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Abstract: Herein we investigate the usage of principal component analysis (PCA) and canonical
variate analysis (CVA), in combination with the F factor clustering metric, for the a priori tailored
selection of the optimal sensor array for a given electronic tongue (ET) application. The former
allows us to visually compare the performance of the different sensors, while the latter allows
us to numerically assess the impact that the inclusion/removal of the different sensors has on the
discrimination ability of the ET. The proposed methodology is based on the measurement of a pure
stock solution of each of the compounds under study, and the posterior analysis by PCA/CVA with
stepwise iterative removal of the sensors that demote the clustering when retained as part of the
array. To illustrate and assess the potential of such an approach, the quantification of paracetamol,
ascorbic acid, and uric acid mixtures were chosen as the study case. Initially, an array of eight different
electrodes was considered, from which an optimal array of four sensors was derived to build the
quantitative ANN model. Finally, the performance of the optimized ET was benchmarked against the
results previously reported for the analysis of the same mixtures, showing improved performance.

Keywords: electronic tongue; voltammetric sensors; principal component analysis; artificial neural
networks; discrete wavelet transform

1. Introduction

Electronic tongues (ETs) are analytical systems based on the combination of an array of sensors
with low-selectivity and/or cross-response features in order to obtain some added value in the
generation of analytical information. These are coupled with advanced chemometric tools that allow
the interpretation and extraction of meaningful data from the complex readings [1,2]. Thus, the selection
of the sensor array that will comprise the ET is a key step that will highly influence the performance of
the system [3].

Despite its importance, most of the papers dealing with ETs focus on the developed application
itself or the data treatment stage, but very few report on the choice of the sensors. The challenge
here arises on the a priori selection of the best combination of sensors that can carry out the desired
qualitative or quantitative task given the difficulty to assess the cross-reactivity shown between them
and the impact that this will have in the final model. In this direction, one common approach that has
been taken in the case of potentiometric sensors is the inclusion of at least one or two ion-selective
sensors (ISEs) towards the compounds of interest plus some generic ones; however, this does not
guarantee that the optimal array is selected [1]. Another approach would be the complete sensor
characterization, which consists in carrying out the multi-analyte calibration, from which the surface
response plots are built and the binary selectivity coefficients are calculated (e.g., Reference [4]).
However, this is a tedious task even for the two-analyte case, and it does become not feasible for more
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complex mixtures as it may require hundreds of samples. Furthermore, such a task becomes even
more complex when, e.g., voltammetric sensors are used instead of potentiometric ones due to the
higher complexity and dimensionality of its response. Alternatively, another approach that has been
employed is the use of feature selection methods upon measurement of all the samples, and to carry
out the a posteriori removal of the variables and/or sensors that do contribute less to the classification
or quantification task (e.g., usage of genetic algorithms or other pruning methods [5]). Although
this approach does probably provide the best outcome possible, it is also more tedious and requires
instruments capable of simultaneously measuring a large number of channels.

In the same direction, we had also reported previously on the usage of the autocorrelation between
the signals of the different sensors that form the sensor array as an objective criterion for the selection
or removal of redundant sensors in voltammetric arrays [6,7]. Although it provides a measure of
sensors’ response redundancy, it is purely based on the signal, but not on the cross-reactivity towards
the analytes of interest. More recently, principal component analysis (PCA) taking the transposed data
matrix has also been suggested as a guiding method to select the best sensing units to compose the
array of an ET [8]. However, the authors themselves conclude that further experiments are required to
confirm the potential of the method.

Therefore, the development of a simple methodology that allows the a priori selection of the
optimal sensor array to carry out a specific application is of utmost interest. In this direction, herein
we propose the usage of PCA in combination with some clustering metrics as a tool to carry out such
selection. The former allows us to visually compare the performance of the different sensors, while the
latter allows us to numerically assess the impact that the inclusion/removal of the different sensors
does have in the discrimination ability of the ET towards the compounds of interest.

In order to demonstrate and illustrate such a procedure, the simultaneous quantification of
paracetamol (PA), ascorbic acid (AA), and uric acid (UA) mixtures was chosen as the study case.
These mixtures correspond to a common case in the pharmaceutical field where the determination of
paracetamol in the presence of ascorbic acid is attempted. The latter is usually present as an excipient,
whereas the inclusion of uric acid is motivated as some studies suggest that ascorbic acid intake is
related to uric acid concentration in serum [9,10]. This particular case was chosen as this mixture
has already been previously analyzed in our laboratories employing different sensors arrays, thus
providing us with guidance on which performance could be expected and whether previous results
could be improved or not by tailoring the electrode choice to particular cases.

