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Abstract: Ocean latent heat flux (LHF) is an essential variable for air–sea interactions, which establishes
the link between energy balance, water and carbon cycle. The low-latitude ocean is the main heat
source of the global ocean and has a great influence on global climate change and energy transmission.
Thus, an accuracy estimation of high-resolution ocean LHF over low-latitude area is vital to the
understanding of energy and water cycle, and it remains a challenge. To reduce the uncertainties of
individual LHF products over low-latitude areas, four machine learning (ML) methods (Artificial
Neutral Network (ANN), Random forest (RF), Bayesian Ridge regression and Random Sample
Consensus (RANSAC) regression) were applied to estimate low-latitude monthly ocean LHF by using
two satellite products (JOFURO-3 and GSSTF-3) and two reanalysis products (MERRA-2 and ERA-I).
We validated the estimated ocean LHF using 115 widely distributed buoy sites from three buoy site
arrays (TAO, PIRATA and RAMA). The validation results demonstrate that the performance of LHF
estimations derived from the ML methods (including ANN, RF, BR and RANSAC) were significantly
better than individual LHF products, indicated by R2 increasing by 3.7–46.4%. Among them, the LHF
estimation using the ANN method increased the R2 of the four-individual ocean LHF products
(ranging from 0.56 to 0.79) to 0.88 and decreased the RMSE (ranging from 19.1 to 37.5) to 11 W m−2.
Compared to three other ML methods (RF, BR and RANSAC), ANN method exhibited the best
performance according to the validation results. The results of relative uncertainty analysis using the
triangle cornered hat (TCH) method show that the ensemble LHF product using ML methods has
lower relative uncertainty than individual LHF product in most area. The ANN was employed to
implement the mapping of annual average ocean LHF over low-latitude at a spatial resolution of 0.25◦

during 2003–2007. The ocean LHF fusion products estimated from ANN methods were 10–30 W m−2

lower than those of the four original ocean products (MERRA-2, JOFURO-3, ERA-I and GSSTF-3) and
were more similar to observations.

Keywords: latent heat flux (LHF); artificial neutral network; machine learning methods; triangle
cornered hat
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1. Introduction

Ocean latent heat flux (LHF) plays a key role in the transformation of energy and vapor at the
interface of the atmosphere and ocean [1–3]. Knowledge of ocean turbulent fluxes is important for
understanding the mechanism of global heat and freshwater budget and is helpful in various research,
including on atmospheric issues, oceanic problems and weather prediction. The study of sea–air heat
flux can deepen the understanding of the ocean circulation driving model, elucidate the role of the
ocean in balancing global energy and develop numerical prediction work on climate change. Both the
atmospheric model and the ocean model require accurate LHF estimates for numerical simulation and
forecasting [4–7]. Thus, accurate LHF estimation of low-latitude regions is essential for climate and
hydrology applications. Among them, ocean LHF in low-latitude regions has an important impact on
global climate change.

Low-latitude areas within 30◦ N to 30◦ S, including tropical and subtropical regions, account for
approximately half of the Earth’s surface area. Because it is covered by the ocean and receives
concentrated solar radiation, low-latitude areas store a large amount of water vapor and heat. The LHF
transferred from low-latitude oceans to the atmosphere is the main source of atmospheric circulation
energy [8–10]. Thus, accurate LHF estimation of low-latitude areas plays a key role in climate and
hydrology applications [11]. Accurate estimation of high spatial resolution ocean LHF is vital for
researching climate change, and it remains a challenge.

Continuous ocean LHF monitoring is mainly located in low-latitude areas, which can improve
the accuracy of ocean LHF estimates. Many experiments have been carried out to promote the
study of air–sea turbulent fluxes [12–15], such as the Global Energy and Water Cycle Experiment
(GEWEX) [16] and Joint Global Ocean Flux Study (JGOFS) [17]. Based on a large amount of experimental
observations, the parameterization scheme of the turbulence flux algorithm has developed rapidly,
and global ocean turbulence flux products with different scales and spatial and temporal resolutions
have been produced. Satellite and reanalysis data can provide us with spatially and temporally
continuous ocean LHF observations at various scales. At present, various satellite and reanalysis
LHF products with moderate or coarse spatial resolution have been produced, including Japanese
Ocean Flux Data Sets with Use of Remote Sensing (J-OFURO) [18], Goddard Satellite-Based Surface
Turbulent Fluxes (GSSTF-3) [19], the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite
Data (HOAPS) [20], Modern-Era Retrospective analysis for Research and Applications (MERRA),
ERA_Interim, etc. However, compared with the observations obtained from buoy sites or experimental
ships, satellite-based LHF products present large discrepancies. Brunke et al. [21] concluded that
satellite-based products have generated large uncertainty in the process of inversion by comparing
various turbulent flux products and four satellite products (GSSTF2, GSSSF2b, J-OFURO and HOAPS).
Some satellite-based products provide accurate LHF estimates, but the study areas are limited to
specific areas (e.g., SCS). Reanalysis products provide us with reasonable estimations of ocean LHF
and have been successfully used in numerical weather prediction (NWP); however, they have notable
errors owing to data assimilation schemes. Some reanalysis has a relatively high spatial and temporal
resolution but tend to overestimate ocean LHF in most areas compared to buoy site measurements.
Many studies have also indicated that ocean LHF estimates with a coarse spatial resolution (e.g., 1◦)
may lead to large errors due to the spatial heterogeneity of ocean LHF [22].

