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Abstract: In this paper, we present a navigation strategy exclusively designed for social robots with
limited sensors for applications in homes. The overall system integrates a reactive design based on
subsumption architecture and a knowledge system with learning capabilities. The component of the
system includes several modules, such as doorway detection and room localization via convolutional
neural network (CNN), avoiding obstacles via reinforcement learning, passing the doorway via
Canny edge’s detection, building an abstract map called a Directional Semantic Topological Map
(DST-Map) within the knowledge system, and other predefined layers within the subsumption
architecture. The individual modules and the overall system are evaluated in a virtual environment
using Webots simulator.

Keywords: social robots; robotics navigation; subsumption architecture; reinforcement
learning; SLAM

1. Introduction

Social robots are referred to as a special family of autonomous and intelligent robots that are
predominantly designed to interact and communicate with humans or other robots (agents) within a
collaborative environment. Embodiment is an essential characteristic of this class of robots. As such,
avatars and virtual agents are generally excluded. Social robots are designed for a variety of tasks
in a collaborative or service setting and could be deployed in homes (to do household chores, act as
a companion to children and seniors, or serve as a butler, etc.), hospitals (as a nurse, administrative
assistant, etc.), schools (as a teacher), libraries (as a librarian), museums (guides, etc.), to name a few.
Other key features of such robots are their ability to recognize people, objects, communicate through
voice, and respond to various human emotions. Social robots are designed in all sizes and shapes for a
variety of applications but most importantly, they are designed to be acceptable to humans. Depending
on its ultimate application, a social robot can be designed as a pet-like, e.g., AIBO [1], or a humanoid,
e.g., Nao [2], or a wheeled robot, e.g., Pepper [3], or unmovable robot, e.g., Kasper [4].

Implicit but an indispensable feature of a social robot is its ability to seamlessly move around
in the environment for which it is expected to function. Indeed, a social robot cannot realistically
perform its dedicated tasks, if it is immobile. It is, thus, sensible to suggest that such skills can hardly
be isolated from the crucial ability to explore, navigate, or perceive information in the way humans
do. Hence, designing a robotic navigation system with limited sensors that is capable of exploring an
indoor environment while the robot concurrently updates its pose and generates/updates its map is
an active research area in robotics. This problem has been studied within the context of probabilistic
and behavioristic paradigms, respectively. Whereas the former has been extensively studied with
successful implementations; the interest in the latter, after a dormant period, has been revived in the
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last decade through advancements of deep learning and problem-solving algorithms inspired by the
natural world.

In this paper, we report a methodology within the general behavioristic architecture (Sense-Act
system). It could be argued that this strategy is more challenging than a purely deliberative design
that depends on prior planning and an accurate map. Additionally, the conventional behavioristic
design often acts blindly and does not explicitly include a learning module that is essential for the
robot (agent) to function in a purposeful manner. To circumvent this shortcoming, we propose a
behavioristic robotic system that not only guides a social robot to explore a home environment with
only modest prior knowledge but also builds a local map and registers its location within that map.
We coin the term Sequential Localization and Mapping (SeqLAM)—not to be confused with the widely
popular probabilistic Simultaneous Localization and Mapping (SLAM) algorithm [5]. The proposed
system consists of several layers based on Brook’s subsumption architecture [6], in which each layer
is responsible for a specific task. The goal of the system is to enable a social robot to navigate an
indoor environment safely and purposively, to avoid obstacles, to go to a specific location within
the environment, and to build a map for future visits. The purposive capability of the system is
manifested through an integrated knowledge-based system that provides the robot’s location and
builds an abstract map sequentially. In contrast to SLAM, which employs an explicit incremental
coordination-based location (pose), a zone-based location is identified in SeqLAM. As for the abstract
map, we employ a Directional Semantic Topological Map (DST-Map) that takes advantage of different
zones and the spatial relationships between the zones.

We will go through the detailed components of the proposed system in this paper. However, we
first need to set the scene and provide context for the design. Here, the term indoor environment is
specific and is reserved for human habitats, i.e., an apartment. As it will be shown later, the zones
are referred to as five classes (bathroom, bedroom, dining room, kitchen, and living room) that are
generally present in a home. The proposed design can be readily extended to homes with more than
one of each class (two bedrooms, etc.) and other indoor settings such as a hospital, a library, an office,
etc. To demonstrate its performance, the system is implemented and tested virtually on the Nao
humanoid robot within a small apartment.

The rest of the paper is organized as follows: in Section 2, we present related studies of performing
exploration and SeqLAM with a focus on reactive systems integrated with knowledge systems. This
section will also provide an explanation of the Subsumption architecture as well as the approach of
reinforcement learning (RL), which are adopted in this study. Then, the proposed system and the
design of each module will be explained in Section 3. We will then include and discuss experiments for
individual modules and the overall system in Section 4. The paper concludes with a summary and
further remarks on the overall system in Section 5.

2. Background and Related Research

Consider a scenario whereby a social robot is required to safely explore and learn in a new
environment; in the context of this study, a new apartment. In robotics literature, this task is broadly
referred to as robotics exploration, which includes wandering in an unknown environment with the
purpose of gaining information of that environment (building a map) using mainly exteroceptive sensors.
This problem has been addressed by different approaches, including but not limited to geometric or
frontier-based methods (maintaining boundaries) [7,8], information-theoretic or probabilistic methods
(minimizing uncertainty) [9–11], and data-driven or learning-based methods (predicting a map via
trained network on a dataset of partial maps) [12,13]. Simultaneous Localization and Mapping
(SLAM) is widely considered as the main strategy to accomplish this task. SLAM is defined as a
robotics navigation process through which a robot builds a map of an unknown environment while
simultaneously estimating its pose within the created map. SLAM is essentially a probability-based
technique as it deals with an inherently uncertain and noisy measurements. Several probabilistic



Sensors 2020, 20, 4815 3 of 31

techniques have been employed in a SLAM algorithm, including but not limited to, Kalman Filter (KF),
Particle Filter (PF), or Expectation-Maximization (EM) [14,15].

In parallel, the bio-inspired SLAM approaches have also been studied. Such algorithms are
distinguished by designs that are motivated by nature to address the robotic navigation problem via
developing and validating a biological design, e.g., RatSLAM and BatSLAM. The RatSLAM [16,17]
is a visual-based structure that was inspired by the connection of different types of cells in the rat’s
hippocampus. The structure is a fixed-weights network for pose cells. The BatSLAM [18], on the other
hand, has basically the same structure as the RatSLAM, however, it is based on biomimetic sonars
instead of a monocular camera.

Designing a high-level control architecture is also important in any robotic navigation task,
including exploration strategies and SLAM. There are several types of robotic architectures suggested
by robotics researchers [19]: deliberative system that is also known as SPA (Sense-Plan-Act), reactive
robotic system that is known as SA (Sense-Act) system, and the hybrid system that integrates the
two previous systems. Since a map does not generally exist a priori, behavior-based architectures,
i.e., reactive method, can be considered as an alternative solution. One of the key behavior-based
architectures is the ubiquitous subsumption architecture that was proposed by Brook [6]. The main
characteristic of this methodology is to eliminate the plan function from the navigation system while
the system decouples the sense and the act functions in the form of distinct behaviors. The subsumption
architecture falls under the behavioristic psychology that generally claims that a behavior is triggered
by the environment, as opposed to cognitive psychology that argues mental (internal) representations
play a causal role in behavior [20]. As such, the original architecture did not explicitly learn from
experience. We argue that while adhering to the overall architecture, it can be enhanced by embedded
learning that incorporates learned knowledge in decision making during navigation. Accordingly, in
this paper, we focus on studying these issues by developing an integrated indoor navigation system
via an enhanced subsumption architecture.