In this direction, the present work aims to demonstrate the advantages derived from the tailored
selection of the sensor array for each ET developed application. Upon measurement of stock
solutions of the different active pharmaceutical ingredients (APIs), those were transformed by using
PCA/CVA, which in combination with the F factor metric allowed the selection of the different sensors.
Next, a quantitative model was built by means of artificial neural networks (ANNSs) to achieve the
simultaneous determination of the three APIs, the performance of which was benchmarked against
previously reported ETs.

2. Materials and Methods

2.1. Reagents and Apparatus

All reagents were of analytical reagent grade and were used as received without any further
purification. All the buffer solutions were prepared in ultrapure water (18.2 M(-cm) purified
by a MilliQ System (Millipore, Billerica, MA, USA). Potassium hydrogenphosphate, potassium
dihydrogenphosphate and sodium chloride, which were used for the preparation of the phosphate
buffer, were purchased from Merck (Darmstadt, Germany).

The active pharmaceutical ingredients (APIs), paracetamol and uric acid, were purchased from
Sigma-Aldrich (St. Louis, MO, USA), whereas ascorbic acid was purchased from Panreac Quimica SLU
(Barcelona, Spain). For the modification and preparation of the electrodes, we used nanoparticles of
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bismuth (III) oxide, titanium (IV) oxide, zinc (II) oxide and tin (IV) oxide, plus cobalt (II) phthalocyanine
and polypyrrole purchased from Sigma-Aldrich (St. Louis, MO, USA), while Prussian blue was obtained
from Acros Organics (Geel, Belgium). Graphite powder (particle size < 50 um) used for the construction
of the electrodes was purchased from BDH Laboratory Supplies (Poole, UK), and Epotek H77 resin and
the corresponding hardener were obtained from Epoxy Technologies (Billerica, MA, USA).

All the electrochemical measurements were carried out in a PGSTAT 30 Autolab potentiostat
(EcoChemie, The Netherlands) with GPES 4.7 version software (EcoChemie). Voltammetric
measurements were conducted using a conventional three-electrode cell configuration where a
combined electrode (Crison 5261, Barcelona, Spain), made up of a metallic platinum wire and an
Ag/AgCl electrode was used as both the auxiliary and reference electrode.

2.2. Sensor Array

An array of seven different modified graphite epoxy composite (GEC) electrodes was initially
prepared to be evaluated as the working electrodes that will form the ET [11]. Briefly, for the construction
of the working electrodes, first of all, a shaped copper disc was soldered to an electrical connector,
and then introduced into a 6 mm internal diameter PVC tube, resulting in a cylindrical cavity. A paste
was then made by mixing 15% of graphite powder, 2% of the specific modifier, and the epoxy resin and
the hardener (in the ratio 20:3 w/w). Next, this paste is loaded into the cavity of the PVC tube and
cured at 80 °C for 3 days. Afterwards, using emery papers of decreasing grain size, electrode surfaces
were polished until a flat shiny surface appeared. One of the main advantages of such electrodes is
that re-polishing of the surface using emery paper allows the regeneration of the electrode, recovering
any loss of their response.

In this manner, seven different GEC electrodes, each of them modified with cobalt (II)
phthalocyanine (CoPc), polypyrrole (PPy), Prussian blue (PB), oxide nanoparticles of bismuth (Bi,O3),
titanium (TiO;), zinc (ZnO) and tin (SnO,), were prepared. Additionally, a Pt disc electrode was
also prepared and used to complete the eight-sensor array. The Pt disc electrode was constructed by
soldering a Pt wire (99.95% purity, 1 mm diameter) to an electrical connector and then introducing
the connector into a PVC tube. The wire was then coated in epoxy resin (exposing only the wire
cross-section) and cured at 80 °C for 3 days.

