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Abstract: Exercise-based cardiac rehabilitation requires patients to perform a set of certain prescribed
exercises a specific number of times. Local muscular endurance exercises are an important part of
the rehabilitation program. Automatic exercise recognition and repetition counting, from wearable
sensor data, is an important technology to enable patients to perform exercises independently in
remote settings, e.g., their own home. In this paper, we first report on a comparison of traditional
approaches to exercise recognition and repetition counting (supervised ML and peak detection)
with Convolutional Neural Networks (CNNs). We investigated CNN models based on the AlexNet
architecture and found that the performance was better than the traditional approaches, for exercise
recognition (overall F1-score of 97.18%) and repetition counting (±1 error among 90% observed sets).
To the best of our knowledge, our approach of using a single CNN method for both recognition
and repetition counting is novel. Also, we make the INSIGHT-LME dataset publicly available to
encourage further research.

Keywords: exercise-based rehabilitation; local muscular endurance exercises; deep learning; AlexNet;
multi-class classification; INSIGHT-LME dataset

1. Introduction

Cardiovascular disease (CVD) is the leading cause of premature death and disability in Europe
and worldwide [1]. Exercise-based cardiac rehabilitation is a secondary prevention program which
has been shown to be effective in lowering the recurrence rate of CVD and improves the health related
quality of life [2–6]. Exercise-based cardiac rehabilitation is long-term exercise maintenance by patients
attending community-based rehabilitation programs or through home-based exercise self-monitoring
programs. However, a significant challenge is that uptake and adherence of community-based cardiac
rehabilitation are very low, whereby only 14% to 43% of cardiac patients participate in rehabilitation
programs [7,8]. Key reasons for lower participation include a lack of disease-specific rehabilitation
programs, long travel times and scheduling issues to such programs [9]. In addition, patients may
have low self-efficacy because of a perception of poor body image or poor exercise technique [9].
A potential solution to these challenges is the development of a technological platform for assessing
exercise movement that can motivate the user to engage with exercise-based cardiac rehabilitation and
enable them to do so in any environment (“anywhere exercising”).
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Technology advances in sensor manufacturing and micro-miniaturization have resulted in
low-cost micro-sensor wearable devices that are capable of effective lossless streaming and/or storing
translatory and rotary movement information for further processing [10,11]. Machine learning (ML)
and deep learning are artificial intelligence methods that employ statistical techniques to learn
underlying hidden distributions from observed data. The application of ML methods to study data
from human movements and activities to detect and understand these activities are referred to as
human activity recognition (HAR). In recent years, many ML and deep learning-based models have
been used along with wearable sensors in the assessment of human movement activities in many
domains including: health [11], recreation activities [12], musculoskeletal injuries or diseases [13],
day-to-day routine activities (e.g., walking, jogging, running, sitting, drinking, watching TV) [11,14–21],
sporting movements [22] and exercises [23–27]. The ML models used for exercise recognition
have predominantly used multiple wearable sensors [28–31], specifically in the areas of free weight
exercise monitoring [32], the performance of lunge evaluation [24], limb movement rehabilitation [33],
intensity recognition in strength training [34], exercise feedback [24], qualitative evaluation of human
movements [28], gym activity monitoring [29], rehabilitation [23,25,33,35] and indoor-based exercises
for strength training [36]. However, the use of multiple sensors is far from ideal in practice because of
cost, negative aesthetics and reduced user uptake [17]. Studies [8,15,17,19] on the usage of wearable
sensors, either phone-based or using inertial measurement units, have shown that CVD patients
(67~68%) have an interest in single sensor-based cardiac rehabilitation [8]. Exercise-based applications,
using single sensors, include recognizing day-to-day activities [26,37–41], and multiple complex
exercises [23,26,27] or single exercises such as lunges [24] and squats [42], as well as repetition
counting [27,43,44]. Therefore, in our research, we will use a single wrist-worn inertial sensor for
exercise recognition and repetition counting.

In an ideal scenario, people would undertake a variety of exercise programs, either specifically
prescribed or based on personal preference, that suits their goals and that allows them to avoid exercise
associated with comorbidities (e.g., arthritis of the shoulder). In this scenario of “exercising anywhere”
or self-responsible home-based exercising, it is extremely important that they receive feedback on
the exercises to help them track their progress and stay motivated. However, two key challenges
are presented with this approach. First, it is important to be able to automatically recognize which
exercises are being completed, and secondly, once recognized to provide the number of repetitions
as quantitative feedback on the amount of exercise performed to build the user’s competence and
confidence. This would also allow people to complete elements of their training program disbursed
over the day in any environment, as recommended by the American College of Sports Medicine [45].
For example, someone could complete different exercises in-home or in the workplace. To date, the vast
majority of HAR studies detailed above have used traditional ML approaches such as decision trees,
Naive Bayes, random forest, perceptron neural networks, k-nearest neighbor and support vector
machines. There is, however, a growing interest in the potential use of deep learning methods in
the field of activity recognition mainly using CNN [27,46–49] and recurrent models [47,50]. A small
number of studies [46,47,49,51] have shown the significant advantage of using deep learning models
in the general area of HAR. However, very few studies [23,25,27,30] appear to have used deep learning
models in exercise recognition and repetition counting, and where employed they use multiple CNN
models for the repetition counting task. To the best of our knowledge, there are no works reported
using a single deep CNN model for exercise recognition and for repetition counting. The use of a
single model for repetition counting is attractive as it eliminates the need for an exercise specific
repetition counter and reduces the dependency on the total number of resources required in repetition
computation. No other studies appear to have studied a wide number of exercises, and none specifically
for CVD rehabilitation through LME exercises. In addition, no studies have undertaken a comparative
study of using traditional ML methods and state-of-the-art CNN methods to identify the best possible
method for exercise recognition and repetition counting.
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We focus our study on exercise recognition and repetition counting using a single wrist-worn
inertial sensor for 10 local muscular endurance (LME) exercises that are specifically prescribed in
exercise-based CVD rehabilitation, with the following goals:

• To undertake a comparative analysis between different traditional supervised ML algorithms
and a deep CNN model based on the state-of-the-art architecture and to find the best model for
exercise recognition.

• To have a comparative analysis of traditional signal processing approach with a single deep CNN
model based on the state-of-the-art architecture and to find the best model for exercise recognition.

As the novelty of this work, we claim the following novel contributions. First, we propose the use
of a single CNN model for the repetition counting task of a wide range of exercises. Secondly, we are
making the LME exercise dataset (INSIGHT-LME Dataset) publicly available (https://bit.ly/30UCsmR)
to encourage further research on this topic.

2. Materials and Methods

2.1. Data Acquisition (Sensors and Exercises)

Currently, there exist no publicly available data-sets with a single wrist-worn sensor for
endurance-based exercises that are commonly prescribed in cardiovascular disease rehabilitation (CVD)
programs. Therefore, we collected a new data set of LME exercises prescribed in CVD rehabilitation
program for balancing and muscle strengthening. In the data collection process, consenting participants
performed the ten LME exercises in two sets (constrained set and unconstrained set) and some common
movements which were observed by any exerciser in between two exercises. The constrained set
of exercises involves participants performing the exercises while observing demonstrative videos
and following the limb movement actions relatively synchronous with the demonstrator in the video.
The unconstrained set of exercises involved participants performing the set of LME exercises without
the assistance of demonstrative videos. Inclusion of the non-exercise movements was essential so that
the built models can distinguish the actions corresponding to the exercise movements from that of
non-exercise movements. The data set was then used for training, validating and testing different ML
and deep neural network models.

