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Abstract: In multi-target tracking scenarios with dense and heterogeneous clutter, there is a substantial
increase in the false measurements that originated from the clutter within the validation gate,
and consequently, the number of measurement-to-track association hypothesis grows rapidly in
traditional multiple hypothesis tracker (MHT), leading to a sharp decrease in data association accuracy
and tracking performance. A new multiple hypothesis tracker using validation gate with motion
direction constraint (MHT-MDC) is proposed to solve these problems. In the MHT-MDC, a motion
direction constraint (MDC) gate is designed by considering the prior target maneuvering information,
which effectively reduces the volume of validation gate and, thus, diminishes the number of false
measurements in the gate when the innovation covariance is large. Subsequently, the clutter density in
the MDC gate is adaptively estimated by the conditional mean estimator of clutter density (CMECD),
based on which the score functions in the MDC gate can be calculated. The MHT-MDC is compared
with the MHT algorithm in simulations, and the experimental results demonstrate its superior
tracking performance for weakly maneuvering targets in high clutter density scenarios.

Keywords: validation gate; multiple hypothesis tracker; motion direction constraint; clutter
density estimator

1. Introduction

Multi-target tracking in clutter scenes is of great significance in the field of radar data
processing [1,2]. The existence of clutter increases the uncertainty of measurement source; therefore,
a data association algorithm is required in order to determine whether the measurement is the
clutter and, if not, further specify from which target it originates. Multiple hypothesis tracker (MHT)
is a Bayesian data association algorithm with a deferred decision logic [3–5], which theoretically
provides an optimal solution to data association. The benefits of utilizing MHT is that not only can it
detect the target birth/death, but it also achieves better multi-target tracking performance in complex
scenes with dense clutter and targets. The MHT algorithm is normally categorized into two types:
the hypothesis-oriented MHT (HOMHT) [3,4] and the track-oriented MHT (TOMHT) [5], in which
the TOMHT algorithm has been widely employed due to its simplicity in trajectory generation and
computation efficiency.

Despite that the TOMHT algorithm can tackle the data association problem approximately
optimally, it involves an intractable growth of permutations for possible measurement-to-track
association hypotheses as time evolves, which makes the data association calculations infeasible.
Validation gate techniques are adopted in order to eliminate unlikely association hypotheses to reduce
the computation of data association. Particularly, the center of the validation gate lies in the one-step
predicted position, with its gate size mainly defined by parameters, such as the existence probability
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of target and the innovation covariance. The validated measurements are measurements fallen in
the validation gate, and the gate size determines the number of validated measurements. If the
gate size is too small, the probability of missing the target-originated measurement will increase,
which will decrease the accuracy of data association; however, if it is too big, a large number of
non-target-measurements will fall in the validation gate, which will lead to a large computational load
and poor tracking performance.

With the increasing complexity of the radar observation scenarios, the contradiction between
increasing the existence probability of target in the gate and diminishing the clutter number within
the gate becomes more significant when using traditional validation gate methods. Such conflict
leads to the degeneration of data association accuracy and tracking performance. The design of the
validation gate has been continually improved to enhance the accuracy of data association in the clutter
scenarios in order to solve these problems. In [6–8], the authors presented the adaptive optimal or
local optimal validation gate size estimation algorithms. An improved sequential Monte Carlo (SMC)
implementation of the probability hypothesis density (PHD) filter was proposed in [9], and a sigma-gate
was constructed to eliminate the contribution of measurements locating outside the gate around the
particle, which makes it obtain much faster processing speed and higher estimation accuracy than the
standard PHD filter. An improved probability data association (PDA) algorithm was proposed in [10],
which first sorts validated measurements according to the measurement likelihoods and then selects
the first K measurements for the PDA processing. In literature [11], a fast and non-elliptical validation
gate based on target maneuvering information was proposed for an application in a marine ship
monitoring system with a low data rate. This method effectively improves the existence probability
of maneuvering targets within the validation gate; however, it increases the computation complexity
of data association. Based on the traditional elliptical gate, a circular gate using the estimated target
velocity was designed in [12], in which the validated measurements are further selected by the velocity
threshold and then provided to the PDA algorithm. The above validation gates enhance the target
tracking performance in homogeneous clutter scenes; however, they are mainly specified for the PDA
algorithm, and their multi-target tracking performance has not been verified in dense clutter cases.
Besides, the heterogeneous clutter scenarios are not taken into consideration in these methods.