Such modifiers were selected taking into account previous studies with ETs. Prussian blue is
well-known to be an electron mediator in the development of many biosensors, which has also been
used in the development of ETs [12-14]. The usage of nanoparticles has emerged as an alternative
to the respective bulk metals given its higher surface/mass ratio and improved electrochemical
properties [13,15,16]. Similarly, conducting polymers such as polypyrrole have electrocatalytic and
antifouling properties [17-19], while phthalocyanines are reported to be efficient electrocatalysts in
the determination of many important inorganic, organic, or biological compounds [20,21]. Lastly,
the use of bare metal electrodes corresponds to one of the more common choices for the development
of voltammetric ETs [22-24].

2.3. Samples Preparation and Voltammetric Measurements

All APIs stock solutions were prepared in 0.05 M phosphate buffer at pH 7.0 with 0.1 M KCl
as saline background/supporting electrolyte. For the optimization of the sensor array, 250 uM stock
solution of each of the APIs were measured separately in order to investigate their electrochemical
behavior with the different sensors. Upon selection of the optimal sensor array, calibration curves for the
APIs were built and their analytical response was further characterized in terms of linearity, sensitivity,
limit of detection (LOD), reproducibility, etc. To this aim, solutions of increasing concentration
of each API were prepared from the stock solutions in phosphate buffer and measured under the
below conditions.

For the simultaneous analysis of APIs mixtures, a set of samples consisting of mixtures of the
three compounds were prepared. Samples were divided into two subsets: the training subset based on
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a tilted 33 factorial design (27 samples), which was used to build the quantitative model [25], and the
testing subset with samples randomly distributed along the experimental domain (11 samples) that
was used to assess the actual performance of the built models.

The electrochemical behavior of all the APIs and their mixtures was assessed by recording a
complete cyclic voltammogram between —0.7 V and +1.2 V vs. Ag/AgCl with a step potential of
10 mV and a scan rate of 100 mV-s~!, without the application of any pre-conditioning potential or
accumulation time. Furthermore, to avoid any fouling effect or drifts during the measurements, a blank
measurement in phosphate buffer was carried out after each measurement.

These conditions were used for all the experiments, except during initial experiments for the
selection of the sensor array, that in order to ensure that the potential window was wide enough to see
any possible peak, voltammetric measurements were carried out in the range —1.5 V to +1.5 V, but
keeping all the other conditions unaltered. Similarly, as a 6-channel multipotentiostat was employed,
final measurements were carried simultaneously, but some of the initial measurements for sensor
selection had to be carried sequentially in groups.

2.4. Chemometric Analysis

Data analysis was carried out in Matlab 7.1 (MathWorks, Natick, MA, USA) by specific routines
developed by the authors using the Statistics, Wavelet, and Neural network toolboxes [26-28]. Final
representation and analysis of the data were done with the aid of Sigmaplot (Systat Software Inc., San
Jose, CA, USA).

Recorded voltammograms were first compressed with discrete wavelet transform (DWT), which
allowed us to decrease the dimensionality of the data while preserving the relevant information [26].
Next, PCA and canonical variate analysis (CVA) were used for the qualitative analysis of the data and
a tailored selection of the ET array. Finally, ANNs were used to build the simultaneous quantitation
models of the ternary mixtures.

For the selection of the optimal sensor array, data was submitted to PCA and CVA, and the
clustering observed was evaluated by means of the F factor [29-31]. The F factor is defined as the ratio
of variances between different clusters and the sum of internal variance in all clusters (Equation (1)).
It can be used as a standard procedure to measure the capability of a particular sensor to discriminate
between different classes of samples in ET applications. Since the F factor compares the variability
between classes to variation within classes, with increasing F values the discrimination between

different classes becomes easier. ,

¥ ni(m-z)

k-1
F = . - M
I, L 1(Zji_zi)2

Zi( — 1M -k
where k is the number of classes, i the number of following class, j the following number of the sample
in i-th class, n; the number of samples in i-th class, and zj; the sensor response for j-th sample in i-th

class, and z; and z are the mean value of a sensor response in a particular class of samples and the
mean value of sensor response for all samples, respectively. These can be defined as:

-
Z]‘l: 1 Zji

zj = ———— @

n;

k n;
B Zi: 12/2 1%ji

k
Zi:1ni

N

®)



Sensors 2020, 20, 4798 50f 15

3. Results and Discussion

3.1. Selection of Sensors

The aim of this work is to demonstrate the advantages derived from the tailored selection of the
optimal sensor array for each case when developing ET applications, and to assess whether this can be
done a priori taking only single measurements of the stock of each of the compounds that we aim to
analyze (Figure 1).

