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Abstract: Physical findings of auscultation cannot be quantified at the arteriovenous fistula
examination site during daily dialysis treatment. Consequently, minute changes over time cannot
be recorded based only on subjective observations. In this study, we sought to supplement the
daily arteriovenous fistula consultation for hemodialysis patients by recording the sounds made
by the arteriovenous fistula and evaluating the sounds using deep learning methods to provide an
objective index. We sampled arteriovenous fistula auscultation sounds (192 kHz, 24 bits) recorded
over 1 min from 20 patients. We also extracted arteriovenous fistula sounds for each heartbeat without
environmental sound by using a convolutional neural network (CNN) model, which was made by
comparing these sound patterns with 5000 environmental sounds. The extracted single-heartbeat
arteriovenous fistula sounds were sent to a spectrogram and scored using a CNN learning model
with bidirectional long short-term memory, in which the degree of arteriovenous fistula stenosis was
assigned to one of five sound types (i.e., normal, hard, high, intermittent, and whistling). After 100
training epochs, the method exhibited an accuracy rate of 70–93%. According to the receiver operating
characteristic (ROC) curve, the area under the ROC curves (AUC) was 0.75–0.92. The analysis of
arteriovenous fistula sound using deep learning has the potential to be used as an objective index in
daily medical care.

Keywords: hemodialysis patient; deep learning; arteriovenous fistula; shunt sound; artificial
intelligence; auscultation; convolutional neural network

1. Introduction

To purify the blood of patients undergoing hemodialysis, a connection from a venous blood vessel
to a machine is required. Dialysis, which requires the insertion of two needles to draw blood and two
to return blood, is performed three times a week to compensate for lost kidney function. Over several
years of continuing dialysis, the blood vessel pierced by the needle gradually narrows [1], a condition
called stenosis. The vessel is further narrowed because of the turbulence caused by non-physiological
blood flow [2–4]; eventually, it may become occluded. Hence, stenosis should be detected, prevented,
and treated as early as possible so that occlusion and dialysis delays can be prevented.

The arteriovenous fistula examination is conducted for detection, which involves physical findings
by palpation, auscultation, and visual inspection to find the suspected stenosis. If a site exists where
stenosis is suspected, the next step is to perform vascular ultrasound or angiography to ensure stenosis
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detection. After diagnosing stenosis, puncturing should be avoided, as it would further deteriorate the
blood vessel from needle puncturing during dialysis. Specifically, puncturing should be avoided in
that area to prevent the degree of stenosis from developing further. In addition, a treatment called
percutaneous transluminal angioplasty (PTA), which inflates a stenosis site with a balloon catheter
and expands it before occlusion, is performed [5–7]. To detect stenosis and prevent obstruction, daily
consultations called arteriovenous fistula management are essential.

In arteriovenous fistula management, a physical examination using palpation, or palpation and
auscultation, is used to check for vibration related to proper blood flow, as well as to determine whether
the vessel pulsation is smooth and the pulsation rate is inflated. In auscultation, the presence or absence
of constriction is determined by using the pitch difference of sound, discontinuity, spread of sound, and
the sound source from other parts (e.g., whistle sound) [8]. In the medical field, this descriptive method
is subjective and differs depending on the skill level of the observer and the facility. Novices may only
be able to provide a simple description on the presence or absence of constriction sounds. Conversely,
skilled persons may record abstract abnormal sounds, such as harmonics and intermittent sounds,
in their observation records. As a patient is not assessed by the same skilled observer each day, it is
not possible to apply the exact skilled assessment technique daily. Moreover, only subjective results
can be communicated to the subsequent examiner. Therefore, the results of auscultation alone do not
form a definitive diagnosis of stenosis. Stenosis is diagnosed after the results that have numerical
certainty are obtained by performing ultrasound and invasive contrast examination, which require
time for preparation and examination. Auscultation is inexpensive, simple, and convenient. However,
judgment is delayed if the examiner is not skilled, and the result is abstract. Therefore, auscultation
remains only a screening test.

Nevertheless, if auscultation is used as an index that can be output as an objective numerical value
rather than as a subjective index, and a diagnosis result with a certainty close to that of an ultrasound
examination or a contrast examination is obtained, stenosis diagnosis becomes easy in daily medical
care. In addition, if the auscultation technique of a skilled person becomes mechanized, stable output
results can be obtained every day, minute changes can be digitally captured and compared with past
findings, and the diagnosis accuracy will be improved. The skill of an expert can be reproduced with a
machine. Achieving that goal was the primary objective of this study.