A new multiple hypothesis tracker using validation gate with motion direction constraint (multiple
hypothesis tracker using validation gate with motion direction constraint (MHT-MDC)) is proposed
under the TOMHT framework in order to reduce the number of false alarm tracks thereby enhancing the
accuracy of data association in dense and heterogeneous clutter scenarios. On the basis of the traditional
ellipsoidal gate, the MHT-MDC applies the prior target maneuvering information to construct the
motion direction constraint (MDC) gate. Similar to other validation gate methods, here only the
measurements selected by the MDC gate are associated with the tracks while the others are eliminated.
Therefore, when the measurement innovation covariance is large, the proposed MDC gate technique
can successfully reduce the false alarms within the gate due to the fact that the volume of the MDC
gate is much smaller than other ellipsoidal gates. For heterogeneous clutter cases, a conditional mean
estimator of clutter density (CMECD) is employed in order to improve the accuracy of data association
which adaptively estimates the clutter density in the MDC gate, and calculates the score function of
track hypothesis. The results show that our MHT-MDC algorithm can obtain better target tracking
performance in heterogeneous and dense clutter scenarios.

The rest of this letter is organized, as follows. Section 2 introduces the validation gate with motion
direction constraint method. In Section 3, we present an approximate method for calculating the
volume of the MDC gate. In Section 4, the MHT-MDC algorithm is proposed, and its implementation
process is introduced in detail. Especially, the adaptive clutter density and the adaptive score function
are calculated for dense and heterogeneous clutter scenarios. In Section 5, the tracking performance of
MHT-MDC is compared with the MHT algorithm. Finally, conclusions are drawn in Section 6.
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2. Validation Gate with Motion Direction Constraint

At scan k, the motion of each target is modeled as,

x(k) = Fx(k− 1) + v(k), (1)

where x(k) is the target state at time k, F is the system transition matrix, and v(k) is a zero-mean white
Gaussian noise with covariance Q(k).

The observation model is
z(k) = Hx(k) + w(k), (2)

where z(k) denotes the target measurement at time k, H is the measurement matrix, and w(k) denotes
a zero-mean white Gaussian noise with covariance R(k).

In most multi-target tracking systems, the target state and the measurement are expressed in
a Cartesian coordinate system X-Y-Z. For target measurement expressed in a polar coordinate system,
it can be conveniently converted to the X-Y-Z coordinate system. Thus, here we adopt the Cartesian
coordinate system and constant velocity (CV) motion model for each target. At scan k, the target
state is denoted as x(k) = [x

.
x y

.
y z

.
z]T, which contains both position and velocity in X-Y-Z axes.

More specifically, the state transition matrix F and the measurement matrix H can be written as

F =


F1 0 0
0 F1 0
0 0 F1

, F1 =

[
1 T
0 1

]
, H =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

.
The covariance matrix of the process noise Q, and the covariance matrix of measurement noise R

are defined, as follows,

Q =


Q1 0 0
0 Q1 0
0 0 Q1

δ2
v, Q1 =

[ 1
4 T4 1

2 T3

1
2 T3 T2

]
, R =


1 0 0
0 1 0
0 0 1

δ2
ε,

where T is the sample time interval, δv is the standard deviation of the process noise, and δε is the
standard deviation of the measurement noise.

By using Kalman filtering, the predicted measurement ẑ(k
∣∣∣k− 1) can be obtained at scan k. Then,

the measurement innovation and its covariance can be calculated as

v(k) = z(k) − ẑ(k
∣∣∣k− 1), (3)

S(k) = HP(k
∣∣∣k− 1)HT + R(k), (4)

where P(k
∣∣∣k− 1) is the prediction covariance.