Voltammograms

Initial
sensor array
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A

Mixtures / Stocks
PCA/CVA
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inclusion/removal
F factor PC2
& ..
00 ooo PC1
3 A ¥
s Optimal iy
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Figure 1. Schematic representation of the methodology followed for the a priori selection of the optimal
sensor array. Briefly, stock solutions of each of the analytes are measured with all the considered
sensors, obtaining a voltammogram for each of them. Next, those are submitted to PCA/CVA, and the
clustering is evaluated by means of the F factor. This is repeated, leaving out of the analysis each of
the sensors of the array (one at a time), and the one that leads to the higher improvement is removed.
The whole process is repeated until a decrease in the F factor is observed after discarding one of the
sensors. Finally, with the selected sensor array, the quantitative application is carried out.

To this aim, we took as a study case the analysis of three different APIs (PA, AA and UA),
and attempted to choose the most appropriate electrodes for their electrochemical analysis. When
choosing the optimal electrodes, it has to be kept in mind how important the cross-responses of the
different electrodes towards the analytes of interest and among them are in ET applications. That is,
each electrode shows a differentiated response between each of the analytes, and the different sensors
show a differentiated response between them, so that they jointly allow us to differentiate the different
compounds [3].

In this direction, the first step was to assess the voltammetric responses of each of the electrodes
towards the individual compounds. For doing so, five replicate samples of the 250 uM solutions of
each of the APIs were prepared, and the voltammetric measurements were carried as described in
Section 2.3. An extract of the responses obtained for the different electrodes is shown in Figure 2. As it
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can be seen, the voltammetric profiles of each of the sensors are found to be different, with all of them
showing distinct responses for each of the compounds.

Current (uA)

Current (HA)

Current (MA)

0.5 0.0 0.5 1.0 15
Potential (V)

Current (pA)

1.5 -1.0 0.5 0.0 0.5 1.0 1.5
Potential (V)

375
300
225
150 4

1504 = Buffer
——PA
—AA
——UA

225

-3004

48

36

24+

Current (UA)

T T T T

T
-0.5 0.0 0.5 1.0 15
Potential (V)

Current (pA)

—PA
—UA
=M |

0.5 0.0 0.5 1.0 15
Potential (V)

Figure 2.

T T T T T T

T
-1.5 -1.0 05 0.0 0.5 1.0 1.5
Potential (V)

604
484
361

24

—PA
—UA
—AM |

1.5 -1.0 0.5 0.0 0.5 1.0 1.5
Potential (V)

Cont.



Sensors 2020, 20, 4798 7 of 15

56 -
H
42+
~ ~ 28 ]
g Y
= = 14 i)
£ E 01
=} =]
] 4]
14
.28 | Buffer|
—PA
42 —AA
—UA
-56
T T T T T T T T T T T T T
-1.5 -1.0 0.5 0.0 0.5 1.0 15 1.5 -1.0 0.5 0.0 0.5 1.0 1.5
Potential (V) Potential (V)

Figure 2. Voltammograms obtained for the three APIs (250 uM in phosphate buffer) using the GECs
modified with (A) SnO;,, (B) Prussian Blue, (C) ZnO, (D) PPy, (E) CoPc, (F) TiO, and (G) Bi, O3, and (H)
the metallic Pt electrode.

To objectively carry out the selection of the final sensor array for the quantitative task, the next
step was the compression of the data with DWT and its analysis by means of PCA and CVA. Firstly,
the 2D score plots were obtained, and from those the F factor was calculated. This process was done
with the 8-sensor array and repeated by removing one sensor at a time, similar to what could be
considered a leave-one-out process, but from the sensors’ side (Figure 1). Next, the F values for each of
the iterations were compared, and the sensor that when excluded led to the higher increase of the F
index was then discarded. This process was repeated, reducing one-by-one the selected sensors, until
the F value decayed (Figure 3).

