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Abstract: Recent advances in object tracking based on deep Siamese networks shifted the attention
away from correlation filters. However, the Siamese network alone does not have as high accuracy
as state-of-the-art correlation filter-based trackers, whereas correlation filter-based trackers alone
have a frame update problem. In this paper, we present a Siamese network with spatially semantic
correlation features (SNS-CF) for accurate, robust object tracking. To deal with various types of
features spread in many regions of the input image frame, the proposed SNS-CF consists of—(1) a
Siamese feature extractor, (2) a spatially semantic feature extractor, and (3) an adaptive correlation
filter. To the best of authors knowledge, the proposed SNS-CF is the first attempt to fuse the Siamese
network and the correlation filter to provide high frame rate, real-time visual tracking with a favorable
tracking performance to the state-of-the-art methods in multiple benchmarks.
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1. Introduction

Visual object tracking aims at estimating the position of an arbitrary target in a video sequence by
establishing a correspondence between similar pixels of different frames [1–3]. It finds a wide range of
usage in intelligent video analysis applications such as automatic visual surveillance, autonomous
driving, augmented reality, and action recognition tasks, to name a few.

Despite the tremendous progress of visual tracking over the past few years, we still face the rise
of numerous challenges including fast motion, illumination variation, occlusion, background clutter,
intraclass variations, and so forth.

To alleviate the above challenges, we will learn better and more robust features that improve
visual object tracking algorithms [4]. We adopted the same idea to deep learning algorithms using
the most important features in the network. Another remedy for the above challenges is that object
tracking changed its gears to an alternative approach in which, a Deep CNN is trained to address a
more general similarity learning (Siamese learning) problem in an initial offline phase, and then this
function is simply evaluated online during tracking, as explained in Bertinetto and Luca et al. [5].

Thanks to the findings that the straightforward replacement of shallow backbone with deeper and
wider networks does not bring much improvement to Siamese network, the notorious accuracy gap to
Siamese network counterparts is remarkable as described in References [1,2,6] but still, Reference [3,7]
proved that spatially semantic correlation features are necessary to boost even further the accuracy gap.

The most challenging part of visual tracking is the real-time or online tracking as shown in
Figure 1, where the tracker cannot use future frames to infer the current position of an object [8].
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Figure 1. Illustration of the visual object tracking results: (a) The initial frame with a bounding box.
(b) Tracking results in three different selected frames with the ground truth in green and ours in yellow
bounding boxes. From top to bottom: Scotch tape webcam, Bag, Basketball, Helicopter and Woman,
respectively. Apart from Scotch tape webcam, videos are from VOT2018 [9] and OTB2015 [10] datasets.

In this work, we address the accuracy gap and frame update problems of the Siamese network
and correlation filters, respectively, in a twofold contribution:

• We extract spatially semantic correlation features (SSF) from the Siamese network.
• We learn adaptive correlation filters (ACF) at every convolutional layer output and calculate their

weighted sum in the end.

In the reminder of this paper, we briefly review related works in Section 2, followed by the
proposed method in Section 3. In Sections 4 and 5, we implement and evaluate our method. Finally,
we conclude the paper in Section 6.

2. Related Works

In this section, we briefly describe deep Siamese tracking and correlation filters in Sections 2.1
and 2.2, respectively.

2.1. Deep Siamese Tracking

Zhang et al. [1] and Li et al. [2] have recently proved that the Siamese network can benefit
from deeper backbone networks using end-to-end learning. Based on those works, Siamese networks
formulate object tracking as a cross-correlation problem between two input signals, one of which
is an interested region of an image, and the other is a relatively larger search window in another
image [1,2,5,6]. Training the Siamese network involves a Y–shaped network that joins two branches,
one of which predicts the object template (interested image), and the other predicts the search region
(search window). This process consists of two steps—(1) an offline training [1,5] for a similarity function
learning between the two input signals by cross-correlating them, and (2) an online training for the
similarity function update as the tracking goes on [5]. With the addition of spatially semantic correlation
features (SSF) and adaptive correlation filters (ACF), we improved both accuracy and speed of the deep
Siamese networks.
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2.2. Correlation Filter Tracking

Correlation filters have attracted attention in the tracking field during the last decade due to their
high computational efficiency in the Fourier domain and the kernel trick method [11,12]. This consists
of a form of circular shifts of input signals to a target Gaussian function which does not require
hand-crafted features of the target. Correlation filter related works, HOG or color-attributes presented
a frame update problem and used hand-crafted features [12]. Therefore, we address these by finding
multiple correlation filters in hierarchical convolutional layers as opposed to only one single filter at
the classification/regression layer of the network used by existing approaches.