The gating technique is developed to limit the number of measurement-to-track pairings such
that the data association computational load can be reduced. Generally, the validation gate is centered
at the one-step predicted measurement ẑ(k

∣∣∣k− 1) and is described by an ellipsoid region,

VG =
{
z(k)

∣∣∣∣∣d2 =
(
(z(k) − ẑ(k

∣∣∣k− 1))
T

S(k)−1(z(k) − ẑ(k
∣∣∣k− 1)) ≤ G

)}
. (5)

where G is a validation gate threshold. Only the measurements that satisfy Equation (5) can be
associated with the track. In the X-Y-Z coordinate system, the existence probability of target in the
gate [1] is calculated as

PG =

G∫
0

1
√

2π
x1/2e−x/2dx. (6)
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For example, if the gate threshold is G = 16, the probability of the target existing in the gate is
PG = 0.9989.

The volume of the validation gate is defined as

VG =
4πG3/2

3

√∣∣∣S(k)∣∣∣. (7)

Consequently, if the clutter density in the validation gate is λ(k), the clutter number in the gate is
computed as λ(k)VG.

In general, we seek to attain a higher existence probability of target PG in the gate with less clutter,
so as to acquire better tracking performance. Based on Equations (6) and (7), once PG is determined,
G is accordingly fixed, and a large innovation covariance will lead to a large validation gate volume.
Hence, in a clutter dense scenario where the innovation covariance is large, false alarm measurements
in the validate gate will also increase, leading to the deterioration of the tracking performance.

In real-life target tracking applications, we may possess some prior target maneuvering information.
For example, targets, such as civil aircraft and vessels, are known to move with a lower possibility of
strong maneuvers; in other words, the motion direction of these targets will not change dramatically at
the adjacent sampling time. Such prior motion direction can be utilized to select validated measurements
under the criteria that only the validated measurements within a specific motion direction gate are
used for association processing with others being excluded.

Assume that at scan k, a set of Mk measurements zm(k), m = 1, 2, · · · , Mk are selected by the
validation gate (3). Based on the target state estimation x̂(k − 1) at scan k − 1, the predicted target
motion direction vector can be calculated as

dk =
ẑ(k

∣∣∣k− 1) −Hx̂(k− 1)

‖ ẑ(k
∣∣∣k− 1) −Hx̂(k− 1) ‖

. (8)

The angle between the motion direction of validated measurement zm(k) and dk can be calculated as

θm = cos−1 (zm(k) −Hx̂(k− 1))·dk

‖zm(k) −Hx̂(k− 1)‖
. (9)

The motion direction threshold θG is set according to the prior target maneuvering information,
and, thus, the motion direction constraint (MDC) gate can be defined as

Vθ−G =
{
zm(k)

∣∣∣θm ≤ θG
}
∩VG. (10)

Based on the Equation (10), the MDC gate is constructed as the intersection part of the traditional
ellipsoid gate and a cone region with a vertex of Hx̂(k− 1) and vertex angle being 2θG. The volume
of the MDC gate, by definition, is less than or at most equal to the volume of the ellipsoid region;
especially when the motion direction threshold is small or the innovation covariance is large, it is
significantly smaller than that of the ellipsoid gate. Consequently, it reduces the number of false alarm
measurements effectively thereby lowering the miscorrelation ratio of true tracks and improving the
multi-target tracking performance.

3. The Volume of the MDC Gate

In the MHT algorithm, the volume of the gate is used to calculate the estimated clutter density.
However, theoretically, the volume of the MDC gate defined in Equation (10) does not have an analytic
solution. Thus, this section presents an approximate method for calculating the volume of the
MDC gate.
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The ellipsoid equation of the correlation gate in (5) is defined as

v(k)TS(k)−1v(k) = G, (11)

where the center of the validation gate is ẑ(k
∣∣∣k− 1) . Here we specifically discuss the ellipsoid

characteristics in a three-dimensional space. Firstly, the eigenvalue decomposition of the
innovation covariance matrix is performed as S(k) = UT(k)E(k)U(k), where the diagonal matrix
E(k) = diag[λ1,k λ2,k λ3,k], the eigenvalue of S(k) is λ1,k,λ2,k,λ3,k, and the unitary matrix
U(k) = [u1(k) u2(k) u3(k)] with the property of U(k) = U−1(k) = UT(k) [13]. Thus, Equation (11) can
be converted to

