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Abstract: This study proposes a framework for describing a scene change using natural language
text based on indoor scene observations conducted before and after a scene change. The recognition
of scene changes plays an essential role in a variety of real-world applications, such as scene anomaly
detection. Most scene understanding research has focused on static scenes. Most existing scene
change captioning methods detect scene changes from single-view RGB images, neglecting the
underlying three-dimensional structures. Previous three-dimensional scene change captioning
methods use simulated scenes consisting of geometry primitives, making it unsuitable for real-world
applications. To solve these problems, we automatically generated large-scale indoor scene change
caption datasets. We propose an end-to-end framework for describing scene changes from various
input modalities, namely, RGB images, depth images, and point cloud data, which are available
in most robot applications. We conducted experiments with various input modalities and models
and evaluated model performance using datasets with various levels of complexity. Experimental
results show that the models that combine RGB images and point cloud data as input achieve
high performance in sentence generation and caption correctness and are robust for change type
understanding for datasets with high complexity. The developed datasets and models contribute to
the study of indoor scene change understanding.

Keywords: image captioning; three-dimensional (3D) vision; deep learning; human-robot interaction

1. Introduction

There have been significant improvements in artificial intelligence (AI) technologies for
human–robot interaction (HRI) applications. For example, modern intelligent assistants (e.g.,
Google Assistant [1]) enable the control of household appliances through speech and allow
remote home monitoring. HRI experiences can be improved through the use of AI technologies,
such as the semantic and geometric understanding of 3D surroundings [2–5], the recognition
of human gestures [6,7], actions [8,9], emotions [10,11], speech recognition [12,13], and dialog
management [14,15]. A fundamental problem in indoor scene understanding is that scenes often change
due to human activities, such as the rearranging of furniture and cleaning. Therefore, understanding
indoor scene changes is essential for many HRI applications.

Developments in graphic processing units and convolutional neural network (CNN)-based
methods have led to tremendous progress in 3D recognition-related studies. Various 2D approaches
have been adapted for 3D data, such as recognition [3–5], detection [16], and segmentation [17].
Researchers have proposed a series of embodied AI tasks that define an indoor scene and an agent that
explores the scene and answers vision-related questions (e.g., embodied question answering [18,19]),
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or navigates based on a given instruction (e.g., vision-language navigation [20,21]). However, most 3D
recognition-related studies have focused on static scenes. Scene change understanding is less often
discussed despite its importance in real-world applications.

Vision and language tasks, including visual question answering [22–24], image captioning [25–30],
and visual dialog [31,32], have received much attention due to their practicality in HRI applications.
These tasks correlate visual information with language. The image captioning task aims to describe
image information using text, and thus can be used to report scene states to human operators in HRI
applications. Several recent image captioning methods describe a scene change based on two images of
the scene [33,34]. However, they use single-view image inputs and neglect the geometric information
of a scene, which limits their capability in scenes that contain occlusions. Qiu et al. [35] proposed scene
change captioning based on multiview observations made before and after a scene change. However,
they considered only simulated table scenes with limited visual complexity.

To solve the above problems, we propose models that use multimodality data of indoor
scenes, including RGB (red, green, and blue) images, depth images, and point cloud data (PCD),
which can be obtained using RGB-D (RGB-Depth) sensors, such as Microsoft Kinect [36], as shown
in Figure 1. We automatically generated large-scale indoor scene change caption datasets that contain
observations made before and after scene changes in the form of RGB and depth images taken from
multiple viewpoints and PCD along with related change captions. These datasets were generated by
sampling scenes from a large-scale indoor scene dataset and objects from two object model datasets.
We created scene changes by randomly selecting, placing, and rearranging object models in the scenes.
Change captions were automatically generated based on the recorded scene information and a set of
predefined grammatical structures.

Figure 1. Illustration of indoor scene change captioning from multimodality data. From the input of two
observations (consisting of RGB (red, green, and blue) and depth images captured by multiple virtual
cameras and point cloud data (PCD)) of a scene observed before and after a change, the proposed
approach predicts a text caption describing the change. The multiple RGB and depth images are
obtained from multiple viewpoints of the same scene via virtual cameras. Each virtual camera takes an
RGB and a depth image from a given viewpoint.