There have been reports that stenosis may be estimated during auscultation by using arithmetic
processing of the sound frequencies generated by arteriovenous fistulas [9–11]. Although it is a mechanical
judgment, it is typically only a frequency analysis treble and bass judgment. The arteriovenous fistula
sound grasped in the actual medical field is a multidimensional and abstract interpretation. Therefore, the
frequency alone is considered not sufficient as a criterion. Conversely, the spectrogram representing the
sound source by the frequency density per time interval is assumed to include all the sound elements [12].

To date, objectively digitizing and comparing multidimensional data in familiar environments
have been difficult. However, deep learning, which is the basis of image recognition technology and
has made remarkable progress in recent years, can be used on personal computers, and, thus, easily
comparing multidimensional data is possible. Moreover, it is now feasible to objectively compare
spectrograms with audio recordings and images. Accordingly, to evaluate the sound generated by
stenosis, we applied a deep learning method using multidimensional data, similar to a spectrogram
converted from a arteriovenous fistula sound, and evaluated it as an objective index. The arteriovenous
fistula sound learning model is outlined in Figure 1.
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Figure 1. Outline of the arteriovenous fistula sound learning model. A series of arteriovenous fistula 
sounds are recorded in one medical examination. All continuous tones are converted into 
spectrograms. A single heartbeat is detected using the mechanism of object detection (R-CNN: 
regions with convolutional neural networks) similar to that used for face detection in digital cameras 
and smartphones. The spectrogram of one arteriovenous fistula sound is used as input data. A deep 
learning model is used for learning, and the importance of the sounds obtained during a general 
medical examination is expressed by multiclass classification. 

2. Materials and Methods 

The objective comparison of human consultations supplemented with deep learning requires 
audio monitoring, which we performed using a DR-100MK TASCAM Ⅲ: 24-bit/192 kHz recording 
device (TEAC Corporation, Montebello, CA, USA). 
  

Figure 1. Outline of the arteriovenous fistula sound learning model. A series of arteriovenous
fistula sounds are recorded in one medical examination. All continuous tones are converted into
spectrograms. A single heartbeat is detected using the mechanism of object detection (R-CNN: regions
with convolutional neural networks) similar to that used for face detection in digital cameras and
smartphones. The spectrogram of one arteriovenous fistula sound is used as input data. A deep
learning model is used for learning, and the importance of the sounds obtained during a general
medical examination is expressed by multiclass classification.

2. Materials and Methods

The objective comparison of human consultations supplemented with deep learning requires
audio monitoring, which we performed using a DR-100MK TASCAM III: 24-bit/192 kHz recording
device (TEAC Corporation, Montebello, CA, USA).

2.1. Participants

The study involved 20 inpatient dialysis patients from a dialysis center (Gamagori Municipal
Hospital, Gamagori, Japan). The participants were undergoing treatment in a single facility intended
for patients with end-stage renal failure who were undergoing dialysis using arteriovenous fistulas
with stable hemodynamic autologous blood vessels. Participating patients were hospitalized for
various diseases and were continuing with maintenance dialysis. Arteriovenous fistula sounds were
recorded before puncture. Table 1 presents the characteristics of the participants.

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved
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by the Institutional Ethics Committee of Gamagori Municipal Hospital (No. 506-2). Patients on catheter
dialysis, patients on dialysis with artificial blood vessels, patients with unstable circulatory dynamics,
and other patients deemed by the attending physician to be inappropriate for study participation on
medical grounds were excluded.

Table 1. Sociodemographic and clinical characteristics of the 20 participants. Participants included
patients between the ages of 49 and 90 with various diseases.

Characteristic Value

Age (median (IQR), years) 73 (63–79)

Gender (n) Male 13
Female 7

Dialysis duration (median (IQR), years) 0.01 (0–19)
Cause of end-stage renal disease

Diabetes 11
Glomerulonephritis 5

Others 4
Type of arteriovenous fistula

Radiocephalic AVF at front arm 17
Radiocephalic AVF at mid forearm 2

Brachiocephalic AVF at elbow 1

Abbreviations: AVF, arteriovenous fistula; IQR, interquartile range.

