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Abstract: A well-known approach to the optical measure of oxygen is based on the quenching
of luminescence by molecular oxygen. The main challenge for this measuring method is the
determination of an accurate mathematical model for the sensor response. The reason is the
dependence of the sensor signal from multiple parameters (like oxygen concentration and
temperature), which are cross interfering in a sensor-specific way. The common solution is to measure
the different parameters separately, for example, with different sensors. Then, an approximate
model is developed where these effects are parametrized ad hoc. In this work, we describe a new
approach for the development of a learning sensor with parallel inference that overcomes all these
difficulties. With this approach we show how to generate automatically and autonomously a very
large dataset of measurements and how to use it for the training of the proposed neural-network-based
signal processing. Furthermore, we demonstrate how the sensor exploits the cross-sensitivity of
multiple parameters to extract them from a single set of optical measurements without any a priori
mathematical model with unprecedented accuracy. Finally, we propose a completely new metric to
characterize the performance of neural-network-based sensors, the Error Limited Accuracy. In general,
the methods described here are not limited to oxygen and temperature sensing. They can be similarly
applied for the sensing with multiple luminophores, whenever the underlying mathematical model
is not known or too complex.

Keywords: artificial intelligence; neural network; machine learning; oxygen sensor; luminescence;
optical sensor; luminescence quenching; phase fluorimetry

1. Introduction

The simultaneous determination of multiple physical quantities can be very advantageous in
many sensor applications, for example, when an in-situ or a remote acquisition is required. If the
physical effect on which the measurement method is based presents cross-sensitivity between more
than one quantity, their simultaneous determination becomes a necessity. Optical luminescence sensing
is particularly attractive for multiple sensing. Since several parameters can be measured using the
same principle, namely luminescence, it is possible to use the same illumination or detection channels,
thus allowing a compact and simple sensor design.

The typical approaches to multiple sensing are based on either the use of a single luminescence
indicator (luminophore), in which the luminescence is sensitive to more than one physical quantity, or
the use of several luminophores, one for each quantity, embedded in a substrate and placed in close
physical proximity [1–9]. To be able to determine each quantity separately, it may be necessary to
determine more than one optical property (e.g., absorption spectrum, emission spectrum, luminescence
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intensity, decay time). Another possibility is to measure one single optical property using special
detection schemes that take advantage of the emission properties of the used luminophores [4,6,10–13].

The problem of dual sensing is particularly relevant in applications that involve oxygen
sensing. Since oxygen plays a major role for living organisms, the measurement of oxygen
partial pressure is of great relevance in fields which range from medicine and biotechnology,
to environmental monitoring [4,14]. One of the most used optical measuring approaches is based
on dynamical luminescence quenching. When colliding with molecular oxygen, the energy of the
excited luminophore is reduced due to radiationless deactivation. As a result, both the intensity and
decay time of the luminescence are reduced (quenched) [15]. The dependence of the measured sensing
quantity (e.g., luminescence intensity or decay time) on the relevant influencing factors needs to be
described through mathematical models with a sufficiently complex parametrization. Among the
cross-interfering quantities, temperature is the most relevant since both the luminescence and its
quenching are strongly temperature-dependent phenomena. Therefore, in any optical oxygen sensor,
the temperature must be continuously monitored, most frequently with a separate sensor, and used to
correct the calculated oxygen concentration [16]. This task can be difficult in practical implementation
and may become a significant source of error. Another disadvantage of this approach is that the
parametrization of the sensor response is system-specific since it depends on how the sensing element
was fabricated and on the sensor itself [17–22].