2.1.1. Sensor Calibration

Sensor calibration is a method of improving the sensor unit’s performance to get a very
precise and accurate measurement. The Shimmer3 (Figure 1a) inertial measurement unit (IMU)
is a light-weight wearable sensor unit from Shimmer (http://www.shimmersensing.com). Each IMU
comprises of a 3 MHz MSP430 CPU, two 3D accelerometers, a 3D magnetometer and a 3D gyroscope.
A calibrated Shimmer3 IMU, when firmly attached on the limb, can collect precise and accurate
data. Each Shimmer3 has a microSD to store the data locally or can stream the data over Bluetooth.
Shimmer3 inertial measurement units were used in the exercise data collection process and they
were calibrated using Shimmer’s 9DoF Calibration Application (https://www.shimmersensing.com/
products/shimmer-9dof-calibration). The IMUs were used with a sampling frequency of 512 Hz along
with a calibration range of ±16 g for the 3D low noise accelerometer and a ±2000 dps for the 3D
gyroscope. All IMUs used in the process of data capture were calibrated and were securely placed on
the right wrist of the participants, as shown in Figure 1b, with the help of an elastic band during the
data collection process. The sensor orientation and pictorial representation of the unit attachment on
the right wrist are shown in Figure 1a,b respectively.

https://bit.ly/30UCsmR
https://bit.ly/30UCsmR
http://www.shimmersensing.com
https://www.shimmersensing.com/products/shimmer-9dof-calibration
https://www.shimmersensing.com/products/shimmer-9dof-calibration
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(a) Axis direction for Shimmer3 IMU (b) Shimmer IMU placement and orientation

Figure 1. Shimmer3 IMU, axis direction, sensor placement and sensor orientation on the right wrist.

2.1.2. LME Exercise Set and Experimental Protocol

Ten LME exercises comprise of six upper-body exercises: Bicep Curls (BC), Frontal Raise (FR),
Lateral Raise (LR), Triceps Extension Right arm (TER), Pec Dec (PD), and Trunk Twist (TT); along
with four lower-body exercises: squats (SQ), lunges—alternating sides (L), leg lateral raise (LLR),
and standing bicycle crunches (SBC). The representative postures for the execution of six upper-body
LME exercises are shown in Appendix A, Figure A1 and that of four lower-body LME exercises are
shown in Figure A2. A pair of 1 kg dumbbells were used by each participant while performing BC, FR,
LR, and PD exercises. A single dumbbell of 1kg was used during TER, TT, L, and SQ. Exercises LLR
and SBC were performed without dumbbells. The data from these exercises correspond to ten different
classes of exercise. The ten exercises that were used in CVD rehabilitation were either employed a single
joint movement effect (BC, FR, LR, PD, TER, and LLR) or employed multiple joint movements (TT,
L, SQ, and SBC). Some of these exercises have significantly similar arm movements and hence it was
considered of interest to investigate how the models were able to distinguish between these exercises.
It was also of interest to see how robust the models were in terms of their capacity to distinguish
between the exercise actions in comparison to limb movements that were commonly observed between
the exercises. The common limb movements selected for inclusion were side bending, sit-to-stand and
sand-to-sit, lean down to lift water bottle or dumbbell kept on the floor, arm-stretching front-straight,
lifting folded arm up-word, and body stretching up-word with calf raising for relaxation. These
observed common actions have significant similarity in terms of limb movement with that of the
exercises. The data corresponding to these common actions together describes the eleventh class
of movement.

A total of 76 volunteers (47 males, 29 females, age group range: 20–54 years, median age: 27 years)
participated in the data collection process. No participants had any musculoskeletal injury in the recent
past which would affect the exercise performance, and all were healthy. Having prior knowledge of the
exercise was not a criterion in volunteer recruitment. The study protocols used in data collection were
approved by the university research ethics committee [REC Reference: DCUREC/2018/101].

2.2. Data Collection for the Insight-Lme Data Set

The exercise protocol was explained to the participants on their arrival to the laboratory.
Each participant underwent a few minutes of warm-up with arm-stretching, leg-stretching and
basic body-bending exercises. We developed an exclusive MATLAB–GUI module (https://www.
mathworks.com/) [Appendix A, Figure A3a] to collect the data from the participants wearing IMUs via
Bluetooth streaming. The “Exercise Data Capture Assist Module” was designed to select a particular
exercise, to play demo videos, to initialize and disconnect Shimmer IMUs remotely, to start recording
exercise data, to stop recording exercise data and to select a storage path location. The streamed
data were stored automatically with participant_ID and the exercise type in the filename, completely
anonymizing the details of the participants. We used the Shimmer-MATLAB Instrument driver

https://www.mathworks.com/
https://www.mathworks.com/
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interface to connect and collect data from multiple Shimmer units, therefore the designed module was
capable of recording from multiple participants at any given time.

All consenting participants performed the ten exercises in two sets and the common movements
as described in Section 2.1.2. During the constrained set of exercising, the participants performed the
LME exercises while observing demonstrative videos on the screen and following the limb movement
actions relatively synchronous with the demonstrator in the video. Participants were told to pay
particular attention to the following: the initial limb resting position, how to grip the dumbbells (in
case the exercise requires the use of dumbbells), the limb movement plane and the speed of limb
movement during demo video. The constrained setup facilitated minimal variations in the collected
data in terms of planar variations and speed and thus ensuring participants perform exercises at a
similar tempo of movement. The participants were asked to perform each exercise for 30 s which
resulted in approximately 7 to 8 repetitions. After each exercise, participants were given sufficient time
to rest before moving on to the next exercise.

During the unconstrained set of exercising, a timer was used and displayed on the screen.
Participants performed the exercises by recalling what they had learned during the constrained
performance and were free to execute them for 30 s. The data collected during the unconstrained set
corresponds to a variable range of variations from that of exercise data collected from the constrained
set of execution. The variations observed were in terms of the plane of limb movement, speed, and the
rest position of the limb; these variations were used to mimic macro variations that would typically
during home-based exercising.

In addition to the constrained set and the unconstrained set of data collection, participants were
instructed to perform the common movements as stated in Section 2.1.2. Inclusion of these non-exercise
movements was essential that the built models can distinguish the actions corresponding to the exercise
movements from that of non-exercise movements. Participants were asked to perform each of these
actions repeatedly for about 30 s. The 5-s instances from each of these actions represent almost one full
action and collectively constitutes the eleventh class.

Data collected from both the constrained set and the unconstrained set were class-labelled and
stored in ten different exercise folders. An eleventh class-labelled as “others” was created to store the
data from all of the common movements. The entire data set is termed the INSIGHT-LME dataset.