This perspective has been studied by other researchers, albeit quite different from the design
herein. One of the early studies was by Arkin [21] who presented a hybrid architecture that combined
two independent levels of planning and action, which were based on the potential field method [22].
He also discussed the definition and the importance of maintaining knowledge within a robotic system
in his celebrated textbook “Behavior-Based Robotics” [23]. Similarly, the same concept was adopted
in several studies with different methods. In [24], a hybrid deliberative-reactive architecture was
proposed in which behaviors of the reactive system were designed based on fuzzy logic, while the
path planning was addressed based on a prior given map of a static environment. In [25], the authors
presented a hybrid navigation system (deliberative and reactive) with incomplete knowledge, i.e.,
known positions of some static obstacles. The deliberative part was designed based on a binary gird
map with the A* algorithm to generate a global path, while the reactive part was designed based on the
DH-bug algorithm. It was tested via simulation studies on a Pioneer robot with laser and sonar sensors.
Furthermore, the studies in [26] and [27] suggested a cognitive method for planning level and a learner
method for the reactive level. The authors used a minefield simulator to evaluate the performance of
the BDI-FALCON hybrid system for an autonomous vehicle with five sonar sensors. The FALCON
was a low-level reinforcement learner, while the BDI (Belief-Desire-Intention) is the high-level planner
using prior data. The FALCON system took the action when there was no available plan. Once the
plan was created, the FALCON system was suppressed and the action was executed by the BDI system.
These aforementioned studies demonstrated designs based on a deliberative system that generally
required an accurate map which they could use independently within the behavioristic domain.

Alternatively, Mataric [28] designed an architecture that integrated a map representation with a
reactive system, which was tested on a mobile robot equipped with a ring of sonars and a compass
within an office environment. The main three levels of the architecture were: subsumption for
navigation, wall detection (left, right corridor), and map building (topological) that consisted of nodes
with four attributes, including metric information. In [29], Case-Based Reasoning (CBR) was suggested
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to address the knowledge for a reactive system within a static environment. The concept of CBR is to
solve a current problem by retrieving past experiences. The created cases in this study, i.e., pairs of
sense-act, consisted of sonars readings, robot direction, and goal direction, while the output was the
heading direction. Conversely, the study in [30] focused only on the learning ability within a reactive
system and suggested a combination of two independent systems: a reactive system based on potential
field method, and a learning system based on Reinforcement Learning (RL). The RL component was
integrated to coordinate layers in the reactive system that enhanced the robot’s movement toward the
goal within an unknown non-convex environment. Additionally, the reactive navigation was addressed
in simulation trials [31] by designing two simple behaviors (avoid obstacle and go to goal) within
actor-critic architecture for a wheeled robot in a static environment. The reactive system was combined
with a trajectory generator and a tracking control system in a hierarchical theme. In addition, planning
a trajectory for reactive navigation was solved in [32], based on the law of electromagnetism that leads
the arm robot to a desired predefined position while avoiding unknown obstacles. From these studies,
the static environments are the main assumption of the reactive systems by combining different types
of knowledge/learning or focusing on the trajectory problem based on a partially known environment.

Within the probabilistic approaches, studies that integrated SLAM with various robotic control
systems have also been reported. Visual SLAM was used for a deliberative control system in [33].
The authors presented a theoretical control architecture for outdoor navigation using only a single
camera. The system started with two visual modules: structure from motion and visual SLAM.
The first module took a sequence of 2D images of the same scene from different viewpoints to get
depth information, i.e., reconstruct a 3D map. The depth information was passed to “Avoid Obstacle”
behavior. The other module performed SLAM via images followed by a path planner that provided
waypoints to be used for “Go to Goal” behavior. The outputs of these two behaviors were fused as a
final command control. In contrast, the authors in [34] combined the probabilistic SLAM module with
behavior-based motion module within a control system to address the exploration problem for an aerial
robot. The SLAM module provided the estimated robot position, whereas the motion module provided
the desired position. Both values were passed to a space-state model (low-level) controller to minimize
the error. In addition, the authors in [35] aimed to improve the performance of a reactive system by
integrating probabilistic SLAM to address a biohazard search mission in an unknown environment.
The SLAM algorithm was a probabilistic approach called GMapping that built a metric grid map
based on particle filter and localized the robot position within the map. Whereas, the reactive system
consisted of a collection of behaviors that were connected based on the form of a finite state machine
(FSM) or a finite state automaton (FSA). Behaviors in the reactive system were triggered by the spatial
memory of SLAM instead of the stimulus inputs. All their experiments were executed on a Pioneer 3
wheeled robot with laser for performing SLAM and camera for detecting the target within a limited
and static environment. As we noticed from these studies, probabilistic SLAM for a static environment,
which is mainly for uncertainty issue, was added to the system. However, the uncertainty in position
and mapping, and the static environment are not viable assumptions in real settings.

In contrast to the aforementioned studies, we focus on designing a robotic exploration system
that integrates learning and knowledge capability to a reactive system for social robots with limited
sensors. Thus, the assumption of static environments is relaxed. Besides, the knowledge system will
be designed for addressing localization and mapping in an abstract manner. Accordingly, we design a
behavioristic system based on subsumption architecture. We also design a knowledge system that
builds a Directional Semantic Topological Map (DST-Map) incrementally, which is accessed by all layers
in the subsumption system. Therefore, behaviors in layers can be triggered based on the direct stimulus
from sensors as well as the gained information in the DST-Map. Thus, the proposed system will build
a map and sequentially localize the robot within the abstracted created map during the exploration
process. We refer to it as a sequential localization and mapping (SeqLAM) that does not localize
incrementally but identifies itself in a predefined zone. In addition, an appropriate reinforcement
learning module is designed for adaptive behavior while exploring using only two sonars. All designed
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modules and the overall system are implemented and tested on the Nao humanoid robot within a
house environment using Webots simulator [36].

With the proposed behavioristic system, associated issues to the exploration and SLAM with
classical techniques will be addressed or improved. For example, the semantic information within
the DST-Map helps SLAM via recognizing the scene and classifying the type of the room [37,38]
which gives a meaningful localization and mapping. Consequently, other robotic applications will
be improved because of the meaningful task such as the interaction between humans and robots
or switching the planning function from a path issue to a task issue, e.g., the robot needs to go to
the bedroom. Furthermore, The DST-Map implicitly addresses the associated issues to SLAM: high
dimensionality and data association [14,15]. The former issue is addressed within our proposed
system as the nodes in the DST-Map represents the high-level locations instead of objects or free space
locations. Whereas, the latter issue is addressed through matching the connection between nodes
within the created DST-Map. If there are multiple connected rooms, e.g., two different bedrooms are
connected to two different bathrooms, then it is flexible to add a new module to the system for image
matching. In contrast to most SLAM studies that focused on addressing localization and mapping
while controlling the robot was executed manually, this work addresses the control part via a collection
of behaviors that is useful during any interaction between humans and robots.