In this manner, from the eight sensors initially considered, the first one that was discarded was the
one modified with SnO, nanoparticles, which led to a significant improvement in the clustering (the F
value increased from 4.19 to 5.19). As stated, this process was repeated, taking the remaining seven
sensors as reference for the F value, and leaving out again one sensor at a time for the calculations; the
Bi,O3 nanoparticle modified sensor was discarded this time. In the next iteration, TiO, modifier was
discarded as no significant increase/decrease in the F value was observed. Thus, it was considered
that its inclusion/exclusion does not demote the performance of the system. Lastly, the cobalt(II)
phtalocyanine modified sensor was also discarded, whereas in the next iteration no further sensors
were removed, as even the exclusion of the one with a larger F value implied a decrease of this
parameter. In this manner, the selected sensor array was formed by four electrodes: a metallic Pt sensor
and GECs modified with ZnO nanoparticles, Prussian blue, and polypyrrole, and the maximum F
value achieved was 5.75.

The resulting PCA score plot obtained with the reduced sensor array is shown in Figure 4B,
with an accumulated explained variance of ca. 82.3 %; a large value that reflects how most of the
variance contained in the original data is now summarized with only these two coordinates (PCs).
More importantly, we can observe how clear clusters are obtained for each of the compounds and how
easily these can be distinguished from each other. Hence, based on the voltammetric profiles and the
PCA score plot, we can say that the initial selection of sensors based on the F factor calculation seems
to be a satisfactory step towards the electrochemical quantification of the three APIs. Figure 4A, on the
other hand, shows the departing point with the eight-sensors array, and where the clustering is just
preliminarily worked out. As an additional comment, it is also evident how the optimization of the
array is also able to amend the drift content incorporated in the original set of sensors.



Sensors 2020, 20, 4798 8 of 15

Bi203 56
CoPc 54
PB 52
PPy 5
Pt 48
46
Sn02
44
Tio2
42
Zno . N
1 2 3 4 5

Iteration

, P 1 1 | 1

I

None Sn0O2 Bi203 Tio2 CoPc Pt

101084 4
Sa11po2 100D

Sensor removed

F factor

Sensor removed

Figure 3. (Top) Color map of the variation of the F values after iterative exclusion of the different
electrodes; the Y-axis shows the sensor being left out for the calculation of the F factor and the X-axis
shows the successive iterations for the selection of the less significant sensor. (Bottom) Bar plot of the
changes of the F values after exclusion of the sensor that leads to the biggest F value at each iteration.
In both cases, the color of the plot codifies the F factor values as per the color bar. Iteration 5 does not
produce any further improvement, and then the process is stopped.
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Figure 4. Score plot obtained from the DWT-PCA of five replicas of individual APIs using (A) the
eight-sensor array or (B) the selected four-sensor array. (m) Buffer, (v) paracetamol, (e) ascorbic acid
and (¢) uric acid. Ellipses plotted correspond to 95% confidence limits for each of the clusters.
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Lastly, the analysis of the loadings biplot is not very significant in this case as what we aim to
evaluate is not only which features are more relevant, but which improve more the discrimination
capabilities of the ET. However, it is quite well known that since PCA is focusing only on the data
variance, external factors, e.g., drift on the sensors response, can dominate it. Therefore, such
information cannot be only obtained from the scores and loadings plot, but from the F factor. Moreover,
the large number of variables registered when voltammetric sensors are used (hundreds for each of the
sensors) makes the interpretation of the loadings plot difficult/cumbersome. However, a numerical
inspection of the loadings contribution from the magnitude of its vector allowed us to confirm that in
both cases all the sensors contribute significantly to the obtained scores plot, with most of the loadings
very close to the correlation circle: ca. 81% of them with a magnitude as big as 0.6 times the one of
the loading with the highest contribution for (A), and 72% for (B). In terms of sensors, the number of
variables for each of them that contribute to those percentages are 15 to 30% for (B), and 2.2 to 17% for
(A) (data not shown).

3.2. Characterization of the Analytical Response

Upon selection of the reduced sensor array, the next step was the characterization of the
voltammetric responses of each of the electrodes towards the individual APIs. On the one side,
we wanted to confirm that, actually, different sensitivity was shown by the different sensors, as well
as assess its linear range to restrict the experimental domain for the quantitative experiment. On the
other side, we wanted to also assess sensors’ repeatability, as this is a critical parameter when working
with ETs, which require performing a large number of consecutive measurements.