Over the last forty years, many methods have been developed to implement ocean
LHF estimates. To date, the methods used for estimating ocean LHF can be calculated by:
(1) physically-based methods [23–25]; (2) data assimilation methods [26–30]; and (3) bulk aerodynamic
algorithms [31–34]. Physically-based methods, including eddy covariance methods and inertial
dissipation methods [35–38], are considered the most reliable methods in estimating ocean LHF.
However, these methods require high-frequency instruments that can only be implemented for
site-scale observations; further, such observations are limited in temporal and spatial distribution.
Data assimilation methods can provide a reasonable simulation of the ocean LHF, but the difference in
the parameterization scheme may introduce significant uncertainty to ocean LHF estimations [39–41].
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Widely used bulk aerodynamic algorithms utilize air temperature, sea surface temperature, air specific
humidity and wind speed as input bulk quantities to calculate ocean turbulent fluxes. Even though
these methods can be used everywhere on Earth, there are still significant uncertainties from different
models [23,42,43]. These methods are widely used to estimate ocean LHF at various temporal and
spatial resolutions. However, the ocean LHF estimates derived from these methods differ substantially
from observations [44–46].

Recently, multiple product ensembles using machine learning (ML) methods have been successfully
applied to estimate terrestrial latent heat flux (LE). For example, Yao et al. [47] used support
vector machine (SVM) to integrate three satellite-based LE products to improve global terrestrial
evapotranspiration (ET) estimation and found that the SVM method was superior to all other physical
methods. Fan et al. [48] developed four tree-based ensemble models (RF, M5Tree, GBDT and XGBoost)
to estimate daily ET using limited meteorological data; the developed XGBoost and GBDT models
have accurate predictions, strong model stability and low calculation cost. Shang et al. [49] applied
four ML methods (Extremely Randomized Trees (ETR), Gradient Boosting Regression Tree (GBRT),
Random Forest (RF) and Gaussian Process Regression (GPR)) to improve terrestrial LE estimations
over Europe based on five individual terrestrial LE product; the validation results illustrate that the LE
estimation using ETR method increased R2 and decreased RMSE. Even though the ML methods have
been widely used to estimate terrestrial biophysical variables, there is a lack of experiments on dataset
fusion to improve ocean LHF estimates by combining multiple LHF products.

In this study, we used the Artificial Neutral Network (ANN) method to improve ocean LHF
estimation over low-latitude areas by using four individual LHF products. We had three objectives:
(1) evaluate the performance of the ANN and three other ML methods (RF, Bayesian Ridge Regression
(BR) and Random Sample Consensus (RANSAC)) by using four LHF products based on the moored
buoy array of TAO, the Research Moored Array for African-Asian-Australian Monsoon Analysis and
Prediction (RAMA) and the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA);
(2) assess the relative uncertainties among of the ocean LHF products based on the triangle cornered
hat (TCH) method; and (3) use ANN to map the average ocean LHF with 0.25◦ spatial resolution for the
period of 2003–2007 by using an ensemble of four LHF products.

2. Data

2.1. Satellite and Reanalysis Ocean LHF Products

The LHF products used in this study include the following: MERRA-2 [50], European Centre for
Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-I) [51], Japanese Ocean Flux
Data Sets with Use of Remote Sensing (J-OFURO) [18] and Goddard Satellite-Based Surface Turbulent
Fluxes (GSSTF-3) [19].

Monthly ocean latent heat flux estimates derived from MERRA-2 [52], with a spatial resolution
of 0.5◦ latitude × 0.625◦ longitude, from January 2003 to December 2007, was launched aboard
the EARTHDATA at https://earthdata.nasa.gov/. The ERA-I data [53] were produced by the data
assimilation system using 4-dimensional variational assimilation (4D-Var), with a spatial resolution
of 0.25◦ latitude × 0.25◦ longitude. J-OFURO was produced by the School of Marine Science and
Technology at Tokai University and was calculated by the COARE 3.0 method with an improved
spatial resolution of 0.25◦. Compared to the previous versions, GSSTF-3 is an improved version with
corrected surface specific humidity (Qair) data retrieved by removing the effect of the Earth incidence
angle (EIA) drifting [23]. These data were obtained from Goddard Earth Science Data and Information
Services Center’s (GES DISC) website, with an advantage of a high spatial resolution of 0.25◦.

The objectively analyzed air–sea fluxes product (OAFlux) [6,54] was used to validate the accuracy
of the fusion product. It has been reported that the OAFlux dataset is a reliable product for ocean
turbulent flux research. The OAFlux data have an advantage in that they combine satellite-derived
data and reanalysis data by using the objective analysis method; however, these data have a coarser

https://earthdata.nasa.gov/
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spatial resolution of 1◦. To estimate the monthly global ocean LHF products at a spatial resolution
of 0.25◦ from 2003 to 2007, we used the bilinear interpolation method. Detailed information for each
product mentioned above is summarized in Table 1 and detailed input variable datasets of each LHF
product is summarized in Table 2.