3. Proposed Method

This section describes the proposed algorithm as shown in Figure 2 and revisits the twofold
contributions, as mentioned in the previous section. It will as well explain preliminaries to understand
the proposed contributions.

Figure 2. Spatially semantic correlation features (SNS-CF) proposed algorithm: (a) A pair of input
images and the corresponding search window, (b) the Siamese network with three region proposal
networks in a shadowed middle part, which highlights spatially semantic correlation features of
interest, (c) the correlation search module, with multiple up-sampled bounding boxes convolved with
a learned adaptive correlation filter (ACF), and (d) output of the predicted final tracking result with a
yellow bounding box.

3.1. Siamese Net

Bertinetto et al. first proposed the Siamese network, called SiamFC [5], and Li et al. improved it
by using region proposal networks [6]. Recently, Li et al. made further improvements by solving the
problem of a small receptive field, network stride and padding while reducing the translated image z
and a candidate search image x. The image z represents the object of interest, while x is typically larger
and represents the search area in subsequent video frames. Both inputs are processed by a ConvNet ϕ

with parameters θ. This yields two feature maps, which undergo a cross-correlation:

fθ(z, x) = ϕθ(z) ∗ ϕθ(x) + b_1, (1)

where b_1 denotes a positive offset to model the similarity value. This ensures the efficient training
and inference by obeying intrinsic restrictions for structure symmetry, that is, f (z, x′) = f (x′, z), which
is appropriate for the similarity learning. Equation (1) performs an exhaustive search of the pattern z
over the image x to match the maximum value in the response map f to the target location. This is
done through an offline training with random image pairs x, z taken from training videos and the
corresponding ground truth label y. The parameters θ of the ConvNet ϕ are obtained by minimizing
the logistic loss L over the training set:
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arg min
θ

E
(z,x,y)

L
(

y, fθ(z, x)
)

. (2)

3.2. Region Proposal Network (RPN)

The Siamese network weights the similarity measure between the input image and the search
window. We need an extra fragment installed in adjacent layers of the network, and the choice of where
and how many is a hyperparameter. This extra fragment is used to refine the proposal. It consists of a
pair-wise correlation section with two branches as well, one for classification of background and/or
foreground, and another for regression of proposal. More about these RPNs are found in a pioneering
work by Li et al. [6]. We made three RPNs and implanted them in our modified ResNet50 [13] to capture
spatially semantic information. RPN1, RPN2 and RPN3 aggregate multi-branch features of conv 3
(res3d_branch2c), conv4 (res4f_branch2c) and conv5 (res5c_branch2c), respectively. The extraction of
such information used in tracking tasks follows in the next section.

3.3. Extracting SSF

We aggregate different deep layers into RPNs following Reference [6]. The three RPNs are located
on the richest middle layers, as shown in Figure 3.

Figure 3. Graphical view of spatially semantic correlation features. From Left to right, top to bottom
we have a sequence of activations from a deep convolutional neural network (CNN) (ResNet50 [13] for
our case), where the first (top) row consists of Earlier layer activations poor in robustness, and the last
(bottom) row consists of deeper layer activations poor in accuracy. To balance the robustness—accuracy
trade-off, our method suggests to use middle layer activations (2 middle rows) rich in both spatial and
semantic information.

The idea of extracting SSF comes from the need to improve existing features. Dimitris et al.
significantly improved classification features by applying robust optimization techniques [4]. On the
other hand, Erhan et al. decided on good features to correlate for visual tracking by utilizing robust
features that are invariant to any kind of appearance change of the object, while predicting the object
location as properly as in the case of no appearance change [14]. Other approaches used hierarchical
features [3], spatially semantic features [7] and hierarchical attention weights [15] to define appropriate
features for object tracking in CNNs.