3.2.1. Calibration Curves

Prior to building the quantitative model for the mixtures” analysis, the linear range and sensitivity
of the different electrodes were evaluated. Individual calibration curves were built for each of the
selected four sensors towards each of the APIs. To do so, stocks of increasing concentration within 0 to
500 uM for paracetamol and uric acid, and 0 to 2000 uM for ascorbic acid were prepared and measured
as described in Section 2.3. From the recorded voltammograms, the maximum peak height was taken
and plotted against its concentration (data not shown). From those, the fitted regression equations are
summarized in Table 1. As represented by the large value of the coefficient of determination (R?), it can
be concluded that good linearity was obtained within the above ranges for all the APIs and sensors.
Hence, those same ranges were selected for the final quantitative model. Moreover, we can confirm
how different sensitivities (calibration slopes) are obtained for each of the sensors and compounds,
a situation that we aimed for with the selection of the sensor array (i.e., to avoid having redundant
sensors or sensors that do not contribute to the discrimination of the different compounds).

Table 1. Calibration data (y vs. x) for the individual calibrations of paracetamol, ascorbic acid, and uric
acid employing the final sensors in the array.

Electrode

modifier ZnO Prussian Blue Polypyrrole Metallic Pt
Equation y =0.0598x + 0.613 y =0.0629x + 10.2 y = 0.0857x +29.4 y =0.0027x + 1.08
Paracetamol R? 0.9971 0.9993 0.9989 0.9589
LOD! (uM) 28.4 13.9 17.2 59.4
Equation y = 0.0152x + 0.989 y =0.0261x + 6.93 y =0.0304x + 21.0 y = 0.0015x + 0.634
Ascorbic acid R? 0.9977 0.9990 0.9987 0.9624
LOD! (uM) 59.3 68.5 77.5 417
Equation y = 0.0452x + 1.12 y = 0.0499x + 10.8 y = 0.0668x + 31.0 y = 0.0028x + 1.02
Uric acid R? 0.9988 0.9983 0.9995 0.9967
LOD! (M) 17.9 235 9.35 28.3

1 Calculated from three times the standard error of the regression.
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3.2.2. Stability Measurements

Similarly, since building the quantitative model requires a considerable number of consecutive
measurements with the sensor array, it is important to assess whether the repeatability within
consecutive measurements for all the sensors is good enough. In this direction, a sample containing
100 uM of each of the APIs was prepared, and the performance of the sensor was evaluated by
calculating the relative standard deviation (RSD) obtained after 18 consecutive measurements without
changing the sample, equipment, and analyst.

Before the sample measurement, a blank buffer measurement was taken, repeating this cycle up
to 18 times. In this manner, we could ensure that no loss of signal was obtained from the measurement
of the sample mixture, while the measurement of the blank allowed us to ensure that no drifts on the
baseline were being observed. After each cycle, cleaning of the electrode surfaces was carried out in
phosphate buffer by recording a cyclic voltammogram under the same conditions. RSD% values of all
the sensors were found to be below 4%, indicating good stability of the electrode responses. More
specifically, the repeatability expressed as the percentage of RSD over 18 consecutive measurements of
blank/standard cycles for the different electrodes forming the final array were: 2.4% for ZnO, 1.99% for
PB, 2.4% for PPy and 3.6% for the Pt sensor.

3.3. Quantitative Analysis of APIs Mixtures

Upon selection of the optimal sensor array for the analysis of paracetamol, ascorbic acid, and uric
acid, the next step was to evaluate the performance of such an array to achieve the simultaneous
determination of their mixtures. To this aim, the set of samples described in Section 2.3 were measured
under the same conditions as in previous experiments, recording a complete cyclic voltammogram for
each of the electrodes (Figure 5). As could be expected from Figure 2, although a different voltammetric
response is obtained for each of the considered compounds individually, there is a clear overlap
when mixtures of those are analyzed simultaneously. Therefore, not being possible to achieve its
quantification via univariate regression, requiring the aid of chemometric models; an approach that
is possible thanks to the cross-response shown by the selected sensors, i.e., the different sensitivity
shown by each of the electrodes towards each of the compounds (Table 1). This is a desirable condition
for the proper performance of any multisensory array analysis system.