2.3. The Framework of Different Models

Figure 2 represents an overall framework with three major processing blocks. The comparative
study aims to find the best possible method from the different AI models for each task in automatic
exercise recognition and repetition counting. The first block represents the INSIGHT-LME data set
processing and data preparation in terms of filtering, segmentation, 6D vector generations and/or
2D image creation. Data preparation requirements were different for each specific method used in
both comparative studies and hence data processing specifics pertaining to the individual method are
discussed along with each model below.

Figure 2. Framework for the comparative study of artificial intelligence models.
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The second block represents the comparative study for the exercise recognition task. The exercise
recognition task was treated as a multi-class classification task. We compared traditional approaches
(supervised ML models) in exercise recognition, with a deep CNN approach based on AlexNet
architecture [52]. In supervised ML models, different models were constructed using the four
supervised algorithms such as support vector machine (SVM) [53,54], random forest(RF) [55], k-nearest
neighbor (kNN) [56] and multilayer perceptron (MLP) [57]. The eight models from these four ML
algorithms were studied with and without the dimensionality reduction measures using principal
component analysis (PCA) [58]. The best model from the supervised ML was then compared with the
deep CNN model to find the best possible method for the exercise recognition task.

The third block represents the comparative study for the repetition counting task. The repetition
counting task was treated as a binary classification task followed by a counter to count the repetitions.
Again, two different methods were used in repetition counting and the performances were compared
to find the best method for repetition counting. We compared traditional signal processing models
based on peak detection with a deep CNN approach based on the AlexNet architecture.

2.3.1. Exercise Recognition with Supervised ML Models

Figure 3 illustrates the end-to-end pipeline framework adopted for supervised ML exercise
recognition. As discussed in Section 2.3, a total of eight supervised ML models were studied using
this framework to classify the 11 activity classes, in which 10-classes were corresponding to the ten
LME exercises and the eleventh class “others” for the common movements observed during exercising.
The eight supervised ML models were constructed using four algorithms, SVM, RF, kNN, and MLP,
either with or without dimensionality reduction using PCA.

Figure 3. End-to-end pipeline framework for the machine learning models.

Data Segmentation

25 s of 3D accelerometer and 3D gyroscope data of each exercise were segmented from the
INSIGHT-LME dataset (Section 2.2) retaining class-label information. The segmentation was carried
out on all the three sets: training set, validation set and test set from the INSIGHT-LME dataset. 3D
accelerometer plots and 3D gyroscope plots for all ten LME exercises are given in Appendixs E and F.
The 25 s of 6D segmented data consists of approximately five or six repetitions of an exercise, with each
repetition duration lasting approximately 4 s. The segmented data with retained class-label information
was used in feature extraction in the next stage.

Feature Extraction

Time and frequency features [59] were extracted from the 6D segmented data using an overlapping
sliding window method [59]. Three sliding window-lengths of 1 s, 2 s and 4 s were used along with
an overlap of 50% in all cases to find an optimum window-length selection in the classifier design.
The maximum window-length selection was restricted to 4 s because the length of one complete
repetition of an exercise was approximately 4 s.

A vector of 48 features (Table 1), 24 time-frequency features each from the accelerometer and
gyroscope, were computed for each sliding window and repeated for every slide. Class-label
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information was retained. A combined feature set, referred to as “training feature set”, was formed
by combining feature vectors from all the exercise classes and the “others” class from the training set.
The training feature set is computed for each sliding windows of the 1 s, 2 s and 4 s window-length
on the training set of the INSIGHT-LME data set. Similarly, the “validation feature set” and the “test
feature set”, is computed on each of the sliding windows of 1 s, 2 s and 4 s input data from the
validation set and the test set of the INSIGHT-LME data set, respectively.

Table 1. List of time and frequency domain features computed from the 3D accelerometer and 3D
gyroscope data.

Number of Features Feature Description from Accelerometer and Gyroscope

12 Minimum and Maximum from each axis
12 Mean and Std Deviation from each axis
6 RMS values from each axis
6 Entropy value computed from each axis
6 Energy from the FFT coefficient from each axis
6 Pearson correlation coefficients between the axis

Feature sets computed over each sliding window were then used for training, validation and testing of
the supervised ML models using four algorithms (SVM, RF, kNN, and MLP) forming a total of 12 classifiers.

Feature Reduction Using PCA

To study the effect of dimensionality reduction, principal component analysis (PCA) was used
on the feature sets computed from Section 2.3.1 to reduce the overall feature dimensionality of the
input vectors to the ML models. Significant principal components, which were having an accumulated
variance greater than 99%, were retained [59]. New feature sets corresponding to the training feature
set, validation feature set and test feature set were computed using PCA for each of the 1 s, 2 s and
4 s window-length cases. New feature sets with dimensionality reduction using PCA were then used
in the training, validation and testing of additional ML models using algorithms (SVM, RF, kNN,
and MLP) for each window-length case, resulting in an additional 12 classifiers. Appendix B indicates
the PCA computation procedure on the feature vector using the accumulated variance measure.

Classifiers for Exercise Recognition

Exercise recognition from the single wrist-worn inertial sensor data for a set of exercises prescribed
for cardiovascular disease rehabilitation is a classic classification task using ML or deep learning
methods. A total of 24 classifiers were constructed from the feature vectors as explained in Section 2.3.1
and were analyzed for exercise recognition. Each classifier model was constructed using the training
set feature vectors, with 10 fold cross-validation using the grid-search method to ensure the models to
have optimum hyper-parameters (for SVM models, kernel options between RBF and linear, and model
parameters C and gamma values; for kNN models to find the best k-value or number of nearest
neighbors; for RF models the number n_estimator or the number of trees to be used in the forest; for
MLP the step value α).

All models were first evaluated using the validation set feature vectors to evaluate the following:
first, the optimum sliding window-length among all possible selected windowing methods was
determined based on the validation accuracy measure. Secondly, to see the effect of dimensionality
reduction in ML model performance. Finally, to select the single best-supervised ML model to
recognize the exercises based on validation score measure. Furthermore, the best model was evaluated
for individual class performance based on statistical measures such as precision, recall and F1-score
using Equations (1)–(3) respectively, where TP represents the number of times the model correctly
predict the given exercise class, FP represents the number of times the model incorrectly predicts the



Sensors 2020, 20, 4791 8 of 29

given exercise class and FN represents the number of times the model incorrectly predicts other than
the given exercise class.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(3)

2.3.2. Exercise Recognition with a Deep CNN Using Alexnet Architecture

The second method used in the comparative study of the exercise recognition task (Figure 2) was
a deep CNN model using the AlexNet architecture (Figure 4) [52]. The AlexNet model consists of
eight layers in which five are convolutional layers and three fully connected maximum pooling layers.
A rectified linear unit (ReLU) was used as an activation function in each layer and batch normalization
were used before passing the ReLU output to the next layer. A 0.4 dropout was applied in the fully
connected layers to prevent overfitting of the data. This eight-layered architecture generates a trainable
feature map, capable of classifying a maximum of 1000 different classes. The LME exercise recognition
task was an 11-class classification task and hence we used a final output layer, a fully connected dense
layer, with a SoftMax activation function for the classification of 11-classes. An optimum CNN model
was constructed with the best learning rate, optimizer function and loss function using the training
data set and was further validated using the validation data set and then tested the model with the
test data set from the INSIGHT-LME dataset (Section 2.2). We refer this constructed deep CNN model
based on AlexNet architecture as CNN_Model hereafter.