In our task, we use aggregated layers in RPNs to collaboratively infer the target localization.
As for ResNet50 [13], we explore multi-level features extracted from the last three aggregated layers.
We refer to these outputs RPN1, RPN2 and RPN3 as x3, x4 and x5, respectively. They constitute both
scores S and bounding boxes B and as we mentioned before, we drop scores and use only bounding
boxes. We will perform an interpolation of B as shown in Figure 2, to have the same spatial resolution,
(see Section 3.6) to be able to perform a correlation search. At each RPN we perform a weighted sum
directly as they have same individual spatial resolution, and a weighted-fusion layer combines all the
outputs as:
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Ball =
5

∑
l=3

βi ∗ Bl , (3)

where Ball denotes the bounding boxes on weighted-fusion layer, Bl denotes the bounding boxes on
lth layer and βi denotes the interpolation factor.

3.4. Convolutional Features

Extraction of convolutional feature maps encodes target appearances. The forward propagation
along the network strengthens semantic discrimination, while the spatial information gradually reduces.
As shown in Figure 1, it is easy to locate the scotch tape in earlier layer activation maps, but it gets blurry
in deeper network layers. Since only middle layers conserve spatially semantic information, we ignore
both earlier and deeper layers, and put our focus on middle layers [7,15]. Conventionally, CNNs use
different operators, pooling being one of them, which result in shrinking the spatial resolution with
the increase in the depth of convolutional layers. For instance, the size of res5a_branch2b, the 145th
convolution of ResNet50 [13] is 7× 7× 512 which is 1

32 of the input size of 224× 224× 3. To preserve
the spatial resolution, we bilinearly interpolate each feature map to a fixed size as:

xi = ∑
k

αikhk, (4)

where αik denotes the interpolation weight and i, k denote the position of neighboring feature vectors,
respectively. More details on connecting features from multiple layers are found in Reference [16] for
segmentation and fine-grained localization using CNNs.

3.5. Correlation Filters

Typical correlation filters [7,17,18] learn a discriminative classifier and estimate the translation of
target objects by searching for the maximum correlation response. Correlation filters have been very
competitive, thanks to working in the Fourier domain, where circular shifts are computed in a lapse of
time using kernel trick [11,12]. The circular shifts are defined as:

x =
{

xm,n|(m, n) ∈ {0, 1, . . . , M− 1} × {0, 1, . . . , N − 1}
}

, (5)

where x denotes the lth layer of feature vector of sizeM× N × D. M, N and D denote width, height,
and number of channels, respectively. xl concisely denotes x on the layer l, implicitly with its
dependencies, M, N and D. M − 1 and N − 1 denote the circular forms of x in both directions.
The common characteristic of circular shifts is their Gaussian function label y(m, n), determined as:

y(m, n) = e−
(m−M/2)2+(n−N/2)2

2σ2 , (6)

where σ denotes the kernel width. A correlation filter w with the same size of x is then learned by
solving the following minimization problem:

w∗ = arg min
w

∑
(m,n)
||w.xm,n − y||2 + λ||w||22, (7)

where λ denotes a positive regularization parameter, and the inner product is induced by a linear
kernel in Hilbert space [3]. The core ingredients in CNNs are the ability to learn by training and
avoiding handcrafted samples. Therefore, the correlation filter in the Fourier domain described in (7)
can save a tremendous amount of time by solving it in each individual feature channel using the
fast Fourier transform (FFT). Capital letters denote the corresponding small letter signals in Fourier
transformed signals. The learned filter in the frequency domain on the dth (d ∈{1, . . . , D}) channel can
be written as:
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Wd =
Y� X̄d

∑D
i=1 Xi � X̄i

+ λ
, (8)

where Y is the Fourier transform of y =
{

ym,n|(m, n) ∈ {0, 1, . . . , M−1}×{0, 1, . . . , N−1}
}

, following (5),
and� denotes the Hadamard (element-wise multiplication) product operator.

3.6. Learned ACF

Also known as the maximum of the correlation response map, given an image patch in the next
frame, the feature vector on the lth layer is denoted as z of size M×N×D. The lth correlation response
map is computed as:

fl = F−1

(
D

∑
d=1

Wd � z̄d

)
, (9)

where F−1 denotes the inverse FFT operation. The learning of ACF is completed in searching for the
position of the maximum value of Equation (9) with with the same size. It is cross-correlated with
interpolated bounding boxes (B) in Section 3.3, to find the optimized target location.