In this work, these difficulties are overcome through a new approach for sensor development
based on neural networks for parallel inference. This enables accurate dual-sensing, using one single
luminophore and by measuring a single quantity. Instead of describing the response of the sensor as a
function of the relevant parameters through an analytical model, a neural network was designed and
trained to predict both oxygen concentration and temperature simultaneously. Multi-task learning
(MTL) architectures were chosen for this new approach because they can learn correlated tasks [23–28].
In a previous purely theoretical study that used only synthetic data, the authors showed that MTL
architectures can be flexible enough to address multi-dimensional regressions problems [29] as required
by this new type of sensor. This work demonstrates for the first time that this is indeed true by building,
training and characterizing a real physical optical sensor based on this principle. To train the MTL
neural network and to test the performance of the sensor on unseen data, a very large amount of
data is needed. Since the collection cannot be performed by hand, a fully automated data collection
setup was developed and used to both vary the sensor environment conditions (gas concentration and
temperature) and to collect the sensor response.

This work proposes a paradigm shift from the classical description of the response of a sensor
through an approximate model, to the use of MTL based sensor learning thanks to neural networks.
These will learn the complex inter-parameter dependencies and sensor-specific response characteristics
from a large amount of data automatically collected. This new method will enable to build sensors
even if the response of the system to the physical quantities is too complex to be comfortably described
by a mathematical model.

2. Methods

2.1. Measurement Principle

Luminescence-based oxygen sensors usually are based on a luminophore in which luminescence
intensity and decay time decrease for increasing O2 concentrations. This reduction is due to collisions
of the excited luminophore with molecular oxygen, which thus provides a radiationless deactivation
process. The dependence of the luminescence intensity and decay time of the luminophores used for
oxygen sensing is best described by the Stern–Volmer (SV) equation [15]. Using a frequency-domain
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approach, the phase shift difference between the excitation and the emitted luminescence can be
approximated using a two-site model [30,31] and written as [32]

tan θ0(ω, T)
tan θ(ω, T, [O2])

=

(
f (ω, T)

1 + KSV1(ω, T) · [O2]
+

1− f (ω, T)
1 + KSV2(ω, T) · [O2]

)−1 (1)

where θ0 and θ, are the phase shifts without and with oxygen, f and 1− f are the fractions of the
total emission for the two components, KSV1 and KSV2 are the corresponding Stern–Volmer constants,
and ω is the angular modulation frequency. It is to be noted that the quantities θ0, f , KSV1, and KSV2
are all temperature dependent [33–35]. Additionally, they also depend on the modulation frequency,
which in the case of f , KSV1, and KSV2 is an artifact due to the approximate nature of the model. Finally,
Equation (1) needs to be inverted to determine [O2] from the measured quantity θ.

From Equation (1) it is evident that the phase shift cannot be easily used to determine the oxygen
concentration unless ω and T, the parameters f , KSV1 and KSV2 (including their dependencies from
ω and T) are known. The proposed sensor not only overcomes the above-mentioned difficulties in
finding an approximate mathematical model, but also allows the determination of multiple quantities
simultaneously.

2.2. Experimental Setup and Dataset

The luminophore used for oxygen detection is Pt-TFPP, commercially available as Oxygen
Sensor Spot (PSt3, PreSens GmbH, Regensburg, Germany). The optical setup for the luminescence
measurements is described in [36]. The large amount of data needed for the training and the test of
the neural network was acquired using an automated acquisition program written using the software
LabVIEW by National Instruments. The flow chart of the automated data acquisition program is
shown in Figure 1.

First, the program fixed the temperature and concentration of the gas in contact with the sensor.
Then, the phase shift was measured for 50 modulation frequencies between 200 Hz and 15 kHz.
This measurement was repeated 20 times. Next, keeping the temperature fixed, the program changed
the oxygen concentration, and the entire frequency-loop was repeated. The oxygen concentration was
varied between 0% air and 100% air in 5% air steps. Finally, the temperature was changed, and then
the oxygen and frequency loops where repeated. The temperature was varied between 5 ◦C and 45 ◦C
in 5 ◦C steps. The total number of measurements was thus 50 (frequencies) times 20 (loops) times 21
(oxygen concentrations) times 9 (temperatures) for a total of 189’000 , which required a total acquisition
time of approximately 65 h. This number of measurements was chosen as a compromise between
maximizing the number of data and avoiding photodegradation, which naturally occurs when the
sample is subjected to illumination.