Table 1. Summary of the five ocean LHF products in this study for 2003–2007.

Products Variables Spatial Resolution Time Span References

MERRA-2 LHF 1/2◦ × 2/3◦ 1980–present Rienecker et al., 2011
ERA-interim LHF 0.125◦ 1979–present Dee et al., 2011

GSSTF-3 LHF 0.25◦ 1987–2008 Shie 2012
J-OFURO LHF 0.25◦ 1988–2013 Tomita et al., 2018
OAFLUX LHF 1◦ 1958–present Yu et al., 2004

Table 2. Summary of input variable datasets for each LHF product.

Product Variable Source

MERRA-2

Surface winds SSM/I; QuikSCAT; ERS (ERS-1 and ERS-2);

Rain rate SSM/I; TRMM Microwave Imager (TMI);

Radiances
SSM/I; GOES sounder; TIROS Operational Vertical
Sounder (TOVS) and Advanced TOVS (ATOVS); AIRS;
MSU; AMSU-A;

Upper-level winds geostationary satellites and MODIS

ozone SBUV

ERA-I

Surface winds;
Ocean wave height ERS (ERS-1 and ERS-2);

Radiances VTPR; High Resolution Infrared Sounder (HIRS);
Stratospheric Sounding Unit (SSU); MSU; AMSU-A;

Upper-level winds Meteosat-2

Ozone profiles SBUV

clear-sky radiances Meteosat-2

Surface wind speed;
Column water vapor SSM/I

radio occultation (RO) CHAMP; COSMIC; GRACE

GSSTF-3

wind speed (U) SSM/I

surface air specific humidity (Qair) corrected SSM/I brightness temperature (Tb)

Radiances SIRS, HIRS, VTPR, and TOVS;

Upper-level winds geostationary satellites

JOFURO-3

wind speed (U) SSM/I; TMI; WindSAT; AMSR-E; AMSR2; ERS (ERS-1
and ERS-2); QuikSCAT; ASCAT-A; ASCAT-B; OSCAT

Qair SSM/I; TMI; AMSR-E; AMSR2

SST MGDSST; OSTIA-NRT; AMSR-E; MW; OISST; AMSR;
TMI; WindSAT; GMI; OSTIA-RA

OAFlux

wind speed (U) SSM/I; AMSR-E; QuikSCAT;

Qair SSM/I;

SST NCEP-OI; NCEP–NCAR; NCEP–DOE; ERA-40
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2.2. Buoy Observations

Buoy observations were used as the reference data to evaluate the performance of the ocean
LHF estimation. The monthly ocean latent heat observations were collected from 115 moored buoy
sites [55–58].

Among 115 moored buoy sites, 67 buoys were collected from the Tropical Atmosphere
Ocean/Triangle Trans Ocean Buoy Network (TAO/TRITON, https://tao.ndbc.noaa.gov/), 18 buoys
were collected from the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA,
http://www.brest.ird.fr/pirata/) and 12 buoys were collected from the African-Asian-Australian
Monsoon Analysis and Prediction (RAMA, https://www.pmel.noaa.gov/tao/drupal/disdel/). All ocean
turbulent fluxes were calculated by the COARE 3.0 method; these data covered the period from 2003 to
2007. Buoy observations were mainly located in tropic areas. Figure 1 shows buoy site locations and
information about the three buoy site arrays. Although the moored buoy footprints varied from the
pixel size of the reanalysis and satellite-based products, we still regarded the buoy site observations as
“ground truth” in this study.
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3. Methods

3.1. Artificial Neural Network

An Artificial Neutral Network (ANN) [59] can be considered a network that consists of a series of
adaptive connected simple neuron nodes to simulate the human biological nervous system in response
to input signals (Figure 2). Different from logistical regression, which is composed of an input and
an output layer, the ANN comprises three layers: the input layer, the hidden layer and the output
layer. Various datasets are considered the input data; the input data are weighted in the hidden layer
by means of flexible mathematical algorithms, and the prediction dataset is produced in the output
layer. Based on self-adaptation and self-learning, the ANN method causes the input and output data to
establish a nonlinear relationship.

Within the hidden layer, the fully connected neurons receive input signals from other neurons;
these input signals are passed through a weighted connection.

y j =
m∑

n = 1

wnjbn (1)

where yj refers to the jth neuron output data, wnj is the connection weight of the nth neuron in the
hidden layer and the jth output layer neuron and bn is the output of the nth neuron in the hidden layer.

https://tao.ndbc.noaa.gov/
http://www.brest.ird.fr/pirata/
https://www.pmel.noaa.gov/tao/drupal/disdel/
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The total input signal value received by the different neurons is used to compare with the threshold
of the neuron node,

y j = f
(
β j − θ j

)
(2)

where f is the activation function of the neural network, βj is the output received by the jth neuron in
the output layer and θj is the threshold of the jth neuron in the output layer.