4. Implementation Details

SNS-CF algorithm is a modified ResNet50 [13] to perform proposal classification and bounding
box regression. We added three 1× 1 randomly initialized convolutional layers to conv3, conv4,
and conv5 to reduce the feature dimension down to 256. During training, it is optimized using
Stochastic Gradient Descent (SGD) method, which can benefit from parallel computing using 8 GPUs
with a total of 128 pairs per minibatch, that is, 16 pairs per GPU, to reduce a week of training into just
12 h. We initially used a single GPU with 16 pairs, initial learning rate of 0.001 for first 5 epochs to
train RPN branches. The entire network is trained in an end-to-end manner, and in the end, 15 last
epochs are trained with an exponential learning rate decay from 0.004 to 0.0004, with a momentum of
0.9. The training loss is the sum of standard smooth loss L in (2) and the correlation filter loss w∗ in (7).

5. Experimental Results

Hardware specifications—SNS-CF algorithm is implemented using Python [19] and evaluated on
MATLAB (Natick, MA, USA) [20] LaSOT evaluation toolkit [21], Intel [22] i7-8700K 3.70 GHz CPU with
32 Mb RAM and a single NVIDIA (Santa Clara, CA, USA) [23] GeForce GTX 1080 Ti. Dataset—SNS-CF
algorithm is evaluated on widely used tracking datasets, for instance OTB-2015 [10], VOT-2018 [9],
and LaSOT [21]. OTB-2015 [10] consists of 100 video sequences, VOT-2018 public dataset [9], one of
the most recent datasets for evaluating online model-free single object trackers consists of 60 video
sequences while LaSOT [21] dataset provides a large-scale, high-quality dense annotations with
1400 videos in total and 280 videos in the training set.

Metrics—OTB-2015 [10] is evaluated following the evaluation protocol in Reference [10], and has
three following metrics, Distance Precision rate (DP), Overlap ratio (OS), and Center Location Errors
(CLE). VOT-2018 [9] is evaluated following the evaluation protocol in Reference [9]. We adopt the
Expected Average Overlap (EAO), Accuracy (A), Robustness (R), and no-reset-based Average Overlap
(AO) to compare different trackers. Lastly, LaSOT [21] is evaluated following evaluation protocol
in Reference [21] with Distance Precision (DP) and Overlap Success (OS) plots over 100 benchmark
sequences using One-pass evaluation (OPE) on both threshold and Area Under the Curve (AUC).
We will present the evaluation results with respect to each dataset shortly.

Training—The backbone network of SNS-CF algorithm is ResNet50 [13] pre-trained on ImageNet [24]
for image labeling, as a good initialization to other tasks, even though it is quite old now. In both
training and testing, we followed SiamFC [5] protocol and used an exemplar and search images patches
of 127× 127 and 255× 255 pixels respectively. We randomly translated up to ±8 pixels and re-scaled
2±1/8 and 2±1/4 for exemplar and search images, respectively. We trained our network on the training
sets of Imagenet-VID [24], COCO [25], and Youtube-VOS [26].
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Evaluation method—We perform the evaluation of our algorithm with respect to correlation
filter—based trackers, and Siamese network—based trackers. We will conduct separate evaluation and
provide results for each category. Starting from correlation filter—based trackers, we quantitatively
evaluated the proposed algorithm with 9 state-of-the-art trackers [3,12,27–33], considering the distance
precision rate (DP) at 20 pixels, overlap success rate (OS) at 0.5, center location errors (CLE) and
tracking speed, from 100 sequences of OTB-2015 [10] benchmark.

Second, the proposed algorithm is evaluated compared to Siamese networks—based trackers,
and we will focus on the short-term single object racking on OTB2015 [10] and VOT2018 [9], and analyze
the generalization of our method on LaSOT [21], the most recent largest benchmark for single object
tracking. Short-time single object tracking, as opposed to long-term single object tracking is the
scenario where the object has to stay in the field of view throughout the tracking, or just for a fraction
of time leaves the field of view or becomes fully occluded.