2.1. Subsumption Architecture

Subsumption architecture is the first purely reactive robotic control system, which was introduced
by Brook in his early work on the behavior-based system [6]. He argued against explicit modelling of
the world and notably stated that “the world is its own best model” [39]. This system consists of a
set of layers, as shown in Figure 1, in which each layer is responsible for a specific task. These layers
are built in parallel where the higher layers have more dominance than the lower ones when they are
triggered concurrently, i.e., competition coordination. Each layer is decomposed into basic behaviors
or modules. A module is considered as a pre-wired reflexive behavior that connects a sense function
with an act function in order to perform a specific behavior. Each behavior can be created, tested, and
debugged individually.

In the robotics navigation context, the system decomposes the navigation problem into vertical
task-achieving behaviors, such as avoid, wander, explore . . . etc. Layers are added to the system
incrementally, and they are built and activated in parallel, but operated asynchronously. Let us consider
that level 0, e.g., “move around” behavior, is designed, implemented and debugged. Then, level 1 is
added, e.g., “obstacle avoidance” behavior, with keeping the function of level 0. Therefore, the robot
can move and detect obstacles to be avoided. The main feature of subsumption is that the higher
layer can subsume the control of the lower layer, which is the origin of the name, when behaviors are
triggered concurrently. Consequently, the higher layer only controls the robot to the overall goal or
destination at a specific time. Since interaction between layers might become complicated with complex
environments and tasks, the goal in subsumption design is to keep the connection between layers
as short as possible, which is more effective for modularity. In short, behaviors in the subsumption
system are coordinated and executed such that the robot can interact with the environment and select
the best behavior in a sequential manner until the task is completed with no plan for future or any
memory of past knowledge.

Each behavior is designed by mapping a stimulus (input sensory data) into a response behavior
(actuator output) through connecting its own sense and act functions. In addition, a behavior can be
modified by its respective inhibitor, suppressor, or releaser conditional functions, as shown in Figure 1.
An inhibitor function (SI) is designed to inhibit a behavior from controlling the robot even if the
sensor data is available. A suppressor function (SS), on the other hand, suppresses the corresponding
behavior output, and consequently, no output response is generated. A releaser is similar to a switch
that turns the module on/off based on a particular sensory input. In the case of sequence behaviors,
such as finding a refrigerator, opening the door, finding a can, gripping a can, moving gripper out of
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the refrigerator, and closing the door, this type of task can be accomplished by a Finite State Machine
(FSM). This implies that instead of letting one behavior trigger the next behavior, each behavior in
this sequence can be activated through the environment. For example, if the state of the refrigerator
door is “open”, then “find a can” behavior will be activated, or if the state of the gripper is “closed”,
then “moving gripper out of refrigerator” will be activated, and so on. Hence, the design and the
coordination between behaviors essentially depend on the application or the main task.
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Brooks [39] configured a number of MIT’s robots with the subsumption system, Toto, Genphis,
and Seymour. Subsumption architecture has several advantages including low computation as there is
no need for a model and no plan modules; consequently, it is fast. However, the pure reactive behaviors
in subsumption are not straightforward nor reliable for complex tasks in complex environments as
there is no clear final goal within the system, i.e., no plan. In addition, there is no explicit learning,
no memory, and no goal-directed motivation [40]. Although some researchers attempted addressing
these shortcomings by integrating different algorithms of soft computing with subsumption such as
fuzzy logic [41], genetic algorithm [42], or neural network [43], further research on subsumption lost
its momentum; particularly due to the emergence and success of probabilistic robotics. Integrating
learning capability with behaviors can be categorized into two main types: learning coordinating
behaviors and learning new behaviors [44]. It is also sporadic regarding employing reinforcement
learning (RL) within behaviors, specifically in subsumption architecture. Two early studies were
reported by Mahadevan and Connell [45] and Mataric [46] using RL. In [45], RL was combined with
statistical clustering and hamming distance in a box-pushing task within subsumption, whereas in [46]
RL was applied in a multi-robot domain. Recently, RL has been used with a behavior-based system in
order to learn how to perform new tasks, and its performance has been compared with subsumption
in [47]. The design consists of two combined phases. First is the imitation phase, which is carried
out by using a self-organizing decision tree to emulate the behavior of a skilled operator. Second is
the composition phase, which is accomplished by using Q- learning to combine all behaviors and
assign learned weights. Then, the outputs of all behaviors from phase one and the learned weights
from phase two are fused to perform weighted action. In addition, Q-learning was applied, and its
performance was compared within two different behavior-based systems: subsumption and motor
schema. They were tested on the Lego NXT robot for avoiding obstacles [48].
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With the advent of machine learning and particularly deep learning in the last two decades, new
opportunities arise to enhance the subsumption architecture and alleviate its shortcomings. In this
paper, we propose a subsumption-based system that is integrated with a knowledge system. We
demonstrate its performance to address the open problem of exploration in structured indoor settings.
The new system has learning capabilities for addressing specific perceptual and action problems.

2.2. Reinforcement Learning (RL)

The revival of reinforcement learning (RL) can arguably be credited to Richard S. Sutton, who is
considered as the “father” of RL in the early 1980s [49]. RL is a class of machine learning algorithms
that was inspired by learning theory in animal behaviors [50,51]. The main characteristic of RL is that
the learning process occurs through the interaction between the agent and the environment. Therefore,
there is no dataset for learning as the other popular machine learning classes, i.e., supervised and
unsupervised learning. The interaction between the agent and environment is achieved when the
agent recognizes the current state within the environment, then it takes an action in order to transit
to another state, see Figure 2. While the agent gets a positive (reward) or a negative (punishment)
feedback when it reaches a good state or a bad state, respectively. Therefore, it is a slow trial-and-error
process in which the agent learns from its experience. Although RL is a distinct machine learning
from the supervised and the unsupervised learning paradigms; one could argue that it can be broadly
viewed as a hybrid form of machine learning or semi-supervised approach as it takes a feature from
supervised learning, which is the rewards feedback, while it takes another feature from unsupervised
learning, which is no desired output.
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There are three different RL methods [52]: Dynamic Programming, Monte Carlo, and Temporal
Differences. The dynamic programming method requires a complete and accurate model of the
environment; thus, it is for a model-based system in which the state transition is known. The Monte
Carlo is a model-free method, i.e., the state transition is unknown, but is not suited for step by step
incremental computation. In other words, it gives the feedback in the end of each experiment or
game (an episode). The last method is the Temporal Difference (TD) that works with model-free
applications and it is a fully incremental computation. In this study, the latter method is adopted
as it is suitable for our project, which deals with a behavioristic system for a model-free application.
The main components to design an RL model in any above-mentioned form are:

• States: the representation of perceived data. These representations include the final state, e.g., end
of a game, or destination, e.g., final location in robotics. The number of states might be finite, or
infinite based on the problem and the way of encoding them.

• Actions: the list of movement behaviors that need to be taken to change the state. The goal is to
select the best action in a certain state that leads to a desirable state.

• Policy: the procedure of action selection at a certain state. It can be executed through a simple
function or a lookup table, or it can be a stochastic function depending on the problem.
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• Rewards: the immediate feedback after every transition. If the transition was good, then positive
feedback (rewards) should be given to the agent. However, if the transition was bad, then negative
feedback should be given to the agent, which needs to change the policy of selecting the action.