Figure 4. AlexNet architecture [52].

Data Segmentation and Processing

The CNN_Model requires input data in the form of 2D images of size 227 × 227. Data segmentation
and processing methods were used to convert the 6D time-series data from the input INSIGHT-LME
dataset to 2D images. To compare the results of CNN_Model with the ML models discussed in
Section 3.2.1, a 4 s windowing method with an overlap of 1 s was used to segment the 6D (3D
accelerometer and 3D gyroscope) time-series data and an image of size 576 × 576 with plots of all 6
axes was plotted. An image dataset was generated through data segmentation and processing. This was
taken from the entire time-series raw data of the INSIGHT-LME dataset using a 4 s windowing method
with a 1 s overlap. The image dataset comprises of 11-classes of image data, among which 10-classes
were from the ten LME exercises and the eleventh class from the common movements observed during
the exercises. The training set was formed with a total of 43,306 images from 11-classes of data from
46 participants. Similarly, the validation set was formed with 13,827 images from 15 participants and



Sensors 2020, 20, 4791 9 of 29

the test set was formed with 14,340 images from 15 participants. Downsampling of input images to
227 × 227 images were further achieved by data augmentation method in the input layer during the
model implementation.

CNN_Model for the Exercise Recognition Task

An optimum model, CNN_Model, was developed using python sequential modelling along with
the Keras API [60], a high-end API for TensorFlow [61]. The model constructed here was an optimum
model with the best possible optimizer function, good learning rate to achieve better accuracy and with
a very good loss function. The model was constructed with the choice of optimizer function among
stochastic gradient descent (SGD) [62], Adam [63], and RMSprop [64] and the model was trained with
varied learning rates ranging from 1e-03 to 1e-6 values. Also, the model was trained with loss functions
such as categorical cross-entropy (CCE) [65] and Kullback–Leibler divergence (KLD) [66]. The best
model parameters were selected with an iterative evaluation using a varied number of epochs.

Data augmentations, like resizing of input dataset images and shuffling of input images were
achieved using “flow_from_directory” method in “ImageDataGenerator class” from Keras image
processing. Since the input images correspond to time-series data, augmentation operations such
as shearing, flipping, and rotation tasks were not performed. CNN models were constructed using
the training image dataset and validated using the validation image dataset while monitoring the
validation loss. A model with a minimum validation loss was saved for each combination of network
parameters. The model parameters such as training accuracy, validation accuracy, training loss and
validation loss against the number of iterations were obtained and were plotted. The best model
with the highest validation accuracy was selected and tested with the test image dataset and the
resulting evaluation parameters such as test accuracy and loss measures were recorded. The best
model, CNN_Model, was then compared with the best model selected from the supervised ML models.
A complete list of the architecture parameters can be found in Table A1 in Appendix D.

2.3.3. Exercise Repetition Counting with Peak Detection Method

The first method, among three, investigated for exercise repetition counting was a signal processing
method based on peak detection. The concept of the peak detection method [43,59] lies in the identification
of the peaks corresponding to the maximum or minimum signal strength of any periodic time-series data.
Figure 5 represents the end-to-end pipeline used for peak detection and counting repetitions using peak
information. Raw data from the INSIGHT-LME data set corresponds to the 3D accelerometer and 3D
gyroscope recordings for limb movement for each of the exercises. Each exercise type exhibits different
signal patterns on the different sensor axes and the signal strengths on any given axes are proportional to
the plane of limb movement. The periodicity of the signal observed on any significant axis of the sensor
was used in the peak detection after completion of the exercise recognition task. Hence, ten peak detectors
were used, one for each exercise. The raw data from all the participants from the INSIGHT-LME dataset
was used here to count the number of repetitions for each of the exercises. Data processing, filtering, peak
detection and counting are discussed in the following section.

Figure 5. Pipeline for repetition counting using a peak detector.



Sensors 2020, 20, 4791 10 of 29

Data Processing and Filtering

6D time-series data from INSIGHT-LME dataset were the information obtained from each
participant while exercising. The signal pattern variations in all the three axes of the accelerometer
and the gyroscope represent the significant translatory motion and rotary motion, respectively.
While exercising, repetitions are reflected in the periodicity in the signal patterns on these axes
of the sensors. The signal amplitude on each axis represents the significance of limb movement in any
particular direction. However, these signals were affected by the inherent noise introduced by the
sensor. To understand and retrieve these signal variations and to calculate repetitions, the raw data
were first processed and filtered.

The first step is to identify a dominant sensor axis for individual exercise and use this signal in
peak detection. The dominant sensor axis in the plane of limb movement was evaluated using the
mean square values of acceleration measurements from all the three axes of the accelerometer and the
mean square values of the rotation rate from all the three axes of the gyroscope.

For each exercise, the observed plane of movement of the right wrist of the participant exercising
was matched with the calculated dominant sensor axis using the mean square method (Table 2). Signal
plots of 3D accelerometer and 3D gyroscope for all the exercises are shown in Figure A6 of Appendix E
and Figure A7 of Appendix F respectively. Dominant-axis signals were smoothed to remove the possible
noise using a low pass Savitzky–Golay filter [67]. The Savitzky–Golay filter removes high-frequency noise
and has the advantage of preserving the original shape and features of the time-series signal. A window
of 1023 samples and a filter order 4 was used.

Table 2. The sensor and the dominant-axis information for Individual LME Exercises.

Exercise Type Acronym Sensor Used & Dominant Axis

Upper-Body
LME Exercises

Bicep Curls BC Accelerometer: X-Axis
Frontal Raises FR Accelerometer: X-Axis
Lateral Raises LR Accelerometer: X-Axis

Triceps Extension Right TER Accelerometer: X-Axis
Pec Dec PD Gyroscope: X-Axis

Trunk Twist TT Gyroscope: Y-Axis

Lower-Body
LME Exercises

Standing Bicycle Crunch SBC Gyroscope: X-Axis
Squats SQ Accelerometer: X-Axis

Leg Lateral Raise LLR Accelerometer: Y-Axis
Lunges L Accelerometer: X-Axis

Peak Detection and Repetition Counting

The peak detector detects both positive peak and negative peak values from the input time-series
signal using a threshold value. For individual exercise type, the threshold value was unique and was
calculated using the dominant-axis signal information [43]. Two cut-off points were calculated using
the threshold value, an upper threshold point and a lower threshold point. Using these two cut-off
values the peak detector determined the subsequent max and min values from the input wearable
sensor signal. A max–min pair constitutes a repetition count and used as an increment in the repetition
counting process. Figure 6 represents the filtered accelerometer x-axis signal for the Bicep Curls with
the positive and negative peaks marked using a peak detector. Accelerometer x-axis was the dominant
signal information for Bicep Curls (Table 2). A total of ten different peak detectors were used, one for
each exercise.
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Figure 6. An example of repetition counting for Bicep Curls on the filtered dominant signal from the
x-axis of the accelerometer sensor.