2.2. Methods

2.2.1. Data Preprocessing: Extraction of Single Beat of the Arteriovenous Fistula Sound

The sampled 1-min arteriovenous fistula auscultation sounds also contain variable environmental
sounds; therefore, to extract the arteriovenous fistula sound, the value obtained by integrating and
averaging the 2–750 Hz region (frequency range characteristic of arteriovenous fistula sound) from
each auscultation sound was output [13]. Spline curves were created to reduce the effect of noise, which
can cause difficulty in detecting the maximum and minimum values for one beat [14]. To exclude the
times during which auscultation was not performed, a convex range falling within a period of 0.5–2 s
was estimated to constitute one beat [15].

The sounds determined using a deep learning classifier as being produced by arteriovenous fistulas
with a probability exceeding 50% were extracted as the sounds for one arteriovenous fistula beat. Individual
arteriovenous fistula sounds recorded for 10,000 beats were classified into one of five categories of sound
audible to the human ear (i.e., normal sound, hard sound, high sound, intermittent sound, and whistling).
The arteriovenous fistula sounds classified by the human ear had minimal abnormal sounds, including
whistles and intermittent sounds. The sound of the whistle sounds like a whistle, which refers to the
turbulence in blood flow due to a sharp decrease in the diameter of blood vessels. Intermittent sounds
indicate a discontinuity in vascular noise during diastole. It shows a strong obstruction that can cause
a complete interruption of blood flow during diastole. High sounds, hard sounds, and normal sounds
are often encountered during regular medical examinations. The high sound indicates high-frequency
blood vessel noise. It is believed to denote that the diameter of the shunt vessel is thin over long distances.
A hard sound is produced by a substantial increase in the amount of vascular noise at the peak, and
is considered to indicate arteriovenous fistula vascular resistance physiologically. The collected sound
sources were divided into two groups: Test data and training data. We ensured that sources from patients
included in the training data were not included in the test data group. Although the training data should
have had a large number of samples, the total number of training data was adjusted to be small because
the number of abnormal sounds was minimal.

In addition, we used class weights that change the weights during learning so that the adverse
effects of imbalanced data were minimized. Table 2 presents the contents of the data classified by the
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human ear. A dataset of 4000 sounds, containing minimal background noise and exhibiting representative
characteristics, was used as the learning source. Figure 2 illustrates an outline of the learning preprocessing.

Table 2. Content of the data classified by the human ear and input data used for learning and training.
Training and test data were categorized to avoid similar input data from the same patient.

Training Test Total

Normal 394 485 879
Hard 578 901 1479
High 670 563 1233

Intermittent 91 4 95
Whistle 91 217 308

Total 1824 2170 3994
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and data analysts from around the world compete to determine who has developed the best models. 
A competition involving audio tagging took place in 2018. Participants were challenged to develop a 
machine that can identify common sounds, such as a dog barking, telephone ringing, or guitar being 
strummed. The Surrey CVSSP DCASE 2018 Task 2 system (an open-source program published on 
GitHub, MIT licensee) ranked third in the competition and was used in this study for sound 
classification, as we are familiar with Keras, i.e., the programming language used to develop the 
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Figure 2. Learning preprocessing. A spline curve was created to eliminate noise from one auscultation
sound. We extracted a number of convex curve ranges from the created spline curve with a duration
of 0.5–2.0 s. The result was estimated to include an arteriovenous fistula sound equivalent to one
heartbeat. The sound of one beat of the arteriovenous fistula was extracted by a deep learning classifier.
Arteriovenous fistula sounds of 10,000 beats were classified into one of five types (i.e., normal sound,
hard sound, high sound, intermittent sound, and whistling).