• State value: the collected rewards in the long term. If this is the value for a pair of (state-action), then
it is called Q-value. The main goal of RL is to maximize this value to address the decision-making
problem. It should be updated after every step in TD methods.

• An episode: is the end of every round of the problem. For example, the end of a game when the
agent wins/loses is an episode or in robotics, when the robot achieves a specific task is an episode.

There are two popular algorithms of the TD method: Q-learning and SARSA (Sense-Act-Reward-
Sense-Act). In both algorithms, the objective is to maximize the long-term reward Q(s, a), which
represents the long-term reward for the combination of all states with all actions. The policy of selecting
an action can be either exploiting or exploring. Exploiting movement is a 100% greed-move that selects
the best-learned action with the highest value of Q(s, a). Exploring movement, on the other hand, is a
ε-greedy-move that selects a random action. The difference between Q-learning and SARSA is in the
way of updating the Q(s, a) in every time step, as shown in Figure 3. In the Q-learning algorithm, the
maximum value of the future Q(s′, a′) will be used to update the current value of Q(s, a) even if the
action a′ has not been selected for the next time step. For that reason, Q-learning is called an off-policy
TD control. Whereas, the updating equation of the current value of Q(s, a) in the SARSA algorithm uses
Q(s′, a′) where a′ should be the selected action for the next timestep, which is the reason this algorithm
is called on-policy TD control. Therefore, they are similar when the policy of selecting the action is
exploiting movement, i.e., 100% greedy move. There are several areas of RL applications including but
not limited to games, e.g., backgammon or chess, inventor management, dynamic channels allocation,
elevator scheduling, helicopter control, robotics, e.g., navigation, grasping, or Robocup soccer [53].
In this study, an appropriate reinforcement learning module was designed for obstacle avoidance as an
adaptive behavior while exploring using limited sensors, i.e., two sonars.

3. Proposed System and Methodology

The proposed system is a hierarchical design inspired by the behavioristic paradigm of
subsumption architecture augmented with a knowledge system. The behavioristic system is essentially
multi-layered, whereby each layer is dedicated and responsible for a specific task—see Figure 4.
In principle, the first layer (exploration task) is continuously active during the entire navigation task.
The second layer (purposive task) takes the control and subsumes the exploration function. Similarly,
whenever a higher layer is triggered, then the lower layers will be subsumed as explained in Section 2.
However, the decision of the control layer does not only rely upon on the stimulus functions but also
on the information from the knowledge system. The learning-based knowledge system is responsible
for building a Directional Semantic Topological Map (DST-Map) that depends on the zone-based
location and the related direction via a monocular camera. Most layers in the behavioristic system
have bidirectional access to the knowledge system.

The detailed design with all layers, perception and action interconnected modules is shown in
Figure 4. The first layer is always activated for exploring the environment and finding the purpose
of the navigation task. It has only action modules with no perception modules: “Turn” and “Move
Straight” behaviors. This implies that these action modules are not functions of any sensor’s data,
therefore, this layer is always activated unless the higher layers subsume its control. The perception
and action modules in the second layer are designed to control the robot to move towards the sub-goal,
for instance the doorway, in a safe manner (purposive task). Therefore, this layer has two perception
modules: the “Obstacle Detection” module, which is stimulated by sonar sensor, and the “Direction
Detection” module, which is triggered by the knowledge system. Whereas, the action modules of
this layer that control the robot are either “Go Toward Doorway”, “Avoid Obstacle”, or the weighted
summation of both behaviors based on the perception modules outputs. Next, the achievement task
in the third layer is responsible for making sure that the robot reaches the final goal assigned by a
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companion. Thus, the “Command Detection” module can be designed using the speaker to detect the
companion’s command, such as “Come to the living room”, as well as comparing the commands with
the current information in the knowledge system. If the robot reached the goal, then the navigation’s
process will be ended by the action “Sitting down”. However, if the robot’s battery level drops to a
certain level in any time during the navigation process, then the protective task in the fourth layer will
be triggered and subsumes all other layers. Thus, the “Charging” action will take the control, which is
basically in this work considered as a robot’s request to be charged. It can be made a more complicated
module by designing an autonomous “Charging” module with more global information of the socket’s
location or by local information of the socket’s detection in every room, which is out of the scope of
this study.
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The proposed system is designed and tested with few assumptions. First, the five different types
of rooms are assigned for the CNN model with labelled images, in which the corridor is not one of the
classes (see [37]). Second, we assume the practical predictions of classifying the room (see [38]) and
detecting the doorway (see [54]) are always true positive within the navigation task. Third, we assume
that the shape of all rooms is rectangular, and the connection between rooms is through one of the
four directions (east : 0◦, west : 180◦, north : 90◦, south : −90◦). Fourth, as the “command detection”
cannot be tested with the simulator, the goal will be assigned by the user. In the following sub-sections,
we explain the design of each module in more details.

3.1. Subsumption-Based System

The objective of this part is to design a collection of behaviors and interconnect them properly
within four main layers, as follows:

3.1.1. Layer 1: Exploration Task

Turn Module: this module consists of three predefined turning angles {90◦, 180◦, −90◦} in an order
that are related to all other possible directions in a room from any current direction. We assume all
rooms are broadly a rectangular shape. The robot is supposed to detect the doorway in one of these
directions, and the associated direction with the doorway will be passed to the knowledge system.
The reason for this particular order is to minimize the number of turning. Let us assume that the robot
enters a new room, which implies a doorway is behind the robot, as illustrated in Figure 5. The first
direction that the robot tries to detect another doorway is the front, which is considered as 0◦ angle.
If there is no doorway, then the robot selects the option of 90◦ (turn left). If there is still no doorway,
then the robot turns to the other direction by applying 180◦ from the last direction. By now, the robot
detects all three directions of this new room with only two moves. The last angle −90◦ (turning right)
will be applied when there is no other doorway in the room and the robot is supposed to turn back to
the previous doorway. The global direction will be passed to the knowledge system for the direction
between nodes in the DST-Map.
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Move-Straight Module: this module aims to change the scene in front of the robot by changing
the position. It is triggered by either the “Turn” module in the same layer or the “Topo-Room” module
in the knowledge system. “Turn” module triggers this module when the robot examines all directions
but cannot detect a doorway. This is most likely due to the doorway being out of the robot’s view
from its current position. Then, this module controls the robot to move straight through the best free
space of the four directions based on the sonar values in order to change the view and improve the
chance of detecting the doorway from a new spot. Therefore, the sonar values will always be passed
to this module. The “Topo-Room” module triggers this module when the knowledge system gives a
positive sign for passing the doorway, then it moves straight to make sure it is completely outside the
previous room.

3.1.2. Layer 2: Purposive Task (Obstacle Detection and Avoid Obstacles Modules: RL System Based on
Sonars and Cautious Actions)

The key feature of this module is to design an adaptive behavior with a learning capability.
The ultimate goal is to design an appropriate RL model (states, actions, and rewards) based on limited
sensors on Nao, only two sonars. Each sonar provides a distance to an obstacle. We classify any
distance into three classes {very close distance, close distance, far distance}—see Equation (1). Therefore,
we can get nine different states, as shown in Table 1. As we can see, the best state is [2,2] where the
robot has a good distance from obstacles from the front, whereas the worst is [0,0] where the robot is
very close to obstacles from both sonars.