Then, the output data of the neuron are easily generated by the activation function. The learning
process of ANN is used to adjust the connection weight between neurons and the threshold of each
neuron based on the results of the training data.
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3.2. Other Machine Learning Methods

3.2.1. Random Forest

RF [59] is an ensemble method that is widely applied for regression issues. It uses classification
regression tree (CART) as a regressor for the decision tree and bootstrap sample methods to select
different training datasets for different decision trees. Further, it randomly selects features to perform
attribute splitting on internal nodes when constructing a single tree. Therefore, the RF method
can better exclude noise interference and has better performance for classification and regression.
Generalization is the ability of the Random Forest to correctly predict data outside the training set,
and the generalization error is the probability of a misclassification of the data outside the training set
by the regression. The generalization error of a Random Forest depends on the regression ability of a
single tree and the correlation between any two trees. Research results show that the generalization
error of the RF converges to a finite value; thus, as the number of classification trees in the forest
increases, the Random Forest does not cause overfitting.

3.2.2. Bayesian Ridge Regression

In addition to the RF and ANN methods, we also applied two other linear regression methods
to predict ocean LHF flux. Compared to other ML methods, the linear regression method is fast in
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modeling, and the calculation method is simple. Therefore, even if the amount of input data is large,
the calculation speed is fast.

Considering the high correlation among the input variables in this paper, we used the Bayesian
Ridge Regression (BR) [60] to estimate ocean LHF flux. Generally, the linear regression algorithm uses
the least squares method to optimize the coefficients. Ridge regression obtains the optimal parameters
by penalizing the coefficients to reduce the impact of highly correlated input variables. The Bayesian
Ridge Regression (BR) method, which combines the Bayesian method and the ridge regression method,
has a strong self-adaptation ability to the input datasets, which not only avoids the overfitting of
datasets but also promotes a high utilization rate of data samples.

3.2.3. Random Sample Consensus

The RANSAC regression [61] model can obtain valid sample data from the observation dataset
containing “outliers” and iteratively estimate the mathematical model parameters. In short, the RANSAC
method process is as follows: first, randomly extracted samples from the datasets build “interior points”;
second, the remaining datasets test the model training by “interior points” and add the sample points
that fall within a predetermined tolerance range to the “interior points”; finally, it fits the model with
all the “interior points” and uses “interior points” to estimate the error. The process is terminated if
the model performance reaches expectations.

3.3. Triangle Cornered Hat Method

TCH [62] can estimate relative uncertainty without prior knowledge. The TCH method is an
improved version of the Triangle Cornered (TC) method and can be used to calculate the relative
uncertainty among three or more independent products. Quantifying uncertainty by removing
“true values” from different variables (assuming the input variables all contain true values) is a difference
method. This method has been successfully used in gravity fields [63], evapotranspiration [64] and soil
moisture [65] at different scales. Here, we applied the TCH method to quantify the relative uncertainty
among ocean heat fluxes from different products.

The TCH method treats the time series of input products as {Xi}, i = 1,2, . . . , N. The subscript i
represents the ith product among all sorted products and N represents the total number of products.
{Xi} can be divided into two parts, including the “true value” {Xt} and the error term {εi}:

Xi = Xt + εi, ∀i = 1, 2, . . . , N (3)

Due to an unknown true value, it is difficult to obtain the error term {εi}. Thus, the first step in the TCH
method is to determine the difference among the N products and reference dataset. First, choose one
time series LHF product as reference data {XR} and calculate the differences {Di,M} between reference
data {XR} and other LHF datasets {Xi}.

Di,M = Xi −XR = εi − εR ∀ii = 1, 2, . . . , N − 1 (4)

where Di,M represent the difference matrix between the reference dataset {XR} and the input dataset
{Xi}. Next, calculate the (N − 1) × (N − 1) covariance matrix S = cov (D) and determine the covariance
matrix of the noise matrix G through the S matrix:

S = MT
·G ·M (5)

M =

[
A
−uT

]
(6)

where A is the identity matrix and u is the vector of [1 1 1 . . . 1]. To minimize the global correlation of
errors, Premoli and Tavella [66] proposed a free parameter selection criterion to maintain the positive
definiteness of G. According to the constraint minimization problem proposed by the Kuhn–Tucker
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theorem, it can be used to determine the unique solution of the matrix G, and the random error of each
group of data can be calculated.

3.4. Evaluation Metrics

The squared correlation coefficient (R2), root-mean-square-error (RMSE) and bias are used as
metrics to evaluate the performance of the LHF estimations against reference dataset. The matching
degree between the evaluated estimations {xi} and the reference dataset {ri} can be judged by the
metrics mentioned above, and they are written as:

R2 =

(∑N
i=1(xi − x)(ri − r)

)2∑N
i = 1(xi − x)2 ∑N

i= 1(ri − r)2 (7)

Bias =

∑N
i = 1(xi − ri)

N
(8)

RMSE =

√√√
1
n

N∑
i = 1

(xi − ri)
2 (9)

where N represents the number of samples. The King–Gupta efficiency (KGE) is a comprehensive
evaluation metric that can be calculated as follows:

KGE = 1−

√
(R− 1)2 +

(STe

STo
− 1

)2
+

(Ee

Eo
− 1

)2
(10)

where R denotes the correlation coefficient between the LHF estimation and reference dataset; STe and
STo represent the standard deviation of the LHF estimation and reference dataset, respectively; and Ee

and Eo are the mean value of the LHF estimation and reference dataset, respectively. The closer KGE is
to 1, the closer the LHF estimation is to the reference dataset.