However, before building the quantification model, and especially if ANNSs are to be used [32],
a preprocessing step to reduce the high dimensionality of the data is required. The benefits derived from
such a step are particularly critical with ANNSs, as this contributes to preventing the under-determination
problem encountered with an oversized ANN with excessively complex data, while it also reduces
significantly the time and memory required for its modelling. Moreover, in general, it also leads
to models with better performance and generalization ability as it avoids redundancy in the input
data and reduces their complexity with the risk of overfitting [26]. In our case, this compression was
achieved by means of DWT, using the Daubechies wavelet mother function and a fourth decomposition
level. This allowed us to reduce the initial 1696 data points (currents corresponding to 424 polarization
potentials X 4 sensors) down to 132 coefficients, representing a reduction of 92.2% without any loss of
relevant information (r > 0.99 and fc > 0.95 in the compressed vs. original signal comparison).

For the selection of the neural network topology, a systematic study was carried out in which
the number of neurons in the hidden layer, as well as the transfer functions between the input and
hidden layer and between the hidden and output layers, were varied. The different ANN models
were built employing the data of the training subset, and the selection of the optimal one was chosen
from the comparison of the performance towards the testing subset. This data division helped
to ensure that more unbiased data was obtained and to detect possible models that were being
over-fitted, and consequently to better assess the accuracy of the model. The final ANN architecture
had 132 neurons in the input layer (corresponding to the DWT coeffs., 33 X 4 sensors), 6 neurons and
purelin transfer function in the hidden layer, and 3 neurons (one for each of the analytes) and satlins
transfer function in the output layer.
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Figure 5. Representative voltammograms obtained for certain arbitrary mixtures of the different APIs
(the concentration for each compound is indicated in the legend) with the four-sensor selected array:
GECs modified with (A) ZnO, (B) PPy and (C) Prussian Blue, and (D) the metallic Pt electrode.

The comparison graphs of predicted vs. expected concentrations as well as the fitted linear
regressions for the three determined species for the chosen ANN model are shown in Figure 6. As can
be seen, a very satisfactory trend is obtained for all the cases, with regression lines almost overlapping
or very close to the ideal ones. In order to better evaluate the goodness of the comparison, the regression
parameters were also calculated and are summarized in Table 2. The obtained values are very close to
the ideal values of slope (1), intercept (0), and correlation coefficient (1).
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Figure 6. Modeling ability of the optimized DWT-ANN. Comparison graphs of obtained vs. expected
concentrations for (A) paracetamol, (B) ascorbic acid, and (C) uric acid, for both the training (e, solid line)
and testing subsets (O, dotted line). The dashed line corresponds to the ideal comparison line (y = x).
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In this direction, to ensure that the former are statistically within the confidence intervals of the
calculated regression parameters, the joint confidence intervals were calculated and plotted (Figure 7),
as this allows to rapidly detect whether there are or not differences between the actual and predicted
values at a certain significance level, judging simultaneously the goodness of slope and intercept [33].
In this case, the ideal point (1,0) is within the ellipsoidal confidence intervals for the three species, both
for the training and testing subset, which allows us to state that there are no significant differences
between the actual concentration and the values predicted by the model.

1.2
(A) (B)
1.010 -
1.1 1
1.005 - —
. .
\.
=,
3 3
o 1.000 ) 1.0
» n
0.995 |
0.9
0.990
T T T T T T 0.8 A
T T T T T T T T
€ 4 2 0 R 6 400 75 50 25 0 25 50 75 100

Intercept (uM) Intercept (uM)
Figure 7. Joint confidence intervals for the three species: (o, solid line) paracetamol, (m, dash-dotted
line) ascorbic acid, and (4, dashed line) uric acid, and both for (A) training and (B) testing subsets.
Also, the ideal point (1,0) is plotted (x); intervals are calculated at the 95% confidence level.

Despite the results for the training subset are more precise than those for the testing one, remarkable
accuracy is obtained in both cases. The higher confidence intervals for the testing subset correspond to
the usual behavior, which can be explained by two factors. On the one side, those samples are not
used at all during the modelling stage, and consequently represent a more realistic metric of the model
performance. On the other side, the lower number of samples of the testing subset in comparison to
the training one results in higher tabulated t and F values that ultimately lead to higher confidence
intervals. Similarly, the larger concentration range for ascorbic acid also results in a larger uncertainty
for the intercept.