Sl&Sr =


2, 1.5 m < f ar distance ≤ 2 m
1, 0.8 m < close distance ≤ 1.5 m
0, very close distance ≤ 0.8 m

. (1)

The reward function is designed based on the above defined states. We divide the reward system
into states rewards Rs and transition rewards Rt, as shown in Equations (2) and (3), respectively. Rs

provide a positive or a negative reward based on the new state after taking a specific action. Whereas,
Rt is a measure of how good or bad the transition is; thus, it is calculated based on the difference of the
old and new states. For example, if the robot was in state [0,1] and it moves to state [0,2], then the
Rs = −1 in both states. However, since the transition is good, the robot gains positive reward for that
transition Rt = sum([0, 2]) − sum([0, 1]) = +1. Then, the total reward will be the summation of the Rs

and Rt. Every episode is terminated either when the robot is able to roam for 500 s as maximum time
for the positive termination, or when it falls down, which is associated with a final negative reward, i.e.,
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r = −5. The maximum time of 500 s was selected based on several experiments, and it was found that
it is a suitable time for an episode as the robot was able to explore most of the area during this time.

Table 1. RL model states for avoiding obstacle behavior.

States Sl Sr

1 0 0
2 0 1
3 0 2
4 1 0
5 1 1
6 1 2
7 2 0
8 2 1
9 2 2

Rs =



−2, i f state = [0, 0]
−1, i f state has {0}
0, i f state = [1, 1]
1, i f state = [2, 1]or[1, 2]
2, i f state = [2, 2]

, (2)

Rt = sum(statenew) − sum(stateold). (3)

The last important part of the RL system is the action function. The main four actions in the
obstacle avoidance behavior are {Go Forward = GF, Turn Left = T L, Turn Right = TR, Turn Back =

TB}. In order to avoid assigning predefined angles and distances for each action, we design an action
function that takes into account the two sonars’ values to determine the distance and angle of each
possible action. In other word, the exact values of distance and angle vary in every step for each action.
This is achieved by calculating four different direction vectors, in which each one belongs to a specific
action. Figure 6 shows different examples.
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Figure 6. Action’s design of RL for an obstacle avoidance module.

In order to avoid any dangerous action during the RL process, we suggest cautious actions by
weighing each direction vector based on its current state. Let us assume that the robot is in the [2,2] state,
which means the robot is far from obstacles from both sonars, as shown in the example of Figure 6a. If
the robot selected the TB action, which has a large magnitude of distance, then it is better that this value
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has a low weight with this state as the robot does not know what obstacles are in the back. Therefore,
each direction vector can be weighted by one of the three values W = {w1 = 0.8, w2 = 0.5, w3 = 0.2}.
These weights are for independent actions; thus, they do not have to be a summation of 1. The small
weight is only to avoid applying the full action when the robot is exploring in a dangerous scenario,
such as turning back where the robot has no clue what obstacles are behind. The cautious action
process and the associated weights are shown in Algorithm 1 and Table 2 respectively. While the effect
of weights on the action vectors is shown in Figure 7.

Algorithm 1. Cautious Action Process of RL Model.
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Table 2. Associated weights with states.

Direction
Weights GF TL TR TB

S1=[0 0] 0.2 0.2 0.2 0.8
S1=[0 1] 0.2 0.2 0.5 0.2
S1=[0 2] 0.2 0.2 0.8 0.2
S1=[1 0] 0.2 0.5 0.2 0.2
S1=[1 1] 0.5 0.5 0.5 0.5
S1=[1 2] 0.5 0.5 0.5 0.2
S1=[2 0] 0.2 0.2 0.8 0.2
S1=[2 1] 0.5 0.8 0.5 0.2
S1=[2 2] 0.8 0.5 0.5 0.2
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Direction Detection and Go Towards Doorway Modules: the “Direction Detection” perception
module is triggered by the provided information from the knowledge system. If the doorway detection
attribute in “Topo-Room” map is positive, then this module will be activated for running the system
explained in [54]. As this system is able to detect if the deepest information is not related to the
doorway, then the doorway detecting within the knowledge system will be updated. However, if the
deepest information is related to the doorway, the calculated angle will be passed to the “Go Toward
Doorway” action module to turn and translate the robot toward the doorway.

Move Smoothly Module: in cases where the robot should move to the detected direction of the
doorway where there is an obstacle in the way, designing a smooth move is important. This action
module is the weighted summation of the output from the preceding action modules, i.e., “Avoid
Obstacle” and “Go Toward Doorway”. Let us call the action from “Avoid Obstacle”, “Go Toward
Doorway”, and “Move Smooth” as ao, ag and as, respectively, in which each action consists of angle
and translation values. When the robot is very close to the obstacle, then the “Avoid Obstacle” action
takes the full or the higher control. Whereas, if there is no obstacle or they are far enough, then the
“Go Toward Doorway” action takes the higher weight. This is executed by applying the following
weighted summation function:

as = w ∗ ao + (1−w) ∗ ag.

3.1.3. Layers 3 and 4: Achievement and Protective Tasks

Modules in these two layers are designed using the pre-defined functions from the Naoqi API [55]
in order to terminate the navigation process. The achievement task is to end the navigation process via
following a voice command made by a companion using Nao’s speaker. The “Command Detection”
perception module can be designed by detecting one of the five room classes from room classification
component, as presented in [37]. By comparing the command and the information in the knowledge
system, the “Sitting Down” action module will be run as an indication of completing the navigation
process. Similarly, the protective task is important to keep the robot protected from falling if the battery
is out of charge. The battery level is checked all the time during the process of navigation. If the level
is low, e.g., less than 20%, then the system applies the “Charging” action module. As this function
is not mainly a part of navigation in this project, we keep this module simple by applying a request
function that the robot asks to be charged.

3.2. Knowledge-Based System

The behavior-based approach for the navigation system was inspired by the concept of
behaviorism, which speculates that behaviors are triggered by the environment. In contrast,
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having mental representations that play a causal role in behaviors was the assumption stated by
cognitive psychology [20]. Accordingly, we modify the subsumption-based system by integrating a
knowledge-based system that is a crucial part in the learning phase. We adopt the topological-based
mapping approach for achieving the knowledge part of the system. Topological map [56] is a graphical
representation of the environment that consists of nodes and edges. Nodes represent different places
while edges are the connection between relative positions of these places.

Room Localization and Doorway Detection Modules: (CNN-Based Models): the knowledge-based
system aims to create a Directional Semantic Topological Map via designing a module called
“Topo-Room”, which will be explained below. Therefore, the system has to begin with “Room
Localization” and “Doorway Detection” perception modules that successfully designed and tested,
using the CNN model as explained in detail in [37,38,54], respectively. “Room Localization” provides the
semantic feature, whereas “Doorway Detection” provides the directional feature to the topological map.

SRIN dataset [38] was employed to train a CNN-based model via transfer learning process, in
which extracting features part was executed through frozen layers of VGG16 and the classifier part was
executed through fully connected (FC) network. The two modules were programmed in python using
Keras API [57], and the training and validation process was completed offline through the Graham
cluster provided by Compute Canada Database [58].