CF–based results—We present results from evaluating the proposed algorithm with respect to
8 correlation filter—based state-of-the-art trackers [3,12,27–33]. They can be broadly categorized
into three classes that is, deep learning trackers (DL–Trackers) [27], correlation filter trackers
(CF–Trackers) [12,28,34] and representative online classifier trackers (ROC–Trackers) [29,31–33]. Table 1
illustrates the quantitative comparisons of distance precision rate (DP) at 20 pixels, overlap success
rate (OS) at 0.5, center location errors (CLE), and tracking speed, from 100 sequences of OTB-2015 [10]
benchmark. It shows a favorable performance against the state-of-the-arts.

Table 1. Quantitative evaluation of SNS-CF algorithm with eight state-of-the-art trackers [3,12,27–33],
considering the distance precision rate (DP) at 20 pixels, overlap success rate (OS) at 0.5, center location
errors (CLE) and tracking speed, from 100 sequences of OTB-2015 [10] benchmark. Red and blue
numbers indicate the best and second best results, respectively.

Metrics Ours CF2 KCF Struck DLT STC TLD MIL CT
(SNS-CF) [3] [12] [29] [27] [28] [33] [32] [31]

DP rate ↑ (%) 84.0 83.7 69.2 63.5 52.6 50.7 59.2 43.9 35.9
OS rate ↑ 65.7 65.5 54.8 51.6 43.0 31.4 49.7 33.1 27.8

CLE ↓ (pixel) 20.2 22.8 45.0 47.1 66.5 86.2 60.0 72.1 80.1

Speed ↑ (FPS) 35.1 10.4 243 9.84 8.43 653 23.3 28.0 44.4

Table 1 shows the highest tracking result against state-of-the-art trackers in terms of DP, OS and
CLE, which are roughly comparable to Reference [3]. KCF [12], second fastest and STC [28], the fastest
use handcrafted features, which do not require high computational complexity sand time as deep CNN
feature—based do. However, our tracker runs at an average of 35.1 fps, which is fairy good among
CNN—based trackers.

Siamese–based results—We present results from evaluating the proposed algorithm with respect
to VOT-2018 [9] and LaSOT [21] benchmarks. First, we start from VOT-2018 [9] and test our tracker
SNS-CF against 7 state-of-the-art methods containing either correlation filters or Siamese networks or
both [2,6,35–42]. We follow its evaluation protocol and present results in the following Table 2.

Table 2. Comparison with the state-of-the-art trackers in terms of Expected Average Overlap (EAO),
Robustness and Accuracy on the VOT-2018 [9]. Red and blue numbers indicate the best and second
best results, respectively.

Metrics Ours SiamRPN++ LADCF MFT SiamRPN UPDT SA_Siam_R DRT
(SNS-CF) [2] [38] [39] [6] [40] [41] [42]

EAO ↑ 0.423 0.414 0.389 0.385 0.383 0.378 0.337 0.356
Accuracy ↑ 0.587 0.600 0.503 0.505 0.586 0.536 0.566 0.519

Robustness ↓ 0.223 0.234 0.159 0.140 0.276 0.184 0.258 0.201

AO ↑ 0.487 0.498 0.421 0.393 0.472 0.454 0.429 0.426
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Takeaways from Table 2 are interesting as we can notice that the proposed algorithm achieves the
best Expected Average Overlap rate (EAO) against all the state-of-the-arts, with a gain of roughly 1%
to the baseline and top performing. The accuracy is about 1.3% short of the baseline, but also higher
than any other state-of-the-art. The robustness is 1.1% higher than the baseline, but unfortunately
still lower than the VOT-2018 [9] challenge winner MFT [39], mostly because the latter is armed with
Multi-hierarchical independent correlation filters, a close technology to our algorithm. Notice that we
outperform it in the rest of the metrics. Lastly, the overall One Pass Evaluation (OPE) is also adopted
to evaluate trackers and the AO values are reported to demonstrate their performance. Our algorithm
achieved second best value to the beseline and overall benchmark.

Second, we further validate the proposed algorithm by testing it on a larger and more challenging
dataset, LaSOT [21]. We follow its evaluation protocol and report the overall performances in Figure 4.

(a) (b)

Figure 4. (a) Distance Precision and Overlap Success plots over 100 benchmark sequences using
One-pass Evaluation (OPE) on both threshold scores at 20 pixels and (b) Area Under The Curve score
(AUC) (right) on LaSOT [21]. Notice that the proposed algorithm (Blue) ranks third, with first three
trackers MDNet [43], VITAL [44] and SNS-CF (ours) merely having the same performance. Extensive
assessments over fifteen challenging tracking scenarios are experimented and results are available from
authors upon request. We reproduced Figure 4 using MATLAB official LaSOT Evaluation toolkit [21].