(U(k)v(k))T E(k)−1(U(k)v(k)) = G. (12)

Set ṽ(k) = [x̃k ỹk z̃k]
T = U(k)v(k) in the new X̃-Ỹ-Z̃ coordinate system. Subsequently, Equation (12)

can be expressed as a standard ellipsoid equation,

x̃2
k

a2 +
ỹ2

k

b2 +
z̃2

k

c2 = 1. (13)

The length of the semiaxis of the ellipsoid in the directions of x̃, ỹ, and z̃ can be represented as
a =

√
λ1,kG, b =

√
λ2,kG, c =

√
λ3,kG.

Assume that the estimation of the target state at the previous scan x̂(k− 1) is located at point P in
the X̃-Ỹ-Z̃ coordinate system after the translation-rotation, and the coordinates of P can be expressed as

~
x(k) = [x̃p,k ỹp,k z̃p,k]

T = U(k)(Hx̂(k− 1) − ẑ(k
∣∣∣k− 1)). (14)

As shown in Figure 1, in the X̃-Ỹ-Z̃ coordinate system, the equation of the straight line determined
by point P and the origin O is

x̃k

x̃p,k
=

ỹk

ỹp,k
=

z̃k

z̃p,k
. (15)
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By combining Equations (13) and (15), the intersection points between the line and the ellipsoid
are A(x̃A, ỹA, z̃A), B(x̃B, ỹB, z̃B). If x̃p,k ≥ 0, then

x̃A = −ζ

ỹA = −
(
ỹp,k/x̃p,k

)
ζ

z̃A = −
(̃
zp,k/x̃p,k

)
ζ

,


x̃B = ζ

ỹB =
(
ỹp,k/x̃p,k

)
ζ

z̃B =
(̃
zp,k/x̃p,k

)
ζ

. (16)



Sensors 2020, 20, 4816 6 of 17

Else if x̃p,k < 0, then 
x̃A = ζ

ỹA =
(
ỹp,k/x̃p,k

)
ζ

z̃A =
(̃
zp,k/x̃p,k

)
ζ

,


x̃B = −ζ

ỹB = −
(
ỹp,k/x̃p,k

)
ζ

z̃B = −
(̃
zp,k/x̃p,k

)
ζ

. (17)

in which,

ζ =

 1
a2 +

1
b2

 ỹp,k

x̃p,k

2

+
1
c2

 z̃p,k

x̃p,k

2
−1/2

. (18)

Define the circular sections passing through points A and B, and perpendicular to the cone axis as
SA and SB, respectively. Subsequently, their radii are

rA = tgθG

√
(x̃A − x̃p,k)

2 + (ỹA − ỹp,k)
2 + (̃zA − z̃p,k)

2. (19)

rB = tgθG

√
(x̃B − x̃p,k)

2 + (ỹB − ỹp,k)
2 + (̃zB − z̃p,k)

2. (20)

If the point P lies outside the ellipsoid, which means

x̃2
p,k

a2 +
ỹ2

p,k

b2 +
z̃2

p,k

c2 > 1, (21)

Subsequently, the volume of the MDC gate can be approximated by the volume of the truncated
cone between SA and SB, which is

Vθ−G ≈ Vb =
1
3
πh(r2

A + r2
B + rArB). (22)

where the height of the cone is h =

√
(x̃A − x̃B)

2 + (ỹA − ỹB)
2 + (̃zA − z̃B)

2.
If the point P is inside the ellipsoid, then

x̃2
p,k

a2 +
ỹ2

p,k

b2 +
z̃2

p,k

c2 ≤ 1. (23)

In this case, the volume of the MDC gate can be approximated by the volume of the cone between
SA and point P, which is