We also propose a unified end-to-end framework that generates scene change captions from
observations made before and after a scene change, including RGB images, depth images, and PCD.
We conducted extensive experiments on input modalities, encoders, and ensembles of modalities with
datasets under various levels of complexity. Experimental results show that the models that combine
RGB images and PCD can generate change captions with high scores in terms of conventional image
caption evaluation metrics and high correctness in describing detailed change information, including
change types and object attributes. The contributions of our work are four-fold:

• We automatically generated the first large-scale indoor scene change caption dataset, which will
facilitate further studies on scene change understanding.

• We developed a unified end-to-end framework that can generate change captions from
multimodality input, including multiview RGB images, depth images, and PCD, which are
available in most HRI applications.
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• We conducted extensive experiments on various types of input data and their ensembles.
The experimental results show that both RGB images and PCD are critical for obtaining high
performance, and that the use of PCD improves change type prediction robustness. These results
provide perspectives for enhancing performance for further research.

• We conducted experiments using datasets with various levels of complexity. The experimental
results show that our datasets remain challenging and can be used as benchmarks for
further exploration.

2. Related Work

2.1. 3D Scene Understanding

CNN-based methods have promising performance in various 3D scene understanding tasks,
such as 3D object recognition [3–5], 3D detection [16], 3D semantic segmentation [17], and shape
completion [37]. These methods use CNN structures to learn the underlying 3D structures based on
data in various formats, such as multiview RGB images, RGB-D images, PCD, and meshes.

Su et al. [38] proposed a network for 3D object recognition based on multiview RGB images.
They proposed a multiview CNN (MVCNN) structure for aggregating information via a view pooling
operation (max or average pooling) from the CNN features of multiview images. Kanezaki et al. [39]
proposed a framework for feature extraction from multiview images that predicts object poses and
classes simultaneously to improve performance. Esteves et al. [40] suggested that existing MVCNNs
discard useful global information and proposed a group convolutional structure to better extract the
global information contained in multiview images. Eslami et al. [2] proposed a generative query
network (GQN) that learns 3D-aware scene representations from multiview images via an autoencoder
structure. Several studies have focused on 3D understanding based on RGB-D data. Zhang et al. [41]
proposed a network for depth completion from a single RGB-D image that predicts pixel-level geometry
information. Qi et al. [42] proposed a 3D detection framework that detects objects in RGB images and
fuses depth information to compute 3D object regions. Recent CNNs that utilize PCD have also shown
promising results. Qi et al. proposed PointNet [3], which is a structure for extracting features from
raw PCD via the aggregation of local information by symmetric functions (e.g., global max pooling).
They later proposed PointNet++ [4] for obtaining better local information. Zhang et al. [5] proposed
a simple yet effective structure that aggregates local information of PCD via a region-aware max
pooling operation.

Considering the availability of RGB-D data in HRI applications, we propose models that use
multiview RGB and depth images and PCD. We adopt an MVCNN and a GQN for scene understanding
based on RGB images, an MVCNN for aggregating multiview depth information, and PointNet for
processing PCD.

2.2. Indoor Scene Datasets

Due to the high complexity and diversity of visual information, training a CNN-based indoor
scene understanding method usually requires a massive amount of data. SUNCG [43] is a widely used
dataset that consists of simulated 3D indoor scenes generated using computer graphics technologies.
Several indoor scene datasets with scanned models of real scenes have recently been made publicly
available [44–46]. The Gibson [44] dataset consists of 572 scenes and a simulator, which allows training
for multiple embodied AI tasks, such as visual navigation. Matterport3D [45] contains 90 indoor scenes
that are densely annotated with semantic labels. The Replica [46] dataset consists of 18 high-resolution
(nearly photorealistic) scenes.