Doorway Passing Module: (Canny Edge Detection and Hough Transform): when the robot
identifies the room’s type and detects the doorway, then there is no need to keep applying them again
while the robot wanders in the same room. Thus, this is the key role of integrating a knowledge system
with the behavior-based navigation system. When the robot moves to a new room, then it needs to
capture a new image for adding new knowledge to the “Topo-Room”. Therefore, we design a “Passing
Doorway” perception module based on the Canny edge detection [59] and the Hough transform [60],
as an indicator that the robot left the current room and arrived at a new room. The key idea is to extract
the two edges of the doorway from a 2D image towards the doorway. The distance in pixels between
the two edges will be increased while the robot gets closer to the door. When the two edges are out of
the robot’s view, then it is most likely that there are new edges that will be detected with a smaller
distance than the previous one, as will be shown in Section 4.1.2. Figure 8 shows the practical process
of getting doorway edges.

Sensors 2020, 19, x FOR PEER REVIEW 15 of 31 

 

3.2. Knowledge-Based System 

The behavior-based approach for the navigation system was inspired by the concept of 
behaviorism, which speculates that behaviors are triggered by the environment. In contrast, having 
mental representations that play a causal role in behaviors was the assumption stated by cognitive 
psychology [20]. Accordingly, we modify the subsumption-based system by integrating a 
knowledge-based system that is a crucial part in the learning phase. We adopt the topological-based 
mapping approach for achieving the knowledge part of the system. Topological map [56] is a 
graphical representation of the environment that consists of nodes and edges. Nodes represent 
different places while edges are the connection between relative positions of these places. 

Room Localization and Doorway Detection Modules: (CNN-Based Models): the knowledge-
based system aims to create a Directional Semantic Topological Map via designing a module called 
“Topo-Room”, which will be explained below. Therefore, the system has to begin with “Room 
Localization” and “Doorway Detection” perception modules that successfully designed and tested, 
using the CNN model as explained in detail in [37,38,54], respectively. “Room Localization” provides 
the semantic feature, whereas “Doorway Detection” provides the directional feature to the 
topological map. 

SRIN dataset [38] was employed to train a CNN-based model via transfer learning process, in 
which extracting features part was executed through frozen layers of VGG16 and the classifier part 
was executed through fully connected (FC) network. The two modules were programmed in python 
using Keras API [57], and the training and validation process was completed offline through the 
Graham cluster provided by Compute Canada Database [58]. 

Doorway Passing Module: (Canny Edge Detection and Hough Transform): when the robot 
identifies the room’s type and detects the doorway, then there is no need to keep applying them again 
while the robot wanders in the same room. Thus, this is the key role of integrating a knowledge 
system with the behavior-based navigation system. When the robot moves to a new room, then it 
needs to capture a new image for adding new knowledge to the “Topo-Room”. Therefore, we design 
a “Passing Doorway” perception module based on the Canny edge detection [59] and the Hough 
transform [60], as an indicator that the robot left the current room and arrived at a new room. The 
key idea is to extract the two edges of the doorway from a 2D image towards the doorway. The 
distance in pixels between the two edges will be increased while the robot gets closer to the door. 
When the two edges are out of the robot’s view, then it is most likely that there are new edges that 
will be detected with a smaller distance than the previous one, as will be shown in Section 4.1.2. 
Figure 8 shows the practical process of getting doorway edges. 

Canny edge detection is a popular method that can be applied on a smoothed gray image by a 
Gaussian filter. The output of this stage is a set of points within the image. For that reason, applying 
the Hough transform is important in order to extract lines. For the purpose of this project, we 
extracted only the vertical lines with a specific threshold within a certain region of interest (ROI). We 
assumed that there are no objects with vertical lines, such as a shelf, besides the doorway. Therefore, 
we selected the furthest line from left and right of the image as the doorway edges. 

 
Figure 8. Doorway’s edges detection for “Passing Doorway” module. 
Figure 8. Doorway’s edges detection for “Passing Doorway” module.

Canny edge detection is a popular method that can be applied on a smoothed gray image by a
Gaussian filter. The output of this stage is a set of points within the image. For that reason, applying
the Hough transform is important in order to extract lines. For the purpose of this project, we extracted
only the vertical lines with a specific threshold within a certain region of interest (ROI). We assumed
that there are no objects with vertical lines, such as a shelf, besides the doorway. Therefore, we selected
the furthest line from left and right of the image as the doorway edges.

Topo-Room Module: (A Directional Semantic Topological Map): the “Topo-Room” module is a
Directional Semantic Topological Map (DST-Map). It is semantic as each node is associated with a
specific class of room that is provided by the “Room Localization” perception module. In addition,
“Topo-Room” is directional because the relative position is based on the four directions {East, West,
North, South} that can be extracted by “Doorway Detection” perception module and the predefined
angles in the first layer (exploration task). The objective of this module is to build an abstract map
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for the house environment. The abstract map is a high-level representation that saves the connection
between rooms. Thus, the created map is a collection of nodes that represent rooms, and these nodes
are connected by edges that represent the direction towards the doorway. There are eight attributes
associated with each node, as shown in Figure 9. They are as follow:
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Figure 9. Main attributes or information within each node in the TDS-Map.

• The first two attributes are the type with a predefined color and the size. They are extracted from
the “Room Localization” module, in which the type is the prediction of the room class and the
size is the prediction’s probability.

• The node’s position, i.e., the third attribute, is assigned based on one of the four directions
(east : 0◦, west : 180◦, north : 90◦, south : −90◦) as the key is to find the relation direction between
nodes. Thus, we assume that all nodes’ positions depend on the position of the first node. In other
words, we assume that the first node for the first classified room is positioned in the (0,0) of the
map, and the direction of its doorway is always in the east : 0◦. Then, the position of the next
room depends on the position of the previous room and the global direction of the doorway by
applying these two equations:

nextnodex = prenodex + cos
(
predoorangle

)
,

nextnodey = prenodey + sin
(
predoorangle

)
.

• Each node is associated with a saved scene image as the fourth attribute for future needs, such as
appearance association or matching.

• The other attributes are related to the doorway within the room, which are extracted from the
“Door Detection” perception module. Doorway status gives information about doorway detection
as positive or negative. If it is positive, then the image will be saved as the sixth attribute, i.e.,
doorway image. The seventh attribute is for depth status, which gives information about the
execution of “Doorway Direction”. If the module is executed and calculated the depth and
direction toward the doorway, then its status is positive. Finally, the attribute of passing doorway
status gives positive or negative information based on the “Passing Doorway” module, while it
saves the distance between two edges every time it is needed. If its status is positive, then the
process of gaining new information and creating a new node will start again.

The important attribute related to the edges is a bidirectional angle from the four directions
between two classified rooms. The flowchart in Figure 10 shows the map building process of the
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“Topo-Room” module within the knowledge-based system. The expected DST-Map is an abstract map
that contains nodes of rooms with their positions in the map space, and the edges between nodes that
show the angular relation between two relative nodes, as shown in the illustrated example of Figure 11.
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3.3. Implementation Setup

All modules were programmed by python language using a Laptop with a 64-bit Linux operating
system with 8GB RAM. It has a Graphic Process Unit of Quadro K620M with 2GB total memory. As the
system was implemented on a small memory size GPU, all modules were executed in a sequential
manner as Webots takes most of the GPU size during the process. Therefore, Figure 12 shows the
pseudocode of implementing all modules together within the system.
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4. Experiments and Results

We have applied an apartment model with Nao humanoid robot using the Webots simulator [36]
for executing all virtual-time experiments, see Figure 13.