2.3. Signal Processing Algorithm

The software component of this new sensor type is based on a neural network model (NNM).
An NNM is made of three components [37]: a neural network architecture (that includes how neurons
are connected, the activation functions and all the hyperparameters), a loss function (here indicated
with L) and an optimizer algorithm. In this particular work we use what is called a Multi Task Learning
(MTL) network architecture [25]. This architecture has different branches, each able to learn to predict
a separate quantity (in our case one T and [O2]). The details and parameters of the neural network
architecture, of the loss function and of the optimizer used in this work are studied and described in
detail in [29] and will not be described again here.



Sensors 2020, 20, 4886 4 of 12

Figure 1. Flow-chart of the automated data acquisition program.

The network was trained with two types of input to test its effectiveness. In the first case,
each observation consists of a vector of 50 values defined as

θθθs =

(
θ(w1)

90
,

θ(w2)

90
, ...,

θ(w50)

90

)
(2)

where wi are the 50 values of the angular modulation frequency of the excitation light (see Section 2.2).
The measured phase shift was divided by 90 to normalize the inputs between 0 and 1. In the second
case, each observation is

θθθn =

(
θ(w1)

θ0(w1)
,

θ(w2)

θ0(w2)
, ...,

θ(w50)

θ0(w50)

)
(3)

where θ0(wi) is the value of the measured phase shift without oxygen quenching at the angular
modulation frequency wi.

The loss function was minimized using the optimizer Adaptive Moment Estimation
(Adam) [37,38]. The implementation was performed using the TensorFlowTM library. The training
was performed with a starting learning rate of 10−3. Two types of training were investigated to
compare the training efficiency and performance of the network. No-batch training: with this method
all the training data are used to perform an update of the weights and to evaluate the loss function.
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Mini-batch training: with this method the weights update is performed after the network has seen 32
observations (this number is called mini-batch size [37]). For each update of the weights, 32 random
observations are chosen from the training dataset without repetitions until all the training data are fed
to the network. The size of the mini-batch was chosen as a compromise between a good performance
(measured through the value of the loss function) and the duration of training.

No-batch training has the advantage of stability and requires less time for each epoch since it
performs one update of the weights using the entire training dataset. Mini-batch training is normally
more effective in reaching small values of the loss function in fewer epochs, but it requires more time
for each epoch [37]. In our experiments the training for 20’000 epochs took roughly five minutes
for no-batch training, and approximately 1 h with mini-batch training with mini-batch size of 32,
thus resulting ca. 12 times slower. The training has been performed on a 2.2 GHz 6-Core Intel Core i7,
with 32 GB of RAM. No GPU acceleration was used.

2.4. Sensor Performance Evaluation

To evaluate the performance of the sensor, the dataset S of measured data was divided into two
parts: one containing 80% of randomly chosen observations (indicated with Strain), and one containing
the remaining 20% of the data (indicated with Stest). All the results presented here were obtained by
measuring the different metrics on the Stest dataset.

The metric used to compare predictions from expected values is the absolute error (AE) defined
as the absolute value of the difference between the predicted and the expected value for a given
observation. The mean of the AE overall observations of a given dataset is the mean absolute error
MAE and is a further metric used to characterize the performance. In Section 3, the prediction
distribution of the AEs for both the oxygen and temperature predictions is discussed in detail. To better
illustrate this distribution, the kernel density estimate (KDE) of the AEs was also evaluated. Details on
the calculation of the AE, MAE and KDE can be found in [29].

Error Limited Accuracy

Generally, in a commercial sensor, the accuracy quantifies the performance of the sensor and
helps to decide if the chosen device is appropriate for the application of interest. The above-defined
metrics (AE, MAE and KDE) are useful to compare the performance of different NNMs but do not
help quantify which error the sensor reading will ultimately have in practice. For this reason, in this
work we introduce a new metric, called Error Limited Accuracy (ELA) and indicated with η.