Fusion–based results—We present results from combining state-of-the-arts of both correlation
filter–based tracker [3] and Siamese network–based tracker [2] with direct combination, that is, with
no modification, and with our proposed algorithm that includes the extraction of SSF and the learning
of ACF. The following Table 3 has the details.

Table 3. Comparison with correlation filter, Siamese network, and the proposed SNS-FC algorithm
that fuses both technologies. We present the results on VOT-2018 [9]. Red and blue numbers indicate
the best and second best results, respectively.

Metrics Ours Correlation Filter [3] Siamese Network [2] Both
(SNS-CF) (Baseline) (Baseline) (Without SSF and ACF)

DP rate ↑ (%) 84.0 83.7 - 83.3
OS rate ↑ (%) 65.7 65.5 - 65.0
CLE ↓ (pixel) 20.2 22.8 - 21.3

EAO ↑ 0.423 - 0.414 0.420
Accuracy ↑ 0.587 - 6.00 0.557

Robustness ↓ 0.223 - 0.234 0.228

Speed ↑ (FPS) 35.1 10.4 - 34.2
AO ↑ 0.487 - 0.489 0.393
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Table 3 on the preceding page shows that SNS-CF algorithm clearly improves both the correlation
filter and Siamese network trackers in a number of metrics. The last column indicates the direct
combination of correlation filter tracker [3] and Siamese network [2] without our contributions, and
we remark an early improvement in CLE, EAO, robustness and speed, thanks to both the advantages
of deep CNN features as opposed to handcrafted HOG features, and the Fourier domain of correlation
filters that dramatically improves the speed [11,12]. The first column shows that the proposed algorithm
outperforms both correlation filter and Siamese network baselines in general, thanks to spatially
semantic (SSF) features and the learning of adaptive correlation features (ACF).

Table 4 shows that SNS-CF performs best on both intra-class and illumination variations, while it
is the second best on occlusions due to the lack of a re-detection module. On the whole, the proposed
SNS-CF shows a significant improvement in robustness.

Table 4. Comparison of robustness on different SOT challenging problems with correlation filter,
Siamese network, and the proposed SNS-FC algorithm. We present the results on VOT-2018 [9]. Red
and blue numbers indicate the best and second best results, respectively.

Scenarios Ours Correlation Filter [3] Siamese Network [2]
(SNS-CF) (Baseline) (Baseline)

Background clutter 0.228 0.225 0.230
Intra-class variations 0.198 0.302 0.227

Occlusions 0.312 0.226 0.232
Illumination variations 0.154 0.159 0.247

Average Robustness ↓ 0.223 0.228 0.234

Failure cases—In some challenging scenarios, our algorithm failed completely to locate to position
of the target. We suspect this is due to intense background clutter, appearance of many similar
foreground images, although not targets, and severe out-of-view. Some other cases include bright
background and dark foreground, where the first layer features are enough to check failure instead
of using all the SSF features. Severe out-of-view cases may be well addressed if our algorithm was
equipped with a re-detection module, which will be our future research. This is illustrated in Figure 5,
whereas correctly located targets are illustrated in Figure 1.

Figure 5. Failure cases. Video instances of Basketball, Helicopter and Woman on VOT-2018 [9] and
OTB2015 [10]. They represent multiple foreground images similar to the target, severe out-of-view and
sudden background clutter respectively.

6. Conclusions

In this paper, we proposed a novel effective fusion algorithm called SNS-CF, which trains a Siamese
network and a correlation filter for visual object tracking. We used the fading correlation filter technology
to improve the popular Siamese network. The similarity search technique of a typical Siamese network,
fused with correlation filter, alongside spatially semantic correlation features from hierarchical layers
produces a fast, robust and accurate SNS-CF algorithm for visual object tracking. We believe this is
going to open a room for improvement about such a fusion. Extensive experimental results on large
datasets include LaSOT [21], VOT-2018 [9] and OTB-2015 [10], and shows the effectiveness of SNS-CF
algorithm by achieving state-of-the-art results.
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