3.5. Experimental Setup

Before model construction, we extracted LHF variable from four products and in situ measurements.
More than 4000 observations from 115 buoy sites were collected as target variable, and LHF variable
extracted from four products (JOFURO-3, GSSTF-3, ERA-I and MERRA-2) were used as predictor
variables. To build the model, the datasets (both target dataset and predictor dataset) were randomly
divided into two groups: 70% to train the model and the remaining 30% to validate the trained model.
The best parameters which can provide the highest correlation coefficient were selected in the training
data through cross validation. The obtained optimal parameters were then used in the model to
estimate LHF.

We constructed the ANN, RF, BR and RANSAC model based on sklearn modules by using the
Python platform. The main parameters of ANN models include the learning_rate, hidden_layer_sizes,
n_estimators and min_samples_split. The performance of RF method in the scikit-learn toolbox is
mainly influenced by n_estimators and max-features. The main parameters of BRR are n_iter and
lambda. The main parameters to adjust when using RANSAC are max_trials, min_samples and
residual_threshold. Obtaining the optimal parameters of the model can not only improve the accuracy
of model estimation but also improve efficiency and shorten model running time.

To find the optimal parameter for each ML method, we applied the GridSearchCV module.
GridSearchCV method is a parameter tuning method. It tries every possibility through loop traversal
among all parameter combinations and selects the optimal parameter combination based on the
performance of the results. The main disadvantage of this method is that it is time-consuming.



Sensors 2020, 20, 4773 9 of 24

Optimal parameter combinations for each ML methods were determined by GridSearchCV method in
optional parameters, as shown in Table 3.

Table 3. Parameters setting to determine the optima parameters for ML methods.

Method Parameters Optional Interval Selection of
GridSearchCV

ANN

activation “identity”, “logistic”, “tanh”, “relu” - relu

learning_rate “10”, “1”, “0.1”, “0.01”,
“0.001”, “0.0001” - 0.01

hidden_layer_sizes “(10, 50)”, “(10, 100)”, “(20, 80)”,
“(20,150)”, “(30,100)“, “(50,100)” - (20, 80)

batch_size 50–300 50 150

RF

min_samples_split 2–6 1 4

n_estimators 5–50 3 40

max-features 1–10 1 6

BR

n_iter 20–300 20 240

lambda
“0.1”, “0.01”, “0.001”, “0.0001”
“0.00001”, “0.000001”,
“0.0000001”

- “0.000001”

RANSAC

max_trials 30–120 5 105

min_samples 80–300 20 260

residual_threshold 5–100 5 45

4. Results

4.1. Validation of the Five Ocean LHF Products against Buoy Observations

At the site scale, the five ocean LHF products exhibited substantial differences in ocean LHF
estimation, as shown in Figure 3. For the TAO buoy site array with the most observations, the monthly
ocean LHF estimation of ERA-I product correlated best with the observations, indicated by an R2 = 0.80
(p < 0.01); however, the RMSE and bias both exceeded 25.2 W m−2. Similarly, MERRA also showed good
performance with an R2 > 0.75 (p < 0.01) but highly overestimated ocean LHF as indicated by the highest
RMSE and bias among all ocean LHF products. In contrast, the OAFlux product showed relatively
lower RMSE and the lowest bias; the lower correlation (R2 = 0.56, p < 0.01) may be caused by its coarse
spatial resolution (approximately 1◦). GSSTF-3 performed least satisfactorily in estimating ocean LHF,
with disperse distribution of validation points and relatively high overall estimates. Compared to
other observation arrays, all ocean LHF products performed better with higher R2 and lower bias in
the PIRATA buoy site array.
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Figure 4 shows the R2, RMSE, bias and KGE statistics of five ocean LHF products against
observations from different buoy sites. For all buoy site arrays, reanalysis products (MERRA and
ERA-I) have the highest R2 ranging from 0.39 to 0.83. However, the magnitude of average monthly
LHF derived from reanalysis is much higher than that of buoy-measured LHF, as indicated by biases
exceeding 25 and 32 W m−2, respectively. When considering the KGE (ranging from 0.5 to 0.83) and
RMSE (ranging from 18 to 31 W m−2), the JOFURO-3 product is superior to others. This indicates
that different parameterizations of ocean LHF products affect the accuracy of ocean LHF estimates.
The performance of OAFlux products is lower than JOFURO-3 but better than GSSTF-3; this is probably
caused by the coarse spatial resolution of OAFlux, which has a spatial resolution of 1◦.
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4.2. Ensemble of Four Ocean LHF Products from ANN and Other ML Methods

4.2.1. Model Training and Validation based on Buoy Observations

None of the individual ocean LHF products provides the best LHF estimates based on buoy
observations. Thus, we used ANN and other ML methods (RF, BR and RANSAC) to calculate ocean LHF
by an ensemble of four ocean LHF products: MERRA, ERA-I, JOFURO-3 and GSSTF-3. The reanalysis
products are highly correlated with measurements but also highly overestimate ocean LHF. In contrast,
the satellite-based product JOFURO-3 and objectively analyzed product OAFlux perform well with
lower bias.

