 0x14 0x18 0x21 0x22

0x28 0x2f 0x310x32 0x33
0x3b 0x3e 0x3f 0x85 0xb1

0x737 0x73f 0x14 0x18 0x28 0x31 0x32 0x33
0x3b 0x3e 0x3f 0x85 0xb1

0x740 0x748

0x10 0x14 0x18 0x21 0x22 0x27
0x28 0x2f 0x31 0x32 0x33

0x34 0x35 0x36 0x37 0x3b 0x3e 0x3f
0x85 0xb1

0x741 0x749

0x10 0x14 0x18 0x21 0x22 0x27
0x28 0x2f 0x31 0x32 0x33

0x34 0x35 0x36 0x37 0x3b 0x3e 0x3f
0x85 0xb1

0x742 0x74a

0x10 0x14 0x18 0x21 0x22 0x27
0x28 0x2f 0x31 0x32 0x33

0x34 0x35 0x36 0x37 0x3b 0x3e 0x3f
0x85 0xb1

0x743 0x74b

0x10 0x14 0x18 0x21 0x22 0x27
0x28 0x2f 0x31 0x32 0x33

0x34 0x35 0x36 0x37 0x3b 0x3e 0x3f
0x85 0xb1

6. Conclusions

The modern automobile is an important scene of IoT technology, which includes a large number
of sensors, actuators, and processors. As the main bus to connect electronic devices, the CAN bus is
the actual bus network of IVNs. However, due to the lack of corresponding security mechanisms,
many security vulnerabilities have been introduced into the IVNs, which has caused serious risks to the
life and property safety of members in vehicles. Although vehicle testing technology has made great
progress, there is still a lack of relevant vehicle safety assessment tools in the market. Existing testing
tools also have problems. In this paper, we propose a vehicle CAN network security assessment tool,
CANsec, which is designed based on the assessment methodology proposed. CANsec constructs the
evaluation vector according to the attack vector and target assets of IVNs. We provide a comprehensive
description of the evaluation tool and its key features and evaluate the performance with a real vehicle.
The tool can generate attack traffic automatically with a flexible configuration and log the critical
events while conducting the security evaluation. In addition, we conducted experiments using an
actual Ford vehicle without information from manufacturers to evaluate the accuracy of CANsec. As a
result of the experiments, we found several vulnerabilities of the Ford vehicle through penetration test
items defined in CANsec. Fortunately, vehicles equipped with gateway ECUs can prevent all attacks
except replay attacks based on diagnostic tools. Through experiments, we concluded that CANsec
could evaluate the security of the in-vehicle network using the proposed evaluation method to find
out the vulnerabilities, which can help to promote the design of the vehicle.
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