2.2.2. Data Analysis

In the field of deep learning, the Kaggle Competition is an online platform in which statisticians
and data analysts from around the world compete to determine who has developed the best models.
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A competition involving audio tagging took place in 2018. Participants were challenged to develop
a machine that can identify common sounds, such as a dog barking, telephone ringing, or guitar
being strummed. The Surrey CVSSP DCASE 2018 Task 2 system (an open-source program published
on GitHub, MIT licensee) ranked third in the competition and was used in this study for sound
classification, as we are familiar with Keras, i.e., the programming language used to develop the
program, and the ability of the model to evaluate changes in the time series of sounds [8]. During the
actual competition at Kaggle, the sound source provided was 44 kHz; however, this time, we recorded
at 192 kHz. The learning effect was expected by capturing fine rumble sounds with a high-resolution
spectrogram. According to the product standard, the frequency that the stethoscope can collect is
limited by the diaphragm to approximately 700 Hz at the maximum. However, when comparing the
auscultation sounds recorded at 192 kHz, there was a wide range of frequencies that changed the sound
pattern in synchronization with the beat of the arteriovenous fistula. These included a spiked short
keystroke sound up to 3000 Hz, and the arteriovenous fistula sound, which converged to a constant
frequency, was 1500 Hz maximum.

Therefore, the frequency axis of the spectrogram used for learning was set to 2000 Hz. The sample
size in the Fourier transform was 192 KHz, the window function was 4096, and the hop size was
2048. Feature extraction from the spectrogram was performed by the Mel filter bank. The number of
filter banks was increased from the standard 64–1024 to ensure that the effect could be confirmed by
a high-resolution conversion, and a comparison was conducted. The collected sound source had a
long sound when the heartbeat was slow and a short sound when the heartbeat was fast. Therefore,
blanks were filled with blanks for short beats so that the feature amount on the time axis was constant.
Gated recurrent unit (GRU) and long short-term memory (LSTM), which use time series data, were
used for learning. A small number of features on the input time axis led to a small number of features
on the convoluted time axis. The number of features on the time axis before and after the convolution
was 400 and 12, respectively. Table 3 shows the learning models used in this system.

Table 3. Various learning models used for the input source. The basic structure of all learning models
comprises a neuron model called VGG13. First, the input data (Log Mel spectrogram) to VGG13 is
convolved with 64 filters of 3 × 3 size, and the same convolution is repeated. Next, a rectified linear unit
(ReLU) is used as the activation function, and Batch normalization (BN) is performed on the obtained
data. Subsequently, the information is compressed using a 2 × 2 size filter called max pooling. Then,
the same operation is repeated by gradually increasing the number of filters so that fine features can be
captured effectively. Finally, all the obtained data are combined, the activation function (softmax) is
used to stimulate 5 neurons, and the output value represents classification into 5 classes. When using
convolutional recurrent neural network (CRNN), we use data convoluted by VGG13 as the input data
before fully combining them. The output results using the bidirectional gated recurrent units (Bi-GRU)
or bidirectional long short-term memory (Bi-LSTM) of the neuron model, which can evaluate the time
axis, are connected to the fully connected layer and classified into five classes.

VGG13 CRNN (Bi-GRU) CRNN (Bi-LSTM)

Log mel spectrogram Log mel spectrogram Log mel spectrogram
3 × 3, 64, BN, ReLU 3 × 3, 64, BN, ReLU 3 × 3, 64, BN, ReLU
3 × 3, 64, BN, ReLU 3 × 3, 64, BN, ReLU 3 × 3, 64, BN, ReLU
2 × 2 Max Pooling 2 × 2 Max Pooling 2 × 2 Max Pooling

3 × 3128, BN, ReLU 3 × 3128, BN, ReLU 3 × 3128, BN, ReLU
3 × 3128, BN, ReLU 3 × 3128, BN, ReLU 3 × 3128, BN, ReLU
2 × 2 Max Pooling 2 × 2 Max Pooling 2 × 2 Max Pooling

3 × 3256, BN, ReLU 3 × 3256, BN, ReLU 3 × 3256, BN, ReLU
3 × 3256, BN, ReLU 3 × 3256, BN, ReLU 3 × 3256, BN, ReLU
2 × 2 Max Pooling 2 × 2 Max Pooling 2 × 2 Max Pooling

3 × 3512, BN, ReLU 3 × 3512, BN, ReLU 3 × 3512, BN, ReLU
3 × 3512, BN, ReLU 3 × 3512, BN, ReLU 3 × 3512, BN, ReLU
2 × 2 Max Pooling 2 × 2 Max Pooling 2 × 2 Max Pooling

3 × 3512, BN, ReLU 3 × 3512, BN, ReLU 3 × 3512, BN, ReLU
3 × 3512, BN, ReLU 3 × 3512, BN, ReLU 3 × 3512, BN, ReLU

Bi-GRU, 512, ReLU Bi-LSTM, 512, ReLU
Global average pooling

Softmax (5 classes)
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3. Results