Several datasets for embodied AI tasks have been built based on the above 3D datasets.
The Embodied Question Answering (EQA) v1.0 [18] dataset consists of scenes sampled from the
SUNCG dataset with additional question–answer pairs. The authors further extended the EQA
task for realistic scene setting by adapting the Matterport3D dataset to their Matterport3D EQA
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dataset [19]. The Room-to-Room dataset [20] added navigation instruction annotation to the
Matterport3D dataset for the vision-language navigation task. In these datasets, the states of the
scenes are static. Qiu et al. [35] proposed a simulated dataset for scene change captioning from
multiview RGB images. However, they generated scenes with a solid background color, limiting the
visual complexity. In contrast, we combine the Matterport3D dataset with two open source object
model datasets, namely, NEDO item database [47] and YCB dataset [48], for creating scene change
datasets, where scene changes are constructed by rearranging objects in 3D scenes. To the best of our
knowledge, our dataset is the first large-scale indoor scene change dataset.

2.3. Change Detection

Change detection is a long-standing task in computer vision due to its practicality in real-world
applications, such as scene anomaly detection, and disaster influence analysis. Change detection
from street view images or videos has attracted much attention because it allows algorithms to
focus on changed regions, decreasing the cost of image or video recognition [49,50]. Alcantarilla
et al. [49] proposed a method that first reconstructs 3D geometry from video input and then inputs
coarsely registered image pairs into a deconvolutional network for change detection. Zhao et al. [50]
proposed a method with an encoder–decoder structure for pixel-level change detection based on street
view images.

Change detection is also important in robot applications [51–53]. Ambrus et al. [51] proposed
a method that distinguishes static and dynamic objects by reconstructing and comparing PCD of a
room scene observed at different time steps. Fehr et al. [52] proposed a 3D reconstruction method that
reconstructs static 3D scenes based on RGB-D images of scenes with dynamic objects. Jinno et al. [53]
proposed a framework for updating a 3D map by comparing the existing 3D map with newly observed
3D data that may contain new or removed objects.

Existing change detection methods that utilize RGB images lack 3D geometry understanding.
Several methods have been proposed for detecting changes from 3D data in various formats,
such as RGB-D images and PCD, for robot applications. However, most works are limited to
relatively small-scale datasets and do not specify detailed changes, such as the attributes of changed
objects. In contrast, we consider change detection based on multimodality input, including RGB and
depth images and PCD. Our models describe detailed scene changes, including change types and
object attributes.

2.4. Change Captioning

The image captioning task has been widely discussed. Various image captioning
methods have been proposed to achieve high-performance sentence construction by using
attention mechanisms [25,26] or exploring relationships between vision and language [27,28].
Generating image captions with high diversity has also been widely discussed [29,30]. However,
most existing image captioning methods generate descriptions from single-view images.

Several recent works have discussed captioning based on images that include
scene changes [33–35]. Difference Description with Latent Alignment (DDLA) [33] generates
change descriptions from two video frames observed from different time steps of a given scene.
In DDLA, an image indicating the pixel-level difference between input frames is computed and a
CNN is used for generating captions from this difference image. The DUal Dynamic Attention model
(DUDA) [34] uses a dual attention structure for focusing regions of images before and after a change
and a dynamic attention structure, which dynamically selects information from image features before
or after a change, or the difference between them. DUDA is more robust to camera transformation
compared to DDLA. However, both DDLA and DUDA neglect the 3D geometry information of scenes
and thus are less suitable for scenes with occlusions. Qiu et al. [35] proposed a method that generates a
compact scene representation from multiview images and then generates captions based on the scene
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representation. However, they performed experiments using scenes with solid colored backgrounds,
and only considered RGB images from a fixed number of cameras.

In contrast, we explore and evaluate several input modalities, namely, RGB and depth images
(with random camera position changes), and PCD. We conducted extensive experiments on various
ensembles of these modalities. We also conducted experiments on datasets with complex and diverse
visual information.

3. Approach

In robot applications, the ability to recognize scene changes is essential. We propose a framework
that generates scene change captions from image pairs taken before and after a scene change.
Our framework correlates the after-change scene with the before-change scene and provides detailed
change descriptions, including change types and object attributes. Due to the availability of RGB-D
data in robot applications, we developed models that use RGB and depth images of scenes observed
from multiple viewpoints and PCD. Our framework can be trained end-to-end using raw images, PCD,
and related change captions. Moreover, our framework enables inputs from one or more modalities.
In the following subsections, we give the details of the proposed framework.