Sensors 2020, 20, 4815 19 of 31
Sensors 2020, 19, x FOR PEER REVIEW 19 of 31 

 

 
Figure 13. An apartment virtual model with Nao robot using the Webots simulator. 

4.1. Evaluation of Individual Modules 

We adopted our previous work in [38,54] for the “Room Localization” and “Doorway Detection” 
modules, respectively, within the knowledge system, and the proposed system in [54] for the 
“Direction Detection” within the layer of the purposive task. The evaluation of the other important 
modules is shown in this section. 

4.1.1. Evaluating RL System for Obstacle Avoidance Module 

All experiments have been executed within the virtual environment with a learning rate =0.2, and a discount factor = 0.8. In order to ensure a good learning process, a -greedy was added 
to the RL process—resultingly, the robot will not get stuck in certain areas and it can face all states’ 
situations as well as learn the best associated behavior. We suggest a gradual ascent -greedy for 
every 10-time steps in order to make sure that the robot keeps exploring in different areas rather than 
only exploring in the beginning of RL training process. Every step is considered as an action that is 
taken by the robot during the process. A gradual ascent -greedy combines the exploring and 
exploiting movements in every episode. So, we started with 60% of -greedy in the first 10-time steps 
in which the robot starts with exploring movements in the first four steps. Then, the -greedy is 
increased to 70% in which the robot explores in the first three steps of the second 10-time steps. 
Therefore, the robot increases the exploiting movement and decreases the exploring movement every 
10-time steps until reaching 50-time steps when the robot moves while fully exploiting based on what 
has been learned during the RL process. Since the objective of this experiment is that the robot keeps 
avoiding obstacles as long as it can, then time of wandering is the key factor of evaluating the 
performance of this experiment. Each episode is ended either when the time of wandering reached 
500 s or when Nao falls down. The process of RL is terminated when Nao is able to wander without 
falling for three consecutive episodes. Thus, Nao is able to move about 1500 s, i.e., over 25 min. 

Figure 14 shows the RL results by presenting the wandering time in every episode for both Q-
learning and State–action–reward–state–action (SARSA) methods with gradual -greedy. Nao was 
able to wander around the living room for three consecutive episodes without colliding into obstacles 
after 14 episodes using the Q-learning method, as shown in Figure 14a, while it learned much faster 
using the SARSA method, as shown in Figure 14b. Therefore, the trained model of SARSA was 
adopted for the overall system’s evaluation. 

Figure 13. An apartment virtual model with Nao robot using the Webots simulator.

4.1. Evaluation of Individual Modules

We adopted our previous work in [38,54] for the “Room Localization” and “Doorway Detection”
modules, respectively, within the knowledge system, and the proposed system in [54] for the “Direction
Detection” within the layer of the purposive task. The evaluation of the other important modules is
shown in this section.

4.1.1. Evaluating RL System for Obstacle Avoidance Module

All experiments have been executed within the virtual environment with a learning rate α = 0.2,
and a discount factor γ = 0.8. In order to ensure a good learning process, a ε-greedy was added to the
RL process—resultingly, the robot will not get stuck in certain areas and it can face all states’ situations
as well as learn the best associated behavior. We suggest a gradual ascent ε-greedy for every 10-time
steps in order to make sure that the robot keeps exploring in different areas rather than only exploring
in the beginning of RL training process. Every step is considered as an action that is taken by the robot
during the process. A gradual ascent ε-greedy combines the exploring and exploiting movements in
every episode. So, we started with 60% of ε-greedy in the first 10-time steps in which the robot starts
with exploring movements in the first four steps. Then, the ε-greedy is increased to 70% in which
the robot explores in the first three steps of the second 10-time steps. Therefore, the robot increases
the exploiting movement and decreases the exploring movement every 10-time steps until reaching
50-time steps when the robot moves while fully exploiting based on what has been learned during the
RL process. Since the objective of this experiment is that the robot keeps avoiding obstacles as long
as it can, then time of wandering is the key factor of evaluating the performance of this experiment.
Each episode is ended either when the time of wandering reached 500 s or when Nao falls down.
The process of RL is terminated when Nao is able to wander without falling for three consecutive
episodes. Thus, Nao is able to move about 1500 s, i.e., over 25 min.

Figure 14 shows the RL results by presenting the wandering time in every episode for both
Q-learning and State–action–reward–state–action (SARSA) methods with gradual ε-greedy. Nao was
able to wander around the living room for three consecutive episodes without colliding into obstacles
after 14 episodes using the Q-learning method, as shown in Figure 14a, while it learned much faster
using the SARSA method, as shown in Figure 14b. Therefore, the trained model of SARSA was adopted
for the overall system’s evaluation.
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Figure 14. RL training results for both methods: (a) Q-learning and (b) SARSA.

4.1.2. Evaluating Doorway Edges for “Passing Doorway” Module

This module was tested with a simple real-time experiment with the Nao robot to evaluate the
concept of passing the doorway based on detecting edges. Figure 15 shows a sequence of images
while Nao moves toward the doorway in the AISL lab at SFU. As we can see, the distance between the
two detected edges of the doorway is increasing when the robot gets closer to the door, as shown in
Figure 15a–c. Whereas the distance becomes smaller when the robot passed the doorway, as shown in
Figure 15d.
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4.2. Evaluation of the Overall System

Several experiments with different scenarios are presented below for a virtual evaluation of the
overall system using a Webots model. The objective of these scenarios is to show that the robot is able
to move between two different rooms—specifically the kitchen and the living room, safely. Thus, it can
maintain information of two connected rooms within the knowledge system, i.e., two connected nodes
with an edge. This can be extended for exploring other rooms. Therefore, the results will not show the
mapping part. All results for all scenarios are presented in two parts: (a) the actions’ decision making
based on the behavior and knowledge systems in every step, and (b) the doorway perception’s output
for both depth and edge detecting during the exploration process.

4.2.1. Scenario 1: Moving between Two Rooms with No Obstacles

The demonstration of this scenario is to test the robot’s ability to move from the kitchen to the
living room with no obstacles in the way. We try to test the robot’s ability to recognize the current
room and find the right direction of the doorway to connect the two subsequent rooms within the map.
Additionally, the robot is tested to decide when it passed the room to start a new room recognition and
update the map. The detailed perceptions and actions of the system for this scenario are shown in
Figure 16. The robot started from a position close to the doorway, which is in the left side of robot, in
the kitchen while there were no other obstacles. The robot was able to predict the kitchen with a highest
probability of 79.4% compared to other classes, while the status of doorway detection was “no-door”.
Therefore, the first layer (exploration) was activated, and the robot turned by 90◦ to the left. Now,
the robot was able to detect the doorway and change its status in the DST-Map, thus the “Direction
Detection” was activated and calculated a small angle between the robot and the doorway. During
the experiments, we considered any calculated angles from depth information within the range of
[−10◦,10◦] as small values, so the robot did not need to turn that small values. Hence, the robot almost
directed to the doorway, the “Passing-Doorway” module detect the doorway edges and calculated the
distance. After that, the second layer (purposive) was activated, in which the “Go Toward Doorway”
took all the weight of the smooth movement. Then, the system compared the new edge distance, which
was zero as only one edge was detected, with the previous saved distance in the knowledge system.
Since it was smaller, the status of the “Passing Doorway” attribute within the DST-Map was changed,
and the “Move Straight” action in the first layer (exploration) was activated to make sure a full pass to
the new room was made. Subsequently, gaining new knowledge started again by classifying the new
room as a living room with 93.7%.
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4.2.2. Scenario 2: Moving between Two Rooms with a Different Direction