2.3.4. Exercise Repetition Counting with a Deep CNN Using Alexnet Architecture

The second approach investigated for repetition counting was a deep CNN model, based on the
AlexNet architecture (CNN_Model). We compare a single deep CNN model for the repetition counting
task of all the exercises as opposed to the use of multiple CNN models as used in [27]. Figure 7 illustrates
the pipeline used for the repetition counting task using the CNN_Model as a binary classifier along with an
additional repetition counter block. Inspired by the signal processing approach to the repetition counting,
CNN_Model uses the peak information from the signals. However, the CNN_Model uses a binary classifier
for the repetition counting instead of 11-class classifier as in the case of the exercise recognition task
(Section 2.3.2). The output of the binary classifier using the CNN_Model was given to a repetition counter
which counts the total repetitions for any given exercise.

Figure 7. Pipeline for repetition counting using CNN_Model.

Data Segmentation & Processing

Using the dominant-axis information and the image dataset created with a 4 s sliding window
from Section 2.3.2 and we created new binary target label information. New binary target class-label
information was generated using a grid of 50% width of the image and if the peak of the dominant-axis
signal plot in the image lies on the left half of the vertical axis of the grid then the image was labelled
with “Peak” (“1”) otherwise, the image was labelled with “NoPeak” (“0”). The binary class-label were
applied to the training, validation and test image data-sets.

CNN_Model as a Repetition Counter

Models were trained with the training dataset of the newer image dataset with binary class-label
information and validated with the validation results. CNN_Model was built to have optimum
parameters with variation in learning rate and selection of optimizer as discussed in Section 2.3.2.
We used a binary cross-entropy loss function while training all models and the best model was selected
based on the validation score evaluation. Repetition counting was done by testing a sequence of 43
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images corresponding to a 25 s exercise data. The predicted result, from the model, on each image of
the sequence, was recorded and used in the repetition counter. A repetition counter counts the total
number of transitions from “Peak” to “NoPeak“ (“1” to “0”) and from “NoPeak” to “Peak” (“0” to
“1”). The total repetition count corresponds to half the number of total transitions from the prediction
labels (Figure 8).

Figure 8. Repetition Counter.

3. Results

3.1. Results of Data Sampling

Among 76 participants, 75 people participated both in the constrained set and unconstrained
set of data collection. However, one participant performed only the constrained set. Only a few
participants had not performed all the exercises. The collected data set was an overall well-balanced
dataset and Table 3 indicates the participation summary for each exercise under the constrained set
and the unconstrained set of data capture. The data set was then segregated and stored into three
different sets: the training set, the validation set and the test set, and was used in all model building.
The data from 46 participants were used in the training set and the data from 15 participants were
used in both the validation set and the test set.

Table 3. Data capture participation summary.

Exercise Type Exercise
Acronym

Number of Participants

Constrained Set Unconstrained Set

Upper-Body
LME exercises

BC 76 75
FR 76 75
LR 76 74

TER 76 75
PD 75 74
TT 76 75

Lower-Body
LME exercises

SBC 75 74
SQ 73 73

LLR 75 74
L 73 75

Others OTH 76 75

Summary of Data Sampling

No public dataset was available with a single sensor wearable device specifically for the LME
exercises used in CVD rehabilitation which could be used on mHealth platforms. We created the
INSIGHT-LME dataset from 76 willing participants performing LME exercises in two sets. Data
collected from the participants wearing a single wrist-worn wearable device under the supervision
of health experts from the sports clinic and with the guidance from clinical staff. The new dataset
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will encourage further research in the field of application using a single wrist-worn inertial sensor in
exercise-based rehabilitation.

3.2. Results for the Exercise Recognition Task

3.2.1. Experimental Results of Exercise Recognition with Supervised ML Models

A total of 24 classifiers were constructed using three sliding windowing methods with four
supervised ML algorithms with and without dimensionality reduction using PCA. These models
were constructed using a 10-fold cross-validation method. The SVM models were constructed using
One-Vs-Rest multi-class classifier and were designed to have optimum hyper-parameters using a
grid-search method with 10-fold cross-validation. The values, C = 100, gamma = 0.01 and RBF kernel
were found to be the optimum hyper-parameters for all the 6 SVM classifiers. For all the 6 kNN models,
k = 1 found to be the optimum value and for all the 6 RF models, n_estimator = 10 found to be the
optimum value. Similarly, for all the 6 MLP classifiers the step value, α = 1, was optimum over a range
of 1 × 10−5 to 1 × 103 on a logarithmic scale.

Selection of suitable sliding window-length was done based on the validation results using the
validation feature set. While the training score indicates the self-classifying ability of the model,
the validation score helps in accessing the suitability of any model deployment on the unseen
data. The training and validation scores for all the 24 classifiers segregated with the corresponding
window-length are shown in Table 4. Validation score measures for the models built using 1 s
window-length were less compared to the validation score measures of the models built using 2 s
and 4 s window-length for all the four (SVM, MLP, kNN, and RF) models with and without PCA.
Therefore, all the models built using 1 s are not selected. In addition, in terms of validation score
measure, the performance of the supervised ML models built using 4 s window-length was showing
1% to 2% improvement when compared with the models built with a window-length of 2 s. Therefore,
the eight supervised ML models constructed using 4 s sliding window-length (with and without PCA)
were retained for further comparison. All the eight models, from 4 s window-length, were tested
with the same test set data using the test set features to find a single best-supervised classifier for
exercise recognition.

Table 4. Classifier performance comparison over varied window-lengths.

Window
Length Classifiers Scores (without PCA) Scores (with PCA)

Training Validation Test Training Validation Test

1 s

SVM 0.9735 0.8559 Models
Not

Selected

0.9674 0.8525 Models
Not

Selected

MLP 0.9232 0.8190 0.9041 0.8041
kNN 0.9390 0.8248 0.9307 0.8227
RF 0.9925 0.8165 0.9898 0.8179

2 s

SVM 0.9907 0.8906 Models
Not

Selected

0.9875 0.8816 Models
Not

Selected

MLP 0.9690 0.8615 0.9568 0.8475
kNN 0.9715 0.8571 0.9613 0.8520
RF 0.9956 0.8607 0.9850 0.8439

4 s

SVM 0.9974 0.9171 0.9607 0.9965 0.9089 0.9596
MLP 0.9961 0.8709 0.9328 0.9939 0.8709 0.9347
kNN 0.9944 0.8848 0.9415 0.9845 0.8828 0.9388
RF 0.9995 0.8905 0.9467 0.9994 0.8670 0.9333

Test-score measures for eight selected supervised ML classifiers are recorded in Table 4. The SVM
model without PCA was found to be the single best performing model with a test score of 96.07%.
The SVM model with PCA was found to be the second-best model with a test score of 95.96%.
Furthermore, a common observation can be drawn between the models constructed with and without
PCA. For all the four supervised ML algorithms (SVM, MLP, kNN, and RF) the test-score measures
have not improved with the dimensionality reduction. The SVM model without PCA was selected
as the best-supervised ML model and was further evaluated to find the performance on individual
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exercises. The SVM model performance for each exercise, in terms of precision, recall and F1-score
measures, were tabulated in Table 5.