Figure 5 represents the training results of ANN, RF, BR and RANSAC for all buoy site observations.
Estimated ocean LHF derived from four ML methods agreed well with buoy measurements and is
consistent with the trend of buoy observations. Among the four ML methods, ANN has the highest R2

and lowest RMSE in training datasets, as indicated by an R2 exceeding 0.88. The RANSAC method has
a slightly higher RMSE of 12.1 W m−2 and a slightly lower R2 than other ML methods.

Figure 6 shows the scatter plot for the ocean LHF observations and LHF estimations from four ML
methods. The validation results show that ANN yields the best estimations of ocean LHF, as indicated
by the highest R2 of 0.87, the lowest RMSE of 10.9 W m−2 and the highest comprehensive index (KGE)
of 0.90, followed by RF and BR. Although RANSAC performed weakly as indicated by the lowest R2

(0.82) and KGE (0.78), it is still superior to any individual ocean LHF product. Overall, these results
illustrate that the ocean LHF fusion products derived from ML methods are superior to individual LHF
products. In addition, the ANN model performs best among the four ML models.
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4.2.2. Relative Uncertainties of Ocean LHF Over Low-latitude Areas

To quantify the performance of all four methods over the tropics, we used the TCH method to
calculate the uncertainties of ocean LHF estimates derived from ML methods.

Figure 7 presents the distribution of relative uncertainties estimated from ocean LHF estimations
based on four ML models. Generally, the ocean LHF estimated from ML methods perform better than
those from ocean LHF products (MERRA, ERA-I, JOFURO-3 and GSSTF-3). Moreover, the LHF products
tend to generate lower uncertainties in the area away from the coast due to the stable and uniform
climatic conditions and have higher uncertainties in the area close to land. The ANN and BR perform
well over low-latitude areas with lower relative uncertainties; BR has higher uncertainties than ANN
in the west of South Africa and equatorial area. Among the LHF estimations based on ML methods,
RF has the highest relative uncertainties, especially in the Kuroshio current region and Southern
Hemisphere Subtropical area, which may be caused by the errors in the model estimation. For ocean
LHF products, although the ERA-I outperforms the other three LHF products, it underperforms the
ANN estimation in most areas.
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Figure 8 shows the relative uncertainties of ocean LHF estimations calculated by four ML methods.
ANN outperforms the other LHF estimations with lower average relative uncertainties of 2.60 W m−2,
a median value of 2.39 W m−2 and a maximum of relative uncertainties lower than 10 W m−2. The BR
is second to ANN with higher average relative uncertainties of 2.86 W m−2 and a maximum of relative
uncertainties of 20 W m−2. Although the median values of relative uncertainties for RF and RANSAC
are slightly higher than ANN as indicated by values of 3.15 and 3.95, respectively, they have higher
relative uncertainties exceeding 30 W m−2.

Overall, ANN slightly outperformed other ML methods according to validation against buoy
observations and relative uncertainty evaluation based on the TCH method over tropical areas.
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4.3. Mapping of Ocean LHF Over Low-Latitude Areas

4.3.1. Annual Patterns of the Ensemble Tropical Ocean LHF

We applied ANN, RF, BR and RANSAC driven by monthly ocean LHF products (MERRA-2,
JOFURO-3, ERA-I and GSSTF-3) to estimate ocean LHF in low-latitude areas at 0.25◦ spatial resolution
from 2003 to 2007. Figure 9 shows the spatial distribution of annual LHF averaged from different
products during the years 2003–2007.
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Figure 9. Maps of multi-year (2003-2007) annual average ocean LHF. The first column (left) presents
the maps of ocean LHF from OAFlux, MERRA-2, JOFURO-3, ERA-I and GSSTF-3. The second column
presents the maps of ocean LHF using ANN, RF, BR and RANSAC (unit W m−2).
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All of the ocean LHF products yielded lower LHF estimates over the equatorial region, especially
over the East Pacific along South America and the East Atlantic along Africa. The highest ocean LHF
exceeded approximately 200 W m−2 and occurred in the South Pacific with latitudes between 10◦

and 20◦ S. Even though ocean LHF products have similar spatial distribution in low-latitude areas,
there are still significant differences between different products. As shown in Figure 9, MERRA-2
and GSSTF-3 products yielded higher LHF values in the South Pacific and South Indian Ocean.
Compared with MERRA-2, JOFURO-3, ERA-I and GSSTF-3, OAFlux yielded lower ocean LHF values
over low-latitude areas. In contrast, the spatial distribution of ANN, BR and RANSAC showed highly
consistent characteristics. However, it is also noted that the ocean LHF estimation from RF cannot
properly simulate the high ocean LHF values, which may be because the RF algorithm highly depends
on the representativeness of the sample dataset; if the sample dataset does not include the high ocean
LHF value, it may cause a deviation in LHF results. The ocean LHF of four ensemble products is much
lower than that from the four individual ocean products, but close to that from the reference dataset
(OAFlux product).