Definition 1. In a regression problem, given the metric AE, and a chosen value of it ÂE, the ELA η limited by
the error ÂE is defined as the number of predictions ŷ of the NNM that lie in the range |ŷ− y| ≤ ÂE, with y
the expected value, divided by the total number of observations. It will be indicated with η(ÂE). Given the set

E(ÂE) = {ŷ[i] with i = 1, ..., n | |ŷ[i] − y[i]| ≤ ÂE} (4)

η(ÂE) is defined as

η(ÂE) =
|E(ÂE)|

n
(5)

where |E(ÂE)| is the cardinality of the set E(ÂE) or, in other words, the number of its elements. y[i] and ŷ[i]

are respectively the expected and predicted value of the target variable for observation i.

This metric allows interpreting the regression problem as a classification one. η(ÂE) simply
describes how many observations are predicted by the NNM within a given value of the absolute
error. In other words, it represents the percentage of predictions that are within a certain error ÂE.
Therefore, if we make ÂE big enough, all the predictions will be classified perfectly, so η(ÂE) is
expected to approach 1 for increasing ÂE. On the other hand, the smaller ÂE is, the lower will be
the number of predictions correctly classified. We finally define AE as the minimum value of ÂE for
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which η(ÂE) = 1, so the minimum value of the absolute error for which the network predicts all the
observations correctly. This value (AE) can be interpreted as the biggest error in the sensor predictions.

3. Results and Discussion

3.1. Pt-TFPP Luminescence

As described in Section 2.1, the phase shift depends non-linearly on the oxygen concentration
according to the Stern–Volmer equation. It also depends on the temperature, which influences the
luminescence and the collision mechanisms, and on the modulation frequency of the excitation light.
The experimental observations for the phase shift for variations of these three quantities are shown in
Figures 2–4.

Figure 2 shows the measured phase shifts as a function of the oxygen concentration at a constant
modulation frequency of 6 kHz and for increasing temperatures. For clarity, the results at selected
temperatures are shown. The decrease of the phase shift due to the collisional quenching is clearly
visible in all curves. The phase shift is, as expected, also strongly temperature-dependent. For [O2] = 0,
in the absence of oxygen, the reduction of the phase shift with increasing T is due to temperature
quenching; the influence of temperature becomes stronger at higher oxygen concentration, as a result
of the increase of the diffusion rates of oxygen through the sample.

Figure 2. Measured phase shift as a function of the oxygen concentration for selected temperatures at a
fixed modulation frequency of 6 kHz. The arrow marks increasing temperatures.

Figure 3. Measured phase shift as a function of the modulation frequency for selected temperatures at
a fixed oxygen concentration of [O2] = 20% air. The arrow marks increasing temperatures.
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Figure 4. Measured phase shift as a function of the modulation frequency for selected oxygen
concentrations at a fixed temperature of T = 25 ◦C. The arrow marks increasing oxygen concentrations.

For a given oxygen concentration, the phase shift is strongly dependent on the modulation
frequency, as it can be seen in Figure 3, where the shape of the frequency response is determined by
the distribution of decay times of the sample. From the figure it is visible that the reduction of the
phase shift with increasing temperatures is not constant but depends on the modulation frequency.

For completeness, the effect of the oxygen concentration on the frequency response at a fixed
temperature is shown in Figure 4. Compared to Figure 3, the frequency response of the sample is
affected more strongly by the oxygen concentration than by temperature. In other words, the sample
has a higher sensitivity to oxygen than to temperature.

The measurements of Figures 2–4 show how similar the curves of the phase shift are for different
values of oxygen, temperature and modulation frequency. This helps to understand why it is not
possible from the measurement of the phase shift, or even of the phase shift for varying modulation
frequencies, to simultaneously determine both the oxygen concentration and the temperature
using Equation (1). The temperature must be known in advance and used to compute the oxygen
concentration. This is no longer the case for the proposed sensor, as it will be shown in the next section.