Table 5. Performance evaluation measures of SVM Classifier on individual exercises.

Exercise Type Acronym Precision Recall F1-Score

Upper-Body
LME exercises

Bicep Curls BC 1 0.9970 0.9985
Frontal Raise FR 0.9142 0.9364 0.9252
Lateral Raise LR 0.9194 0.9333 0.9263

Triceps Extension TER 1 1 1
Pec Dec PD 0.9599 0.9424 0.9511

Trunk Twist TT 0.9910 0.9970 0.9940

Lower-Body
LME Exercises

Standing Bicycle Crunches SBC 0.9419 0.9333 0.9376
Squats SQ 0.9907 0.9727 0.9817

Leg Lateral Raise LLR 0.9760 0.9849 0.9804
Lunges L 0.9296 0.9606 0.9449

Common
Movements Others OTH 0.9481 0.9139 0.9307

From the performance evaluation of the SVM classifier on individual exercises (Table 5), we can
conclude that using a single wrist-worn inertial sensor in the CVD rehabilitation process, we could
achieve the exercise recognition with an overall recall rate of 96.07%. This result is very important as
the set of LME exercises used in this study are not only single joint upper-body exercises but also have
exercises with multi-joint lower-body exercises. For the upper-body LMEs, measured overall precision
was 96.41%, overall recall was 96.77% and overall F1-score was 96.59% and for the lower-body LMEs,
measured overall precision was 95.96%, overall recall was 96.29% and overall F1-score was 96.12%.

The model’s normalized confusion matrix plot representing the confusions among the exercises are
plotted and shown in Figure 9. Confusions among the exercises with similar wrist-movement actions
were evident from the confusion matrix plot and are discussed here. The first observed confusion was
between two upper-body LMEs, the Frontal raises (FR) and the Lateral raises (LR), and 6.36% of the FR
exercises were confused with that of the LR while 6.67% of the LR exercises were confused with that of
FR. In both FR and LR exercises, raising the hands straight was commonly observed with significant
movements on the plane of the accelerometer x-axis direction. However, the wrist-movement actions were
different for FR from that of LR only during the movement from the initial resting position. The second
observed confusion was between the exercises Pec Dec (PD) and the Standing bicycle crunches (SBC).
A 3.94% confusion was observed in SBC from PD, whereas a 5.76% of PD was getting confused with SBC.
The wrist rotary movements in the plane of the gyroscope y-axis direction were similar for these SBC and
PD exercises. The third observation was for the lower-body LME exercise Lunges were getting confused
with the common movements (others) and a 3.64% confusion was observed. However, the common
movements (others) were confused with Lunges with a 5.83% confusion. AUC-ROC plot for individual
exercise recognition is given in Appendix C (Figure A5).
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Figure 9. Normalized confusion matrix for the SVM model.

3.2.2. Experimental Results of CNN _Model

The CNN_Model with Adam optimizer, a learning rate 1 × 10−4 with KLD loss function was the
best model with a training score of 99.96% and a validation score of 94.01%. The model was further
evaluated using the test set image dataset and measured an overall test score of 96.90%. This overall
test-score measure was almost 1% improved in comparison with the SVM model, the best performing
supervised ML model (Section 3.2.1). The performance of CNN_Model for the individual exercises was
evaluated and the statistical parameters measures like precision, recall and F1-score for each exercise
were tabulated in Table 6. These test-score measures in terms of precision, recall and F1-score for the
individual exercise recognition of the CNN model with AlexNet architecture (Table 6) were improved
in comparison to the test-score measures obtained from the SVM model (Table 5).

Figure 10 represents the normalized confusion matrix for the CNN_Model. The values on the main
diagonal representing recall or sensitivity of the model to the individual exercises. The improvement
of overall recall rate by almost 1% can be seen from the amount of less confusions among exercises
from the confusion matrix. Major confusions between the exercises are improved compared to the
SVM model. For example, confusion between LR and FR is reduced to 4% in comparison with 6%
in the SVM model. Similarly, confusion among SBC and PD is reduced to almost 1% in comparison
with 5% in SVM model. Overall performance comparison of the SVM model and CNN_Model for
upper-body and lower-body exercises along with standard deviation measure is shown in Figure 11.
The CNN_Model outperformed the SVM model in both the upper-body LME exercises and the
lower-body LME exercises.
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Table 6. Performance evaluation measures of CNN_Model.

Exercise Type Acronym Precision Recall F1-Score

Upper-Body
LME exercises

Bicep Curls BC 1 1 1
Frontal Raise FR 0.9052 0.9552 0.9296
Lateral Raise LR 0.9273 0.9105 0.9188

Triceps Extension TER 0.9962 1 0.9981
Pec Dec PD 0.9850 0.9990 0.9920

Trunk Twist TT 0.9962 0.9990 0.9976

Lower-Body
LME Exercises

Standing Bicycle Crunches SBC 0.9921 0.9600 0.9758
Squats SQ 0.9814 0.9552 0.9681

Leg Lateral Raise LLR 0.9209 0.9867 0.9526
Lunges L 0.9748 0.9952 0.9849

Common
Movements Others OTH 0.9868 0.8991 0.9409

Figure 10. Normalized confusion matrix for CNN model with AlexNet architecture.
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Figure 11. Statistical parameter comparison for CNN_Model and SVM models.

Summary of Comparative Study of Models for the Exercise Recognition Task

Our first study was to find a single best model for the exercise recognition by comparing traditional
supervised ML methods with a deep learning method. We studied the supervised ML models using
SVM, RF, kNN and MLP with and without dimensionality reduction using PCA. Also, we studied
a deep CNN model based on the AlexNet architecture. We selected the supervised ML models with
4 s window-length based on validation score. The models with PCA were observed with lower
test-score performance compared to the models without PCA. SVM model without PCA was found to
be the single best performing supervised ML model with an overall test accuracy measure of 96.07%.
In addition, the deep CNN model, CNN_Model, had an overall test accuracy measure of 96.89% and
found to be the single best performing model for the exercise recognition task. Beside overall test-score
measure, overall precision, recall and F1-score measures of the CNN_Model outperformed the SVM
model both in the upper-body and the lower-body LME exercise recognition tasks.

3.3. Results for the Exercise Repetition Counting Task

3.3.1. Experimental Results of Repetition Counting Using Peak Detectors

All the input data signals from the INSIGHT-LME dataset were used in testing to evaluate the
overall performance of the peak detectors. The number of error counts, i.e., the difference between
the actual number of repetition counts and the number of detected counts, was recorded in each case.
Table 7 shows the results of repetition counting for individual LME exercise in terms of the number of
errors with that of the actual count using peak detection method.

The table also indicates the total number of subjects that were used in testing each exercise.
The repetition error counts were indicated by the columns “Error counts” or “e|X|” where “e|X|”
indicates the number of exercise sets with ‘|X|’ repetition error count. ‘|X|’ represents the absolute
error count in terms of 0, 1, 2, or more than 2 errors. The peak detector method used for the repetition
counting performed better for upper-body exercises like BC, FR, LR and TER in comparison to
the repetition counting of the lower-body exercises. For example, from Table 7, for Bicep Curls,
an upper-body LME exercise, repetition counting without any error were reported for 144 instances
among 151 subject trials. However, for 7 subject trials, ±1 error count was reported.
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Table 7. Number of error counts in the repetition using Peak Detector Method.