Finally, in order to benchmark the performance of the current proposed ET which is based on an
optimized sensor array, its performance is compared to the one reported in previous works in which the
same mixtures were analyzed (Table 2) [12,23,34]. To this aim, the root mean square error (RMSE) and
its normalization (NRMSE) were also calculated to obtain a global metric of the system performance.
Although some differences in the performance might be due to the different data treatment employed
(e.g., PLS vs ANNSs), it can be ruled out that a significant improvement has been achieved with the
reduced sensor array. It can be seen that the smallest total NRMSE is obtained in the work reported
here, but also, as could be expected from this, the improvement in the slopes and correlation coefficients
is also highly significant.
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Table 2. Reported values and current results of the fitted regression lines for the comparison between
obtained vs. expected values for the different sets of samples and the three considered APIs. Intervals

are calculated at the 95% confidence level.

Intercept 2 RMSE! Total
Compound Slope (M) R (uM) NRMSE! Sensor Array Ref.
training subset (n = 33)
Paracetamol 0.942 + 0.031 32+21 0.968 2
Ascorbic acid 0.933 + 0.040 36 =25 0.947 2 2 Bare GEC plus
Uric acid 0.873 + 0.046 58 + 25 0.923 2 metallic Pt and [23]
testing subset (n = 15) Au electrodes
Paracetamol 0.895 + 0.105 82 +71 0.848 2
Ascorbic acid 0.919 + 0.081 65 + 41 0.908 2 2
Uric acid 0.871 +£0.138 -8 +86 0.753 2
training subset (n = 33)
Paracetamol 0.981 + 0.032 13 +24 0.992 29
Ascorbic acid 0.990 + 0.031 6+17 0.993 25 0.0257 Bare GEC plus
Uric acid 0.981 + 0.027 9+16 0.994 23 metallic Pt and [34]
testing subset (n = 15) Au electrodes
Paracetamol 0.990 + 0.143 -2+80 0.945 97
Ascorbic acid 1.009 + 0.136 -28+78 0.952 66 0.101
Uric acid 0.992 + 0.208 36 +£125 0.891 73
training subset (n = 27)
Paracetamol 1.000 + 0.082 0+25 0.962 29 .
Ascorbicacid  1.000 + 0.089 0+25 0.955 31 1.00 SPCEs modified
Uric acid 1.000 + 0.104 031 0.940 36 with CoPc, PB, — [15)
graphite and
testing subset (n = 12) CuO
Paracetamol 1.021 + 0.219 -13+28 0.915 32
Ascorbic acid 1.073 + 0.422 -3+54 0.762 71 1.03
Uric acid 1.044 + 0.334 —32 + 36 0.829 44
training subset (n = 27)
Paracetamol 0.996 + 0.006 09+19 0.9998 2.43 GECs modified
Ascorbic acid 0.999 + 0.004 1.1+46 0.9999 5.86 0.00378 with ZnO, PB, .
Uric acid 0.996 + 0.004 11+1.2 0.9999 1.64 and PPy plus Pt Thli
. wor
testing subset (n = 11) metallic
electrode
Paracetamol 1.021 + 0.134 9+36 0.971 26.4
Ascorbic acid 1.017 + 0.049 —-20 £ 57 0.996 312 0.0368
Uric acid 0.999 + 0.096 1+27 0.984 16.2

1 RMSE: root mean square error; NRMSE: normalized root mean square error; > data not available; GEC: graphite
epoxy composite; SPCE: screen printed carbon electrode.

4. Conclusions

The application of a simple methodology for the selection of the optimal voltammetric sensor
array prior to carrying out a quantitative application has been demonstrated. The proposed approach
is based on the combination of PCA/CVA to assess the cross-response of the different sensors with the
F factor to numerically carry out the selection of the sensors from the scores plot.

To illustrate the potential of the methodology, the discrimination and quantification of three
different APIs have been demonstrated. In this work, we initially selected an array of eight different
electrodes, and from those, only four sensors were selected for the quantitative application. Next,
the performance to carry out the quantitative determination of the three APIs was attempted by building
a DWT-ANN model. The performance of the model was very satisfactory, and huge improvement was
observed when benchmarked against other reported ETs attempting the quantification of the same
mixtures. This confirms the potential advantages derived from the current approach, which allows the
a priori selection of the potential best sensor array based on its cross-response features, the implicit
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reduction of the number of sensors (with the added advantage of instrumentation simplicity), and an
improvement in the modelling performance (without requiring a posteriori pruning of the most
relevant sensors).

Nevertheless, despite the good performance shown here, it has to be considered that there are
many other clustering indexes, and that those are not universal. Therefore, future work has to focus on
the comparison between different indexes and the suitability for different applications.
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