Vθ−G ≈
1
3
πr2

A

√
(x̃A − x̃p,k)

2 + (ỹA − ỹp,k)
2 + (̃zA − z̃p,k)

2. (24)

The expressions given in Equations (22) and (24) provide very effective approximation when the
volume of the MDC gate is notably smaller than that of the conventional ellipsoidal gate. However,
when the innovation covariance is small, the volume of the ellipsoidal gate can be comparable or
even smaller than the MDC gate, where, in the latter case, the ellipsoidal gate is located inside the
cone. Thus, a simple rule is adopted: if the point P lies outside of the ellipsoidal gate and satisfies
VG ≤ κ ·Vb, κ ≥ 1, then we set Vθ−G = VG, in which κ is a constant coefficient and it can be obtained
by the simulation. In real target tracking applications, the coefficient κ represents the certainty degree
of the prior target maneuvering information, and its value affects the effect of the motion direction
constraint. When the value of κ is big, the influence of the motion direction constraint will reduce and
vice versa. In this paper, we set κ = 1.
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4. MHT Using Validation Gate with Motion Direction Constraint

In this section, a new multiple hypothesis tracker using validation gate with motion direction
constraint (MHT-MDC) is proposed. The MHT-MDC flowchart that is based on the TOMHT logic [14–16]
is shown in Figure 2. We utilize the prior target maneuvering information to design the MDC gate,
and then calculate the gate volume and estimate the clutter density in the gate. For the existing
tracks, the track-to-measurement association hypotheses are formed at the current scan, and their
score functions are computed using the estimated clutter density. Subsequently, the track deletion and
confirmation are carried out based on the track scores. Subsequently, we implement the clustering
process in surviving tracks and calculate the global hypothesis of each cluster. The track pruning step
is then conducted based on the global hypothesis. Finally, the surviving tracks are updated for the next
scan. The MHT-MDC aims to reduce the uncertainty of track-to-measurement association hypothesis
by using the MDC gate, and improve the quality of the score function by applying the CMECD to
adaptively estimate the clutter density. When compared to the traditional MHT, the MHT-MDC can
effectively improve the tracking performance for weak maneuvering targets in heterogeneous and
dense clutter scenarios.
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At scan k, we assume that there are N tracks Tt(k− 1), t = 1, 2, · · · , N. For track t, its innovation
covariance is expressed as St(k). Based on Section 3, the volume of the MDC gate can be calculated as
Vt
θ−G, and the number of validation measurements in the MDC gate is Mt

k.

4.1. The Clutter Density Estimation

In the tracking process, the spatial distribution of the clutter is usually assumed to be a Poisson
distribution [17,18], and the probability mass function (PMF) of the clutter within the validation gate
can be defined as

P(l) =
(
λV
l!

)l
e−λV. (25)

Here, l is the false alarms generated by the clutter in the gate, λ is clutter density, and V is the
volume of the gate. In practical tracking applications, if the clutter has a small density and obeys
a uniform distribution, then the clutter density λ can be set as a constant. However, in a scene with
dense and heterogeneous clutter, the setting of a constant clutter density will lead to the increase in
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the number of false alarm tracks and fragmentary tracks, which can severely deteriorate the tracking
performance. It is necessary to adaptively estimate the clutter density at different positions to solve
these practical problems.

The conditional mean estimator of clutter density (CMECD) [19,20] is utilized to improve the
accuracy of clutter density estimation. According to the references [19,20], the mean number of selected
clutter in MDC gate with volume Vt

θ−G can be estimated as

M̂t
k = Mt

k −
τMt

k/Vt
θ−G

λ̂t
c(k) + τMt

k/Vt
θ−G

. (26)

where Mt
k is the measurement number in the MDC gate, λ̂t

c(k) is the estimated clutter density in the
MCD gate at scan k. The parameter τ is defined as

τ =
PDPGψ

1− PDPGψ
. (27)

where PD is the target detection probability and ψ is the existence probability of predicted target.
As M̂t

k = λ̂t
c(k)Vt

θ−G, based on the maximum likelihood estimation principle, the clutter density
in the MDC gate can be calculated as