Exercise Type Exercise Acronym Total
Subjects

Error Count
e|0| e|1| e|2| e>|2|

Upper-Body
LME Exercises

Bicep Curls BC 151 144 7 0 0
Frontal Raises FR 151 140 11 0 0
Lateral Raises LR 150 141 9 0 0

Triceps Extension Right TER 152 143 9 0 0
Pec Dec PD 149 120 8 3 18

Trunk Twist TT 151 128 14 5 4

Lower-Body
LME Exercises

Standing Bicycle Crunch SBC 149 132 8 4 5
Squats SQ 146 63 11 6 66

Leg Lateral Raise LLR 149 73 10 18 48
Lunges L 147 11 9 13 114

3.3.2. Experimental Results of Repetition Counting Using CNN _Model

The optimization of parameters was selected based on lowest validation loss measures and
the optimum CNN_Model for the repetition counting task was with Adam optimizer and with a
learning rate of 1 × 10−5 The model was further tested with the test dataset images. The test data set
corresponds to the data from 15 participants and each exercise was performed twice by each participant
resulted in a total of 30 exercises data for each exercise.

Table 8 shows the result of the repetition counting for individual LME exercises in terms of the
number of errors with that of the actual count. The overall performance of the model in the repetition
counting using a single AlexNet architecture-based CNN_Model was very accurate for most of the
upper-body LME exercises. However, for the lower-body exercises, the repetition count performance
for LLR was 80% and was better compared to the performance with other lower-body exercises. For the
lunges, the model performance was poorest in the repetition counting.

The performance of the model for the upper-body LMEs like FR and LR, it was 100%. For other
upper-body LMEs like BC, TER, PD correct counting was 96.67%. In the case of LLR, a lower-body LME
exercise, the correct counting was 80%. For other exercises the performances of the model with zero
error count were poor. However, the overall count performance of CNN_Model was improved for most
of the exercises, when compared to the repetition counting using the signal processing model (Table 7).
Thus, the repetition count performance of the CNN_Model five out of ten exercises was >95% and for
four exercises it was in the rage of 60~80%. Also, it was observed that the overall performance by
the CNN_Model in repetition counting of the upper-body LMEs was >92%. However, the CNN_Model
for repetition counting suffered in the case of Lunges, a lower-body LME exercise. In total, with a
tolerance of ±1 count error, the performance of the CNN model was accurate in 90% or repetition sets.

Table 8. Number of error counts in the repetition using CNN_Model.

Exercise Type Exercise Acronym Total
Subjects

Error Count
e|0| e|1| e|2| e>|2|

Upper-Body
LME Exercises

Bicep Curls BC 30 29 1 0 0
Frontal Raises FR 30 30 0 0 0
Lateral Raises LR 30 30 0 0 0

Triceps Extension Right TER 30 29 0 0 1
Pec Dec PD 30 29 0 0 1

Trunk Twist TT 30 19 5 3 3

Lower-Body
LME Exercises

Standing Bicycle Crunch SBC 30 18 9 1 2
Squats SQ 30 19 10 0 1

Leg Lateral Raise LLR 30 24 3 1 2
Lunges L 30 3 6 11 10
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Summary of Comparative Study of Models for the Exercise Repetition Counting Task

We studied two different methods for the exercise repetition counting task. First, the signal
processing-based approach or peak detectors and the second, CNN_Model using the AlexNet
architecture. We designed ten different peak detectors based on the dominant sensor-axis signal
information, one for each exercise. The peak detector was a dependent model and works as a
sequential block after a particular exercise recognition. This brings inherited latency of sequential
processing. Signal processing method found to be more accurate method in terms of accurate counting
of repetition counts including the lower-body LME exercise, lunges. However, the models were
under-weighed because of two facts: first, the requirement of ten different peak detectors one for each
exercise recognition and second, the method was a follow-up sequential block with the dependency on
the completion of the exercise recognition. However, the CNN_Model was a single deep CNN model
used for the repetition counting which can count the repetition without waiting for the completion
of exercise recognition. To the best of our knowledge, use of a single deep CNN model for the
repetition counting among a varied range of exercises is novel. With a tolerance of ±1 count error,
the performance of CNN_Model was accurate in 90% or repetition sets.

4. Discussion

In this paper, we compared models to find a single best artificial intelligence model for automatic
recognition and repetition counting in LME exercises used in CVD rehabilitation program using
single wrist-worn device. We found a deep CNN model constructed using state-of-the-art AlexNet
architecture is the best model for the exercise recognition and repetition counting in terms of accuracy
measure. The deep structure associated with the AlexNet learns better compared to the handcrafted
feature learning associated with supervised ML models. Considering only supervised ML models,
the SVM model without PCA was best for recognizing the set of LME exercises. In addition,
we demonstrated a novel method of using a single CNN model for all the exercise repetition counting.
We generated a novel dataset comprising of data for ten LME exercises and six common movements
observed between the exercises (INSIGHT-LME).

Though our work was carried out on the LME dataset generated during this study, we would like
to compare our findings with the outcome of recent relevant research works in the area of exercise-based
rehabilitation. First study, Soro et al. [27] examined exercise recognition and repetition counting using
deep CNN models. The work [27] was carried on a set of ten Cross-Fit exercises and makes use of two
sensors one on a foot and one on hand, and uses a single deep CNN for the exercise recognition task,
designed from scratch. However, this study of exercise recognition is only on the exercise movements
with an assumption of only exercising environment and does not consider any other commonly
observed non-exercise movements between exercises. The data was recorded from accelerometer,
gyroscope and orientation sensor giving rice to 9D data from each sensor. The work [27] reports a
test accuracy measure of 97% using a single hand-worn sensor device. In contrast, our model for the
exercise recognition, CNN_Model, uses 6D data, (accelerometer and gyroscope) and reports 96.89%
test accuracy score which is almost same. However, our model was trained to recognize the exercises
considering an additional eleventh class (“Others”), with non-exercise movement data along with the
ten exercise class data. In addition, the work [27] also studies exercise repetition counting and uses ten
different CNN models, one each for the repetition counting of each type of exercise. The individual
models built for repetition counting were sequential blocks, which work only after the exercise
recognition. They achieved ±1 error among 91% observed sets. In contrast, we built a single CNN
model as it eliminates the need for an exercise specific repetition counter and reduces the dependency
on the total number of resources required in repetition computation. Our single CNN model was
capable of counting repetitions from all the exercises distinguishing from non-exercise actions. We
have achieved repetition counting with ±1 error count on 90% observed data-sets. It appears that our
study is novel in using a single CNN model for the exercise repetition counting.
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A second study, by Um Terry et al. [23], uses the PUSH data set for the exercise motion
classification using a single CNN model for the automatic rehabilitation and sport training. The data
set is a private dataset provided by PUSH Inc., collected using PUSH, a forearm-worn wearable device
for measuring athletes’ exercise motions. The study uses a subset of exercise data for gym-based
exercising from athletes and uses 50 exercises for their classification study. The 9D data comprises of
accelerometer, gyroscope and orientation sensors. Similar to our study of generating 2D image patterns
from the raw 6D data, their study uses the image patterns obtained using 9D data. However, their
study differs in the input image data set formation, where the input image data set was formed using
3 different rectangular grids of varied sizes. Their CNN model resulted in an overall test accuracy
measure of 92.1% for the exercise classification. They also found that a CNN model with 3 levels
performed better than with 2. In our study, our deep CNN model uses AlexNet architecture which
is with a deep model with a depth of 8 levels. The additional levels with the AlexNet may have
contributed to the improved accuracy (96.89%).