Figure 10 shows the comparison of the annual average LHF from ANN versus that of the other
three methods (RF, BR and RANSAC) over low-latitude areas. In general, the ocean LHF from ANN
agrees best with BR, followed by RANSAC. The most prominent difference between ANN and BR
is that the LHF values estimated by ANN were lower than those of BR when LHF was greater than
150 W m−2 and higher than those of BR when it was less than 50 W m−2. When the ocean LHF was
lower than 10 W m−2, RANSAC poorly simulated LHF variability. The estimated LHF from ANN was
higher than those of RF when ocean LHF was greater than 130 W m−2 and lower than those of RF when
it was less than 20 W m−2. The discrepancies may be mainly caused by the difference in algorithm
structure. As shown in Figure 9, the estimated ocean LHF from ANN was close to that from the other
three ML methods, indicated by an R2 higher than 0.98 and bias less than 3.5 W m−2. As mentioned
above, the estimated LHF from BR was closest to that of ANN, as characterized by the highest R2,
the lowest RMSE and lowest bias.
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Figure 11 shows spatial differences in annual ocean LHF over low-latitude regions between ANN
and the other three ML methods (RF, BR and RANSAC). The differences in annual ocean LHF estimated
by ANN and the other three ML methods were mainly distributed in the range of −10 to 10 W m−2.
The ensemble ocean LHF product from BR also showed a consistent spatial distribution with that of
ANN; the difference was less than 5 W m−2 in most areas. The ensemble LHF using RANSAC has
the most significant variation in spatial distribution. RANSAC yields high ocean LHF mainly in the
Equatorial East Pacific and Equatorial East Atlantic; this may be caused by the differences in different
ML methods.
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4.3.2. Seasonal Patterns of the Ensemble Tropical Ocean LHF

Figure 12 presents the multiyear average seasonal pattern of ocean LHF, which shows that strong
regional variations occur in low-latitude areas. The variation in ocean LHF is affected by the climate and
land–sea distribution. Lower wind speeds and lower sea temperatures due to proximity to land result
in the lowest ocean LHF in the equatorial current region of the eastern Pacific. Moreover, the maximum
ocean LHF occurs in the central Pacific.

In the northern hemisphere, ocean LHF increased from fall then decreased from spring to fall over
tropical areas. The lowest ocean LHF in the southern hemisphere occurs in spring; there was a sharp
increase in ocean LHF from spring to fall. In the winter of the northern hemisphere, the largest ocean
LHF occurs in the Kuroshio Current, followed by the Gulf Stream; the average ocean LHF exceeds
200 W m−2 in these regions. Ocean LHF values are large in the Kuroshio Current and Gulf Stream due
to the large temperature differences at the air–sea interface. Similarly, the largest ocean LHF of the
southern hemisphere occurs in the South Pacific, especially in the 10◦ and 20◦ south latitude.

Compared to the RF method, the ANN method exhibited a good ability to simulate spatial
variability. RF performed poorly in simulating high ocean LHF in ocean current regions, such as the
Kuroshio Current area in the northern hemisphere’s winter, and Australia’s bordering sea. This may
be caused by the fact that RF has a different algorithm structure compared to those of the other ML
methods. According to the ANN method, fall has the highest average ocean LHF (113.8 W m−2),
followed by summer (113.0 W m−2), spring (112.7 W m−2) and winter (111.2 W m−2).
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Figure 13 illustrates the latitudinal variation in annual average LHF over low-latitude areas during
2003–2007. Despite the general differences in latitude distribution among different ocean LHF estimates,
the latitudinal distribution of all ocean LHF estimations is bimodal, and the highest ocean LHF occurs
at approximately 15◦ S, followed by 15◦ N. The minimum values appear in the equatorial region,
and the LHF gradually increases with the increase in latitude. After reaching the maximum value at
approximately 15◦, ocean LHF gradually declines to the poles. There are still substantial differences
between the seven ocean LHF estimates. Compared to reanalysis datasets that overestimate ocean
LHF against buoy site observation, ANN is closer to OAFlux and JOFURO-3. Moreover, ANN-based
ensemble LHF can capture more detailed information than OAFlux owing to its high spatial resolution.
Although the estimated ocean LHF of four ML methods are very close, the estimated LHF using ANN
is slightly higher than others by 3–5 W m−2.

Figure 14 compares the monthly average ocean LHF derived from ANN and the other ML methods
with other ocean LHF products over the tropics. All the ocean LHF estimates presented similar seasonal
variability, and the magnitude of ocean LHF seasonal variation was less than 10 W m−2. Ocean LHF
increased from April to June then decreased from June to October due to the high ocean LHF in the
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southern hemisphere. Figure 13 also illustrates that the reanalysis product (ERA-I) was 10–30 W m−2

higher than others. The LHF derived from the four ML methods was closer and more than 10 W m−2

lower than those derived from the other products. Among them, ANN is slightly higher than other ML
methods by 1–3 W m−2.
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5. Discussion

ANN, RF, BR and RANSAC were used to estimate ocean LHF at a spatial resolution of 0.25◦. Some of
these four ML methods were successfully used to estimate a terrestrial LE fusion product, such as ANN
and RF [49,67,68]. According to validation against buoy observations (Figure 4), our results illustrate
that ensemble ocean LHF from ML methods performed much better than the estimated LHF from
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four individual ocean LHF products (MERRA-2, JOFURO-3, ERA-I and GSSTF-3). Compared to the
individual LHF products, the R2 of the ML methods was 3.7–46.4% higher and the bias decreased by
approximately 15 W m−2. Our results also show that some minor differences existed among the four
ML methods, which are mainly affected by the structure of different fusion algorithms [69,70]. Sagi and
Rokach [71] showed that the differences in structure of the ensemble methods may significantly affect
the predictions, and the best ensemble method for a given problem needs to consider other factors
(such as suitability to a given setting).