3.1. Learning Curve

We compared various learning methods, such as AlexNet, VGG13, a deep residual network
(ResNet), and a convolutional recurrent neural network (CRNN), with a bidirectional gated recurrent
unit and bidirectional long short-term memory (Bi-GRU, Bi-LSTM). We also compared the mel-frequency
cepstrum, mel-frequency log spectrogram, and simple spectrogram with the input signal. Reasonable
learning accuracy rates were achieved with the CRNN:Bi-GRU model, which proved capable of learning
from sources that included a time series as the data source and the mel-frequency log spectrogram as
the input source. Figure 3 shows a graph of the learning process.
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Figure 3. Learning curve for each learning model and each input source. Accuracy is presented in the
upper row, whereas the loss is in the lower row. The left side is the transition based on the training
data, and the right side is the transition based on the verification data. The horizontal axis indicates
the number of times of learning, and accuracy increases as learning progress. Loss represents the
difference between the answer of the input data predicted by the model during the learning process
(e.g., the degree of firing that is a high tone) and the teacher’s answer to the actual input data (the high
tone is the correct answer). It can be observed that the difference between the answer and answer from
the learning model obtained during learning has decreased. The CRNN:Bi-GRU model, which had the
mel-frequency log spectrogram as input, was the learning model with good accuracy and loss in both
training data and verification data.

3.2. Postprocessing

When the five types of sounds (i.e., normal, hard, high, intermittent, and whistling) were
individually analyzed, a model suitable for each sound was found. Receiver operating characteristic
(ROC) curves were created using the model that best fits each sound. Comparing the area under the
ROC curves (AUCs), the model best fitting high and intermittent sound was the GRU with short-term
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memory; high sounds were best classified using a CNN that could identify rumble sounds. Table 4
lists AUCs classified by each learning model and their corresponding input data features.

Table 4. Comparison of the areas under the receiver operating characteristic (ROC) curves (AUCs).
A list of AUCs classified by each learning model, each input feature, and each sound is presented. For
each sound, the item with the maximum AUC is highlighted. Hard has the best score in the GRU model
using 1024 features. High is the model using 128 features, intermittent is the GRU model using 1024
features, and whistle is the CNN and GRU model using 64–256 features.

Feature 64 128 256 512 1024

CNN GRU LSTM CNN GRU LSTM CNN GRU LSTM CNN GRU LSTM CNN GRU LSTM
Normal 0.58 0.59 0.60 0.70 0.72 0.64 0.69 0.73 0.66 0.69 0.72 0.66 0.70 0.72 0.65

Hard 0.70 0.70 0.68 0.81 0.81 0.69 0.84 0.87 0.78 0.83 0.90 0.85 0.83 0.91 0.73
High 0.77 0.77 0.76 0.80 0.77 0.78 0.80 0.80 0.80 0.78 0.80 0.80 0.79 0.76 0.77

Intermittent 0.83 0.88 0.77 0.78 0.85 0.82 0.83 0.78 0.77 0.87 0.87 0.82 0.84 0.94 0.92
Whistle 0.89 0.85 0.85 0.89 0.89 0.86 0.89 0.89 0.89 0.87 0.87 0.87 0.88 0.88 0.86

An ensemble method combining judgment outputs was developed using a model advantageous
for each sound. The results of the five classifications of unknown data performed by the created
classifier are as follows. For each sound type listed above, the accuracy was 75–93%, the sensitivity
was 46–86%, and the specificity was 81–93%. According to the ROC curve, the AUC was 0.75–0.92.
These results are reasonably reliable for evaluating arteriovenous fistula sounds. Table 5 summarizes
the final scores. Figure 4 shows the final ROC curve for each sound type.

Table 5. Final score. The final score is obtained by ensembling a plurality of models in which the best
score is recorded for each sound using a technique called stacking and using the final stage model.
The correct answer rate for the test data was unknown 72–93% (average 82%), and the AUC was
0.75–0.92% (average 0.83%).