λ̂t
c(k) =

Mt
k

2Vt
θ−G

(
1− τ+

√
(1− τ)2 + 4τ(Mt

k − 1)/Mt
k

)
. (28)

4.2. The Track Score

In the MHT algorithm, each track hypothesis has a corresponding track score, which is
a log-likelihood ratio (LLR) of the association hypothesis. In the traditional definition of the score
function, the clutter density is set as a constant. In scenarios with dense and heterogeneous clutter,
the error of track score will grow, which will lower the accuracy of data association. In this section,
the clutter density in the MDC gate is utilized in order to calculate the score function to improve the
data association accuracy.

At scan k, the track score can be calculated recursively as

L
{
Tt(k)

}
= L

{
Tt(k− 1)

}
+ ∆Lt

m(k). (29)

We assume that there exist Mt
k measurements zm(k), m = 1, 2, · · · , Mt

k in the validation gate of
track Tt(k − 1). z0 represents the absence of measurement. Subsequently, the increment term of the
corresponding track score can be calculated as

∆Lt
m(k) =

ln(1− PD), m = 0

ln
[

p{zm(k)|Tt(k−1)}PD
λv+λc

]
, m , 0

. (30)

whereλv,λc denote the density of the new target and the clutter, respectively. The detection probability is
PD. If there is no association hypothesis at scan k, the score increment will be ln(1−Pd). In Equation (30),
when the track Tt(k− 1) exists at scan k − 1, the likelihood of the measurement zm(k) is

p
{
zm(k)

∣∣∣Tt(k− 1)
}
=

1

(2π)3/2
∣∣∣St(k)

∣∣∣1/2
exp

{
−

1
2

vm
TSt(k)vm

}
. (31)
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In MHT-MDC, the score increment for measurement zm(k) in MDC gate can be represented as

∆Lt
m(k) =

 ln(1− PD), m = 0

ln
[

p{zm(k)|Tt(k−1)}PD

λv+λ̂t
c(k)

]
, m , 0

. (32)

where λ̂t
c(k) is the clutter density that is adaptively estimated in the MDC gate by Equation (28).

The sequential probability ratio test (SPRT) is used to determine the status of the track by
comparing its current score in Equation (29) with both the lower threshold and the upper threshold [21].
Generally, the track score over the upper threshold will be confirmed, and the track score below the
lower threshold will be deleted; other tracks will remain for the further test. The SPRT can be defined as

L{Tt(k)}


≤ ln((1− β)/α), delete
≥ ln(β/(1− α)), com f irm
otherwie, continue test

. (33)

where α is the false track confirmation probability and β is the true track deletion probability.

4.3. The Global Hypothesis Generation

The clustering technique reduces the combinatorial complexity by decomposing the whole tracks
into clusters. A cluster is formed by a collection of incompatible tracks, each cluster can generate
its global hypotheses and independently calculate its global probability of trajectory. In TOMHT,
the commonly used algorithms to search for the global optimal hypothesis include the Lagrangian
relaxation implementation algorithm, the multiple dimensional assignment (MDA) algorithm, and the
greedy randomized adaptive search procedure (GRASP) method [22,23]. Assume that there are J global
hypotheses. Thus, the ith global hypothesis Hi(k) at scan k can be calculated as

L
{
Hi(k)

}
=

∑
T j(k)∈Hi(k)

L
{
T j(k)

}
. (34)

The probability of the global hypothesis Hi(k) can be expressed as

P
{
Hi(k)

}
=

exp(L
{
Hi(k)

}
)

1 +
J∑

j=1
exp(L

{
Hi(k)

}
)

. (35)

Thus, the global probability of track T j(k) can be denoted as

P
{
T j(k)

}
=

∑
T j(k)∈Hi(k)

P
{
Hi(k)

}
. (36)

4.4. Pruning

N-scan pruning strategy is another essential technique to reduce the computational burden by
limiting the depth of the track tree. After obtaining the global optimal hypothesis, the N-scan pruning
strategy retains all tracks that share a common root with the global optimal hypothesis when the depth
of the track tree more than N, and the others will be deleted.