The ensemble ocean LHF from ANN showed great consistency with that of the other three ML
methods. The difference in the spatiotemporal variation of ensemble LHF from the four ML methods
was less than 5 W m−2 and were all 10–30 W m−2 lower than the individual ocean LHF products.
In comparison with the RF, BR and RANSAC methods, the ocean LHF estimation using ANN performed
better. This may be attributed to the fact that ANN is composed of a series of adaptively connected simple
neuron nodes, which improves the accuracy of model estimation by adjusting the weights between
different neurons [59,72]. Other studies also found that ANN presents a superior ensemble performance
to other ML methods in many fields, such as ET, solar radiation and downscaling [67,73,74].

Similar to ANN, RF has a strong correlation with observations (Figure 4), but we found that ocean
LHF estimations from RF performed poorly in simulating high LHF values in the spatiotemporal
distribution. This is consistent with the conclusions drawn by Zhang et al. [75]; the regression prediction
obtained by RF performs poorly, while ANN achieves the best estimation of the total biomass in four
ML methods. This may be due to the fact that the training of RF not only requires a large amount of
sample dataset [76] but also requires the sample dataset itself to be representative. Studies have shown
that increasing the number and periodicity of sample datasets can improve the estimation accuracy of
RF [77]. Considering that the buoy site observations cannot cover all the ocean LHF features in the
study area, the RF method underperformed the other three ML methods in simulating the spatial and
temporal distribution of LHF.

We also applied the TCH method to evaluate relative uncertainties among the four ocean LHF
fusion products and four individual LHF products because the TCH method has been successfully
used in territorial LE uncertainty evaluation [78–80]. All ML methods performed better than individual
ocean LHF products as indicated by lower relative uncertainty. The relative uncertainty of the four
ensemble products was approximately 5 W m−2, while relative uncertainty of the individual ocean
LHF products ranged from 7 to 20 W m−2. ANN had the lowest average uncertainty, followed by BR.
The average relative uncertainty of RF was the highest among the four ML methods.

In terms of the spatial distribution of relative uncertainty, the high relative uncertainty values
of RF were mainly located in the extreme values of ocean LHF (Figures 7 and 12). The uncertainties
of the ensemble LHF products mainly stemmed from the biases of the individual datasets [21],
the errors in the buoy site observations [81], the mismatched spatial scales between datasets from
different sources and the structure of ML methods [71,82,83]. Due to the measurement sensors and
environmental disturbances, the uncertainties in ocean LHF observations obtained from buoy sites
array were approximately 10 W m−2 [44,56,81]. The representativeness of the buoy site ranges from tens
to hundreds of meters, while the spatial resolution of LHF products was greater than 12.5 km, the spatial
resolution mismatch may lead to uncertainties in the validation results. Additionally, the errors in
the individual products will lead to an 8% error in ensemble LHF [21,84]. The mismatches among
different data sources may also introduce a 5–7% uncertainty in ensemble LHF [85–87]. Although the
ML methods do not require a priori knowledge, the structure of different ML methods may lead to
large errors and poor generalization performance [84].

Our study provided future efforts to improve ocean LHF estimation using ML methods by an
ensemble of multiple LHF products. ML methods performed better in estimating ocean LHF than the
individual ocean LHF products (MERRA-2, JOFURO-3, ERA-I and GSSTF-3). All these products can
be well trained by observations and then used for estimating ocean LHF. Importantly, different ML
methods need to be fully evaluated in different studies. For example, RF has higher relative uncertainty



Sensors 2020, 20, 4773 20 of 24

at the region of extreme LHF values, but that is not conclusive. In contrast, ANN presents lower relative
uncertainty in global or regional ocean LHF estimations. Therefore, ANN can be considered an ideal
method to replace RF when generating tropical ocean LHF products.

6. Conclusions

We applied ANN and three other ML methods (RF, BR and RANSAC) to improve tropical ocean
LHF estimation by ensemble of satellite and reanalysis products (MERRA-2, JOFURO-3, ERA-I and
GSSTF-3) and evaluate the performance of fusion products based on reference product (OAFlux) and
buoy observations. The ML models used here were trained (tested) using observations from 81 (34)
buoy sites over low-latitude areas from 2003 to 2007.

By merging individual LHF product, our results show that the ensemble LHF products derived
from four ML methods were significantly superior to the individual LHF products with higher accuracy
and lower bias. Among them, ANN performs best, indicated by the highest R2 (0.88 and 0.87), the lowest
RMSE (10.4 and 10.9) and the highest KGE (0.89 and 0.90) for training and testing, respectively.

By quantifying relative uncertainties by the TCH method, we found that the relative uncertainties
of ensemble LHF products were also significantly lower than individual LHF product, which lead to
the conclusion that the individual product’s uncertainties caused by errors in algorithm and input
datasets can be reduced by merging multiple products. In addition, ANN generated lower relative
uncertainty than the other three ML methods. The result demonstrates that ANN can be considered an
ideal method to replace RF when generating tropical ocean LHF products.
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