NORMAL HARD HIGH INTERMITTENT WHISTLE MEAN

accuracy 0.753 0.833 0.729 0.935 0.855 0.821
precision 0.45 0.766 0.478 0.014 0.36 0.414

recall 0.468 0.862 0.478 0.5 0.581 0.578
specificity 0.836 0.812 0.817 0.936 0.885 0.857

f1 0.459 0.811 0.478 0.028 0.444 0.444
AUC 0.759 0.889 0.795 0.929 0.845 0.843

3.3. Clinical Application

The analysis of arteriovenous fistula sounds in the two cases that followed the developmental
progress starting from arteriovenous fistula creation and continuing for one month is discussed in this
section. Figure 5 shows the output results. The first case is that of arteriovenous fistula construction
resulting from acute renal failure, with the puncture starting two weeks later. In the second case,
the arteriovenous fistula was constructed after a long history of diabetes, and the puncture was initiated
after three weeks. The latter artery was a multilayered, highly calcified vessel. The former was affected
by vasospasm immediately after arteriovenous fistula creation [16], so the initial sound had a small
component of hardness. Thereafter, in both cases, it was observed that a hard sound was conspicuous
at an early stage, even when the arteriovenous fistula sound first developed. Moreover, the ratio of
random intermittent and harmonic sounds increased after the start of puncturing. This may have
indicated an increased risk of arteriovenous fistula stenosis after puncture [17].
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line shows the curve for obtaining the FPF at each threshold. It can be observed that, by changing the
threshold, the threshold can be adjusted to lower FPR to detect rare diseases.
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Figure 5. Arteriovenous fistula analysis sound of two cases. The first case is arteriovenous fistula
construction resulting from acute renal failure. The puncture began two weeks later. Immediately after
creation, the initial sound had a small hardness component due to the influence of a vasospasm. In the
second case, an arteriovenous fistula was constructed after a long history of diabetes. The puncture
began three weeks later. In both cases, it was observed that the arteriovenous fistula sound was hard at
the beginning, even when the arteriovenous fistula sound developed, and that the ratio of random
intermittent and harmonic sounds due to the start of puncturing increased.

4. Discussion

Complicated arithmetic processing and statistical analyses can now be easily implemented owing
to the improvements in computer processing ability. Although examples have been applied clinically in
various medical fields, clear test protocols, such as diagnostic imaging, blood sampling, genetic testing,
electroencephalograms, and electrocardiograms, are still required [18,19]. Conversely, in daily practice,
doctors tend to place less emphasis on physical examinations that provide only subjective records
and place greater emphasis on blood sampling or imaging tests that provide objective results [20].
Conventional physical examination findings and other physical results are subjective, making it
difficult for examiners to vary examination techniques and compare findings with past results to make
assessments simply and quickly. Mechanization of medical examinations will soon be an important
aid for guiding such inspections. However, input devices that are capable of determining tactile
pressure, heat sensation, and response to pain are still evolving, hindering their integration with
electronic devices. These findings rely on human hands to convert and digitize the data. However,
auscultation, as performed in a classic medical examination, can be integrated with digitization using
current medical technology.
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There have been reports on the use of deep learning for digitizing visual examination results in
dermatology, as well as in analyzing heart sounds for the estimation of heart disease [21–23]. However,
this approach requires that only useful heart sounds should be extracted for a consultation record,
and the preprocessing required for a trained classifier also hinders use in clinical settings. In this study,
we used a region-detection classifier that detects a single beat from the preprocessing stage for the
deep learning of arteriovenous fistula sounds. The required arteriovenous fistula beat sound was
detected from the stored long-term auscultation sound without prior knowledge of the record, and the
sound could be connected to the stenosis judgment classifier as carefully selected judgment data
material. Deep learning using a carefully selected one-beat arteriovenous fistula sound has facilitated
the objective digitization of the subjective evaluation performed by the main examiner.

In addition, by converting simple scientific findings into objective numerical values, it becomes
possible to obtain frequent objective medical data. In the area of arteriovenous fistula examination,
frequent observation may allow stenosis caused by a puncture to be found in the early stages of
arteriovenous fistula development. Multidimensional data that were originally difficult to compare
and evaluate are not limited to storage as images but could be digitized for medical examination
evaluation. Thus, this practice may be applied to other medical fields if an input device is developed.