3.2. Sensor Performance

First, the effect of the training on the sensor performance was investigated. As described
previously, the neural network was trained with no-batches and with mini-batches. For this comparison
the network was trained for 20’000 epochs using the input observations θθθs as defined in Equation (2).
The results for AE[O2]

and AET are shown in Figure 5A,B, respectively. The blue histogram shows
the AE distribution when using no-batch, the gray when using mini-batches of size 32. The KDE
profiles help to illustrate the features of the histogram. The effect of introducing mini-batches on the
performance is significant. The predictions distributions get much narrower, the mean average errors
decrease from MAE[O2]

= 2.4% air and MAET = 3.6 ◦C to MAE[O2]
= 1.4% air and MAET = 1.6 ◦C.

Although the performance is significantly improved, from Figure 5A,B it can also be clearly seen that
errors as high as approximately 5% air for [O2] or 12 ◦C for T are still possible.

Figure 5C,D shows the effect of the training length. Here the comparison is between prediction
distributions with 20’000 and 100’000 epochs (always using a mini-batch of size 32), using the input
observations θθθs as defined in Equation (2). The effect of longer training is a dramatic improvement in
the performance. When the network was trained for 100’000 epochs the mean average errors were
reduced to only MAE[O2]

= 0.22% air and MAET = 0.27 ◦C. Additionally, all the predictions for [O2]

lie below 0.94% air, and for T lie below 2.1 ◦C.
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Figure 5. Distributions of the neural network predictions for the oxygen concentration (panels (A,C,E)
and for the temperature (panels (B,D,F). In all panels the normalized prediction distribution histogram
(columns), the kernel density estimate KDE of the distribution of the absolute errors AEs (solid line),
and mean absolute errors MAEs (dashed vertical line) are shown. Panels (A,B): Comparison between
training using no batches (NB) and using mini-batches (MB) with a batch size of 32 both trained
for 20’000 epochs; the input of the network is θθθs. Panels (C,D): Comparison between training using
mini-batches (MB) with a batch size of 32 for 100’000 and 20’000 epochs; the input of the network is θθθs.
Panels (E) and (F): results with a training using mini-batches (MB) with a batch size of 32 for 20’000
epochs and using the input of the network is θθθn.

The results of Figure 5C,D demonstrate two new findings: (1) with the proposed approach, it is
possible to predict both [O2] and T at the same time from the phase shift using a single luminophore
and a set of measurements; (2) the prediction has an expected error that is comparable or below
the typical accuracy of commercial sensors. The possibility of dual sensing paves the road to the
development of a completely new generation of sensors. The price to pay is that the training of a
network for 100’000 epochs requires approximately 5 h on the hardware described earlier.
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To investigate if the training can be performed more efficiently, the normalized phase shift θθθn

defined in Equation (3) was used as input to the network. The performance of the network in this
case, with a mini-batch size of 32 and a training of 20’000 epochs is shown in Figure 5E,F. With this
input the performance is further improved: even if the number of epochs is only 20’000 the mean
average errors are better than what was obtained with θθθs and a training of 100’000 epochs, achieving
MAE[O2]

= 0.13% air and MAET = 0.24 ◦C. The distributions are also narrower, particularly for the
temperature. Additionally, all the AE[O2]

lie below 0.87% air, and AET below 1.7 ◦C. This type of
training is clearly more efficient. The reason may lie in the additional information which is fed to
the network when using the input θθθn and in the simplified functional behavior of θθθn compared to θθθs

(see Equation (1)).
The performance of the different neural networks is summarized in Table 1.

Table 1. Summary of the performance of the sensor for different neural network models.

Input Epochs/Batch size MAE[O2] MAE[T]

θθθs 20’000/no batch 2.4% air 3.6 ◦C
θθθs 20’000/32 1.4% air 1.6 ◦C
θθθs 100’000/32 0.22% air 0.27 ◦C
θθθn 20’000/32 0.13% air 0.24 ◦C

The response time of the sensor is due to the sum of two contributions: the actual measurement
time of the phase shift and the time needed by the algorithm to calculate the oxygen concentration
and temperature. The measurement time for 50 frequencies with our setup was below one minute
but could be easily improved by reducing the time delays in the communication between the various
instruments.