The difference in this scenario is that the direction of the doorway is in the right side of the
robot. The advantage of angle directions order in the exploration task can be showed in this scenario.
Similar to the first scenario, the robot is tested to recognize current room and find the right direction
of the doorway as well as being tested to pass the room and start a new room recognition while
updating the map information. We tried in this scenario to start the experiment from the opposite
room, i.e., the living room, as shown in the detailed results of Figure 17. The first obtained information
by the knowledge system was classifying the room correctly with a 96.4% prediction’s probability.
The exploration task was activated twice by turning the robot by 90◦ and 180◦ consecutively until
detecting the doorway. Once the doorway was detected and its corresponding attribute was updated
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in the knowledge system, the depth information was calculated with a small value. Consequently, the
doorway edges were found with a large distance between edges, which indicates that the robot is very
close to the door and ready to pass it. As there were no obstacles, the “Go Toward Doorway” action
in the purposive task was activated and took the all weight of “Smooth Move”. Once the “Passing
Doorway” status updated in the knowledge system, the robot started gaining a new knowledge and
building a new node of kitchen room with 83.3% prediction’s probability.

4.2.3. Scenario 3: Moving between Two Rooms with Obstacles and a Final Goal

Including the objectives from last scenarios, the objective of this scenario is also to test obstacles
avoidance and moving smoothly towards the doorway, as shown in Figure 18, by adding extra objects
around the starting position. Additionally, the final target is assigned from the beginning to test the
performance of the achievement task. The robot started from the kitchen and its goal to go to the
living room as a final targeted room. We designed the system to activate the weighted “Avoiding
Obstacle” action if one of the sonars is less than 1 m within the “Move Smoothly” action, while a full
weighted “Avoiding Obstacle” if one of the sonars is less than 0.4 m. So, the robot started by gaining
information about 96.3% prediction of the kitchen. Then, the exploration task was activated, and the
robot turned by 90◦ to the left direction. Now, many perceptual modules were activated sequentially to
acquire doorway-related information, i.e., doorway detection, doorway direction, and doorway edges
as explained in the previous scenarios. We noticed that during the robot’s actions from the purposive
task, the sonar readings were no less than 1 m. Therefore, the robot kept moving toward the doorway.
The doorway edges were detected, and their distances were calculated three times consecutively. Once
the edges’ distance became smaller than the previous save distance, the status of “Passing Doorway”
was updated to positive. Now, instead of activating “Move Straight” action from the exploration
task for a full pass through the doorway, the system activated the “Avoid Obstacle” action within the
purposive task via RL since the sonars values were (left = 0.38 m and right = 2.5 m). When the robot
completely moved away from the obstacle, which was the door edges in this experiment, it gained
new information, starting by classifying the new room as a living room with 97.3%. Since the classified
room matched the target room, the “Sitting Down” action was activated as an indication of ending
the process.
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5. Discussion

The proposed system is flexible as each module can be designed, tested, and modified individually
and within the overall system. The virtual experiments showed promising results, in which the system
can be adopted and modified for any social robot with limited sensors for domestic applications.
However, we focus in this section more on some of the limitations or areas for improving the results.
The RL for “Avoiding obstacle” worked very well during the training stage within the area of the
living room. However, this room has a spacious area, thus, the RL can be applied in another room for
more testing and improving the learning process before adopting the final model within the system.
Additionally, the depth images with their calculated angles from Scenarios 1 and 2 were not the best
expected angles to keep the robot’s direction exactly in the middle of the doorway. This might be due
to the inaccuracies in the simulator’s view, as the reported results from [54] were better and more
accurate. Thus, we ignored the small values in the virtual experiments and let the robot move straight
towards the doorway. In addition, adding a class of corridors for the room classification project is
important for future work in order to extend the exploration process between more rooms. Thus,
building the topological map will be more meaningful.

Although extensive simulation runs with Webots were conducted, we suggest that the real-time
experiments with NAO will produce similar results as Webots since this software uses the same NAOqi
API as the actual NAO humanoid robot. Additionally, we expect that the process with real-time
experiments will be much faster than the virtual experiments as Webots takes most of the GPU memory
during the navigation process. This will be avoided in the real-time implementation.

Therefore, the proposed system is an alternative solution for addressing localization and mapping
sequentially for indoor environment, specifically homes. We coined the term Sequential Localization
and Mapping (SeqLAM), and provided a qualitative comparison to the widely popular probabilistic
Simultaneous Localization and Mapping (SLAM) algorithm, as shown in Table 3. The only prior
information that SeqLAM requires is that the environment to be explored (home) has five classes
(bathroom, bedroom, dining room, kitchen, and living room). Humans have this prior information
when they go to a new “home”. They know that the place has a kitchen and a dining room, but they
do not know their spatial relation. They discover this only after exploring the environment. SeqLAM
can be designed for any indoor environment (such as a hospital, a school, etc.) provided that the prior
knowledge of different classes is available.

Table 3. Qualitative comparison between classic SLAM and SeqLAM.

Features SLAM SeqLAM

Philosophy Probabilistic Behavioristic
A priori knowledge Assigning Landmarks Zone based (in homes)

Update information Incremental robot’s pose and map Identifying zones, then generating a
map sequentially

Map Accurate Sketch/spatial relationship
Pose Accurate Not applicable
Dynamic settings Numerous challenges Moderate
Computation load High Moderate
Comparison to human reasoning Not intuitive Intuitive
Generality Outdoor/Indoor Indoor

Data Association Significant challenge Can be incorporated via image
matching

Human intervention Robot is mostly driven manually (except
for autonomous exploration) Autonomous

Application Universal (but needs to be tailor made) Only homes (can be tailor made for
other indoor settings, e.g., hospitals)

6. Conclusions

This paper presented a navigation strategy for social robots with limited sensors within apartments’
environments. The design combined a subsumption-based system and knowledge-based system.
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The subsumption system consisted of a collection of behaviors arranged in layers, in which each
layer was responsible for a specific task and became activated based on the sensor data. Whereas,
the knowledge system consisted of several visual-learning modules to gain information about the
environment to build a high-level meaningful map as well as to access all layers in subsumption and
trigger the appropriate action. Some modules were evaluated individually in virtual or real-time
implementation with the Nao robot. For example, an RL model was designed properly with two
different approaches, Q-learning and SARSA, for obstacle avoidance as an adaptive behavior using
only two sonars, and the model was evaluated virtually by observing the time of exploration and
number of epochs. The model with the SARSA approach learned faster than the Q-learning. “Passing
Doorway” was the other module that was evaluated individually in this paper. It was tested in a
simple real-time experiment to evaluate the concept and to be adopted with the overall system. On the
other hand, the overall system was tested virtually using Webots simulator with different scenarios.
Although there were some restrictions and assumptions, the performance of all scenarios showed
promising practical results.
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