Further, the surviving tracks will be pruned by evaluating its posterior probability of the hypothesis
track, and the final surviving tracks will be delivered to the next scan.
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5. Experimental Results

In this section, the experimental results of two simulation scenarios are given. When compared
with the MHT, the tracking performance of the MHT-MDC is verified by evaluating a set of
performance metrics.

5.1. Simulation Scenario

The following two different challenging scenarios are introduced.
Scenario 1: seven moving targets with intersecting tracks are distributed in a space of

[−4000, 4000 m] × [−4000, 4000 m] × [0, 1000 m], and the true movement of targets is shown in Table 1.
Figure 3 shows the target trajectories in scenario 1, and the start and end points of tracks are tagged as
◦,×, respectively. Figure 4 shows the measurements with dense clutter in scenario 1.

Table 1. The true movement of targets.

Initial State of Target Life Time

[500 m, 30 m/s, −3000 m, 50 m/s, 0 m, 0 m/s] (1~100 s)
[2500 m, 40 m/s, −2000 m, 30 m/s, 700 m, 0 m/s] (1~90 s)
[−3000 m, 30 m/s, −3000 m, 50 m/s, 0 m, 0 m/s] (1~100 s)
[3500 m, −35 m/s, 2800 m, −30 m/s, 0 m, 0 m/s] (1~100 s)

[−3000 m, 80 m/s, 2000 m, −100 m/s, 700 m, 0 m/s] (40~90 s)
[3000 m, −20 m/s, −3000 m, 120 m/s, 0 m, 0 m/s] (30~80 s)

[−3500 m, 100 m/s, 2000 m, −160 m/s, 700 m, 0 m/s] (50~70 s)
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Scenario 2: here, we consider eight moving targets with the paralleling tracks, and the targets are
moving in formation with a separation of 300 m and a speed of 71 m/s over 100 s. Each target takes
two turns in the 30 s and 60 s, and each turn lasts for 10 s. Figure 5 shows the trajectories of targets in
scenario 2, and Figure 6 shows the target measurements with dense clutter in scenario 2.
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For all of these scenarios, the detection probability PD = 0.95, and the average clutter number
value in different regions are randomly generated within the range of λ = 1× 10−4/m3

∼ 3× 10−4/m3.
The standard deviation of process noise δv = 6m/s2 and the standard deviation of the measurement
noise δc = 2m. For SPRT, the true track deletion probability β = 10−3, and the false track confirmation
probability α = 10−6. The new target density λv = 1 × 10−13/m3. The sample interval T = 1 s,
the number of scans is set to 100, the motion direction threshold θG = π/3, and the depth of TOMHT
is set to 6. All of the performance metrics obtained by these algorithms are evaluated over 100
Monte-Carlo simulations.

5.2. Results and Evaluation

In this part, the performance evaluation of two algorithms is obtained by following widely used
metrics [24–27].

(1) The fragmentary ratio of true tracks RFT. The ratio of the true track fragmentary in the tracking
results, that is the ratio of the number of true track fragmentary times to the truth track number.

(2) The miscorrelation ratio of true tracks RMC. If the track is associated with the measurement in
which origination differs from the track, it can be considered as the miscorrelation measurement.
RMC is defined as the ratio of the total number of miscorrelation measurements over the sum of
true track life, which describes the data association quality.
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(3) The correct correlation ratio of true tracks RCC. RCC is defined as the ratio of the number of correct
measurement-to-track pairings to the number of the observations that originate from the target,
which describes the tracking accuracy rate of the true tracks.

(4) The average processing time per scan TH. The execution time for one run, which can evaluate the
algorithm computational complexity in seconds.