3.3. Error Limited Accuracy

The metrics discussed in the previous sections are useful to compare the network performance
and to measure how good the predictions are. However, they do not offer an understanding on what
a sensor built with such a model could achieve. For practical applications, the relevant question is
rather what is the maximum error the sensor will have in predicting the oxygen concentration and
temperature. To answer this question, the ELA (η) defined in Section 2.4 can be used.

Figure 6 displays the ELA η(ÂE) for oxygen concentration (A) and for the temperature (B). In each
panel, the results obtained with the bests models described before are shown: the ELAs using the
input θθθn and a training for 20’000 epochs are shown in black, and the ELAs obtained using the input θθθs

and a training for 100’000 epochs in red. In both cases, the training was performed with mini-batches
of size 32. The dashed lines indicate the values of the AE[O2]

and AET for which the error limited
accuracy η equals 1. In other words, all the predictions will have an error equal or smaller than AE.

From Figure 6A can be seen that, for the network trained with θθθs as input, the model would
predict perfectly all the oxygen concentrations within 0.95% air error. For the network trained with
θθθn this value is further reduced to 0.87% air. AE[O2]

can be interpreted as the accuracy a sensor based
on this NNM would have. Figure 6B shows the results of the same analysis for the temperature
measurement. The interpretation is similar to the one given above for the oxygen concentration.
For the network trained with θθθs as input, the model would predict perfectly all the temperature values
within AET = 2.1 ◦C error. For the network trained with θθθn this value would be AET = 1.7 ◦C.
The values of AE[O2]

and AET are summarized in Table 2.
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Figure 6. Comparison of the ELA η: Panel (A) oxygen prediction, panel (B) temperature prediction.
The black lines are the results obtained with a network that was trained with θθθn as input for
20’000 epochs with mini-batchs of size 32, while the red ones with θθθs as input for 100’000 epochs
with mini-batchs of size 32. The dashed lines indicates the values of the AE for which the predictions
would give η = 1.

Table 2. Summary of the values of AE for the cases shown in Figure 6A,B.

Input Epochs/Batch Size AE[O2] AET

θθθs 100’000/32 0.95% air 2.1 ◦C
θθθn 20’000/32 0.87% air 1.7 ◦C

4. Conclusions

In this work, the realization of a new type of sensor based on luminescence sensing is presented.
The proposed sensor allows parallel inference, or the extraction of multiple physical quantities
simultaneously, from a single set of measurements without any a priori mathematical model, even
in the presence of cross interferences. Classical approaches to this type of problem in physics can be
challenging or impossible to solve if the mathematical models describing the functional dependencies
are too complex or even unknown.

This sensor, which uses a single luminophore and a single measuring channel can measure
simultaneously both the oxygen concentration and the temperature of a medium. This is achieved using
a multi-task learning neural network model, which was trained on a very large dataset. The results in
the prediction of the oxygen concentration and temperature show unprecedented accuracy for both
parameters, demonstrating that this approach could open up the possibility of a new generation of
dual- or even multiple-parameter sensors. Estimating the accuracy of a sensor based on a given NNM
approach is intrinsically difficult. For this reason, the new metric Error Limited Accuracy ELA is
proposed. The ELA enables to estimate how many predicted values lie within a certain absolute error
from the expected measurement. This new metric allows therefore the estimation of the maximum
measurement error of any NNM-based sensor.

The ability to predict both [O2] and T at the same time, from a single set of data obtained with a
single indicator, has profound implications for the development of luminescence sensors. Sensors will
become easier and cheaper to build since no separate temperature measurements are necessary
anymore. Generally, this work shows that the effect of interferences can be learned by the neural
network and do not need to be corrected for in the data processing.

This work opens the road to complete new optical sensing approaches for future generations of
sensors. Those sensors will be able to extract multiple physical quantities from a common set of data at
the same time to achieve consistent results that are both accurate and stable. The described approach
is relevant for many practical applications in sensor science and demonstrates that this model-free
approach has the potential of revolutionizing optical sensing.
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