A third study, by Zheng-An et al. [35], used a multipath CNN model for sensor-based
rehabilitation exercise recognition. The study made use of a CNN model based on Gaussian mixer
models on the wearable sensor data as first channel path information and second CNN to calculate state
transition probability using Lemple–Ziv–Welch coding. A third CNN was used on the combined two
channel information for the exercise classification. The study used four rehabilitation exercises using
an internet of things (IoT)-based wearable sensor and the data used information from the accelerometer,
gyroscope, and magnetometer. The four exercises were stretching exercises while sitting on a chair.
The study reported a test accuracy measure of 90.63% using the multipath CNN model. This approach
of multipath CNN-based learning is a combination of feature learning from different methods and
is different to our approach as we used a single deep CNN model for the exercise recognition and
repetition counting. However, our study also differs with [35] in that we employed a greater number
of exercises, more diverse limb movements and larger limb movements in the exercises.

5. Conclusions

While our study and those of Soro et al. [27], Um Terry et al. [23] and Zheng-An et al. [35] used
different exercises and different data-sets, they all have tried to address exercise-based rehabilitation
using deep learning models. The present state-of-the-art deep CNNs appear to show higher accuracy
measures in comparison to the supervised ML models due to the ability of deep CNNs to learn a
higher number of features in comparison to the associated handcrafted feature learning with ML
models. Our work also shows that it is possible to use a single CNN model to count exercise repetition,
with very little loss in accuracy. This may be beneficial in reducing the dependency on the total number
of resources required in repetition computation in the case of multiple exercise evaluation.

We studied exercise recognition and repetition counting using single CNN models; future research
should explore their use in providing qualitative feedback on the ‘correctness’ of the movement
technique by observing the variations in the exercise execution in comparison to an ‘acceptable’
technique. Finally, we have studied the tasks of exercise recognition and repetition counting in an
offline mode with a windowing method. These approaches can be further studied in terms of their
time complexity to examine their implementation on miniaturized wearable devices.
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Appendix A. Representative Postures for the LME Exercises Used and MATLAB–GUI Module
Used in the Data Capture Process

Figure A1. Upper-body LME exercises.

Figure A2. Lower-bodyLME exercises.

(a)

(b)

(c)

Figure A3. MATLAB–GUI for exercise data capture process. (a) Interactive MATH Lab GUI (b) Bicep
Curls Data Streaming (c) Pec-Dec Data Streaming.
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Appendix B. Representation of PCA Computation of Time-Frequency Feature Vectors

PCA plots based on 30 traits measured on 11-classes of movements (10-classes of exercise
movements and an ’other class’) from the INSIGHT-LME dataset shown in Figure A4. First three
significant components are given in Figure A4a. An accumulated variance plot is shown in Figure A4b.

(a) First three significant components plot (b) Accumulated variances plot

Figure A4. PCA plots for the training feature set for a 4 s sliding window (a) 3D plot of the first three
significant components, (b) Accumulated variances plot.

Appendix C. Receiver Operating Characteristic of the SVM Model (AUC-ROC Plot)

Performance measurement or the capability of the classifier models were represented using the
area under the curve plot or also known as the receiver operating characteristic (AUC-ROC) curve
plots. The AUC-ROC curves are plotted with the true positive rate (TPR) on the y-axis against the false
positive rate (FPR) the x-axis. Figure A5 represents the AUC-ROC plot for the SVM classifier without
PCA and a minimum AUC value of 99.67% for FR to a maximum of 100% for BC, TT and TER.

Figure A5. Receiver operating characteristic of the SVM model.
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Appendix D. Model Architecture for CNN _Model

CNN Model architecture used in the exercise recognition task for CNN_Model is given in Table A1
and represents the number of layers and the parameters used. The same model with only output layer
variation is used in the repetition counting task

Table A1. All architecture parameters for CNN_Model. CL: Convolution Layer, DL: Dense Layer.

Layer Value Parameters

Input Layer 227 × 227 × 3 0
Convolution Filters CL1 96 34,944

Kernel Size CL1 (11, 11) -
Strides CL1 (4, 4) -
Pooling PL1 (3 ,3) 0
Strides PL1 (2, 2) -

Convolution Filters CL2 256 614,656
Kernel Size CL2 (5, 5) -

Strides CL2 (1, 1) -
Pooling PL2 (3 ,3) 0
Strides PL2 (2, 2) -

Convolution Filters CL3 384 885,120
Kernel Size CL3 (3, 3) -

Strides CL3 (1, 1) -
Convolution Filters CL4 384 1,327,488

Kernel Size CL4 (3, 3) -
Strides CL4 (1, 1) -

Convolution Filters CL5 256 884,992
Kernel Size CL5 (3, 3) -

Strides CL5 (1, 1) -
Pooling PL3 (2 ,2) 0
Strides PL3 (2, 2) -
Dense DL1 4096 4,198,400

Dropout DL1 0.4 0
Dense DL2 4096 16,781,312

Dropout DL2 0.4 0
Dense DL3 1000 4,097,000

Dropout DL3 0.4 0
Batch Normalization

CL1, CL2, CL3, CL4, CL5, DL1, DL2, DL3 Yes
384 + 1024 + 1536 + 1536 +

1024 + 16,384 + 16,384 + 4000
Activation function

CL1, CL2, CL3, CL4, CL5, DL1, DL2, DL3 ReLU 0

Activation function DL2 SoftMax 0
Total Parameters

Trainable Parameters
Non-trainable Parameters

:
:
:

28,877,195
28,856,059

21,136

Appendix E. 3D Accelerometer Raw Data Signal Plots for All Exercises

3D Accelerometer raw data signal plots for all the 10 LME exercises corresponding to the data
from the wrist-worn sensor of one participant is shown in Figure A6.
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Bicep Curls Frontal Raise

Lateral Raise Triceps Extension

Pec Dec Trunk Twist

Standing Bicycle Squats

Leg Lateral Raise Lunges

Figure A6. 25 s 3D accelerometer plesignal plots for all exercises.
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Appendix F. 3D Gyroscope Raw Data Signal Plots for All Exercise

3D Gyroscope raw data signal plots for all the 10 LME exercises corresponding to the data from
the wrist-worn sensor of one participant is shown in Figure A7.

Bicep Curls Frontal Raise

Lateral Raise Triceps Extension

Pec Dec Trunk Twist

Standing Bicycle Squats

Leg Lateral Raise Lunges

Figure A7. 25 s 3D gyroscope signal plots for all exercises.
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