(4) The optimal sub-pattern assignment (OSPA) distance. The OSPA distance can evaluate the
cardinality and position estimation error for multi-target tracking. The set of the real position and
the estimated position of the target can be denoted as X = {x1, x2, · · · , xm} and Y =

{
y1, y2, · · · , ym

}
,

respectively. The OSPA distance can be defined as

d(c)p (X, Y) =

1
n

min
π∈Πn

m∑
i=1

d(c)(xi, yπ(i))
p + cp(n− 1)




1
p

, n > m. (37)

when n ≤ m, d(c)p (X, Y) , d(c)p (Y, X). Define Πn as the set of all possible permutations of {1, 2, · · · , n},
and d(c)(X, Y) , min(c, ‖x− y‖) represents the truncated Euclidean distance between x and y, ‖·‖denotes
the Euclidean distance. In all simulations, the cut-off parameter and the order parameter are set as
c = 100 and p = 1, respectively.

The performance of the MHT-MDC and the MHT in scenario 1 are presented in Table 2 and
Figures 7–10. In Figures 7 and 8, it is clear that the MHT-MDC obtains better tracking quality when
compared with the MHT, as it has fewer false tracks and less mutual interference. Figures 9 and 10 show
the average OSPA distance and the cardinality estimation over 100 Monte Carlo runs. When clutter
is dense, the MHT suffers inaccuracy cardinality estimation, which leads to a higher average OSPA
distance and poorer tracking accuracy. In contrast, the MHT-MDC has a lower average OSPA distance
and more accurate cardinality estimation.

Table 2. The performance metrics of two algorithms in scenario 1.

Algorithm RFT RMC RCC TH

MHT 0.357 0.074 0.917 0.134 s
MHT-MDC 0.11 0.017 0.972 0.084 sSensors 2020, 20, x FOR PEER REVIEW 13 of 17 
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According to Table 2, we can figure out that the MHT-MDC has a higher correct correlation rate
RCC and a lower miscorrelation rate RMC, which demonstrates that the MHT-MDC has better data
association accuracy. We can see that it has a smaller fragmentary ratio of RFT and a lower average
processing time TH, which shows that the MHT-MDC also acquires better track quality and lower
computational complexity.

The performance of the MHT-MDC and the MHT in scenario 2 are presented in Table 3 and
Figures 11–14. Figures 11 and 12 show the estimated tracks from the MHT and the MHT-MDC in
scenario 2, respectively. We can observe that the MHT-MDC outputs cleaner tracks and also effectively
decreased the number of false tracks and, thus, we can conclude the MHT-MDC acquires better tracking
performance. In Figures 13 and 14, the MHT-MDC has a lower average OSPA distance, a smaller
cardinality estimation covariance, and a more accurate cardinality estimation, which illustrates that it
can acquire better estimation performance.

Table 3. The performance metrics of two algorithms in scenario 2.

Algorithm RFT RMC RCC TH

MHT 0.731 0.206 0.612 0.258 s
MHT-MDC 0.086 0.049 0.93 0.195 s
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Table 3 displays the tracking performance of the MHT-MDC and the MHT in the association quality
and average processing time. We can conclude that the MHT-MDC achieves higher track continuity
and data association accuracy, as it has a higher RCC, a lower RMC, and a smaller RFT. The MHT-MDC
also proves to be more efficient, as it has a comparatively lower average processing time.

6. Conclusions

In this letter, we propose a new multiple hypothesis tracker using validation gate with motion
direction constraint (MHT-MDC), which can effectively improve the multi-target tracking performance
in the scenarios with dense and heterogeneous clutter. The simulation results show that the
MHT-MDC can successfully reduce the number of false measurements within the validation gate
and, thus, can restrain the false alarm tracks and improve the speed of computation. In addition,
the MHT-MDC outperforms the MHT in data association with a higher correct correlation ratio of true
tracks and a lower fragmentary ratio of true tracks. In our simulation scenarios, the average OSPA
distances of the MHT-MDC are smaller than half of the standard MHT’s. There is room for future
development of the MHT-MDC: for example, combining the other a prior information aided tracking
algorithm; using the a prior information from the estimated target trajectory (e.g., the continuous-time
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trajectory information [28], the estimated target velocity and the location information) in order to
improve the tracking performance.
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