However, classifications based on black-box artificial intelligence methods remain unclear.
An example of this is Grad-CAM, which identifies the feature points that CNN selects, focuses
deep learning on the sound pattern image [24], and highlights these features in a heat map. In a
different application, using a “dog” image classifier, color is applied to the characteristic portion of test
images determined to be those of a dog. Figure 6 shows a concrete image output by Grad-CAM. In our
case, when the characteristic portion of the sound pattern image that felt “high” was visualized, the
250–750 Hz region in the systole was emphasized in the heat map. When the characteristic part of
the sound pattern image that felt “hard” was visualized, the silent region in the diastolic area was
emphasized. It can be observed that the rumble region in the high-frequency region is used as an index,
which is consistent with a previous report on the features in the spectrogram of stenosis sounds [25].
In the intermittent periods, the classifier focuses on the silence, and intermittent sound can be indexed
as an element that allows a person to recognize a hard sound.

One limitation of this study is that the number of cases used was small; thus, the number of
abnormal sounds collected was also small. During the learning phase, learning was performed
by weighting the class of abnormal sounds; however, the extent of the performance handicap was
unknown. In clinical practice, the disease frequency is low, approximately once every several thousand
times. Regardless of how effective the classifier is, the number of judgment results will be false
positive or false negative. Either can be prioritized by changing the cutoff value of the classifier;
nonetheless, the effect is a tradeoff. As a countermeasure, in the medical field, a population with
a higher pre-test probability in other items can be extracted and applied to the judgment machine.
In this arteriovenous fistula sound classification approach, a large classifier that combines the classical
statistical method based on physical sound features [26] and a learning model that detects abnormal
sounds by unsupervised learning with this learning model is considered to be an effective classification
method [27–29].

The system used in this case was a multi-class classification system that distinguishes the sound
from everyday sounds. The arteriovenous fistula sound may have harmonic, intermittent, and
whistle sounds that simultaneously overlap. Thus, we should have changed the system to multi-label
classification. Moreover, the diagnostic accuracy did not increase although it was a normal sound with
a high proportion. The concept of normal sound is an excluded item that is not abnormal, and the
feature amount is difficult to extract. The arteriovenous fistula sound should be a regression problem
that numerically outputs the degree of stenosis, not a classification problem. The numerical value
output by the system based on this classification problem is not proportional to the degree of stenosis.
For example, the number output in the item of harmonics is a percentage representing the possibility
of being the average harmonics collected this time. If the value is high, it does not mean that the
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constriction is a strong harmonic. When the average harmonics collected by the training data are
compared with the other groups, the ratio of the average harmonics is shown. As the teacher data
determines the presence of harmonics, realistic recursive numerical values are difficult to output.Sensors 2020, 20, x FOR PEER REVIEW 14 of 17 
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Figure 6. Grad-CAM for visualization of characteristic sites. With Grad-CAM, if the image is judged to
be a dog using a dog image classifier, the image is colored. The same applies to a cat image classifier.
When the characteristic portion of the sound pattern image that felt “high” is visualized, the 250–750 Hz
region in the systole is emphasized in the heat map. In the case of a sound pattern image that felt
“hard,” the silent region in the diastolic area was emphasized.

In future examinations of the risk of stenosis, arteriovenous fistula auscultation should not be
studied in only one time period. However, the hard sound before stenosis, the high and whistle
sounds that signify stenosis, and the normal sound after stenosis is resolved should all be studied [30].
It will likely prove necessary to construct a model for arteriovenous fistula stenosis diagnosis that
uses a higher-dimensional time-series learning model, instead of the single-beat model. In addition,
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the accuracy rate for the existing model was high. However, it decreased when presented with new
data, indicating inadequate generalization. Additional data collection periods may be required until a
small number of abnormal sounds have sufficient data to facilitate classification. Finally, evidence
confirming that this method can realize the ultimate goal of assisting with diagnoses is insufficient;
consequently, comparisons with existing ultrasound resistance indices and a comparison before and
after PTA remain necessary in clinical practice [31].

5. Conclusions

Arteriovenous fistula auscultation can be substituted using deep learning methods with high
accuracy. However, arteriovenous fistula consultations require careful evaluation in conjunction with
visual inspection, palpation, and other types of information. As the training data used for deep
learning are also influenced by the audio of various devices and environmental characteristics of the
facility, assessing and improving the reliability, efficacy, and cut-off scores of these methods require
multi-center studies with larger populations.
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