3.1. Overall Framework

As shown in Figure 2, our framework generates a change caption from the input of observations
taken before and after a scene change. A scene observation consists of RGB and depth images observed
from multiple viewpoints and PCD.

Figure 2. Overall framework. From before- and after-change scene observations of a scene, the proposed
framework generates a text caption describing the scene change via three components, namely, a scene
encoder that encodes the input composed of various modalities, a scene fusion component that
combines the before- and after-change features rbef and raft, a caption generator that generates a caption
from the output of the scene fusion component.

Our framework comprises three components: a scene encoder, which processes input modalities
with respective encoders; a scene fusion component, which combines the features of observations taken
before and after a scene change; and a caption generator, which generates text captions from fused
scene representations. Our framework can be further enhanced by adding more modalities, such as
normal maps. Moreover, the scene fusion component and caption generator can also be improved by
adopting novel approaches. We give the details of these three components in the remaining subsections.
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3.2. Scene Encoder

The scene encoder component transforms an observation of a scene consisting of multiview RGB,
depth images, and PCD into a feature vector to express semantic and geometric information for the
scene. As shown in Figure 2, we first extract feature vectors from multiview RGB images, multiview
depth images, and PCD separately with respective encoders. Then, the information is aggregated via a
concatenation operation. We experimented with two encoder structures, namely, MVCNN and GQN,
for encoding multiview RGB images and MVCNN for depth images.

RGB/depth encoder (MVCNN): This network is adapted from Su et al. [38]. In our
implementation (Figure 3a), we first extract features from each viewpoint (we transformed
depth images to RGB images through the applyColorMap function with mapping parameter
COLORMAP_JET defined in OpenCV [54]) via ResNet101 [55]. Then, we apply convolution operation
(separated weights) to extracted features and compute a weight vector via fully connection and softmax
function. Then, we use another convolution layer to ResNet101-extracted features and multiply the
output with the weight vector. Finally, a 4× 4× 128× 8-dimensional feature vector is obtained.

Figure 3. Detailed network structure for the encoders used in this study.

RGB encoder (GQN): Eslami et al. [2] proposed GQN, which recovers an image from a given
viewpoint through a scene representation network and a generation network. We adapt GQN
(tower-structure [2], Figure 3b) to extract a scene representation from multiview RGB images in
two stages. During the pretraining stage, we train the overall GQN using multiview scene images.
Then, we discard the generation network of GQN and use the pretrained scene representation network
to aggregate information from multiview images.

PCD encoder (PointNet): We use PointNet, proposed by Qi et al. [3], for extracting features from
PCD. PointNet transforms raw PCD into a feature vector that can be used for a range of downstream
tasks, such as classification and segmentation. The detailed structure used in this work is shown
in Figure 3c.

After processing these modalities separately, we resize features to 1 × 1 × k-dimensional
vectors (k is different for three modalities) and combine features using a concatenation operation.
The concatenation operation makes it possible to change the number of input feature vectors, enabling
both single- and multimodality inputs.

3.3. Before- and After-Change Scene Fusion

We process the observation pairs taken before and after a scene change using the process described
in the previous subsection. The two feature vectors are combined via the fusion method proposed by
Park et al. [34].

Specifically, we denote the feature vector of the before-change scene as rbef and that of the
after-change scene as raft. We first compute the vector difference rdiff of rbef and raft via the
following formulation.

rdiff = raft − rbef (1)
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Then, we concatenate rbef, raft, and rdiff to create a compact feature vector as the caption
generator’s input.

3.4. Caption Generator

The caption generator predicts a change caption from the output of the scene fusion component.
As shown in Figure 2, we used a two-layer long short-term memory (LSTM) [56] structure for caption
generation. Notably, the caption generator can be replaced by other language models, such as a
transformer [57].

The overall network is trained end-to-end with the following loss function to minimize the
distance L between generated captions x and ground truth captions y:

L = −log(P(y|x)) (2)

4. Indoor Scene Change Captioning Dataset

Due to the high semantic and geometric complexity, training tasks targeting indoor scene
understanding require a large amount of training data. Moreover, the construction of indoor scene
datasets often requires a lot of manual labor. To the best of our knowledge, there is no existing
large-scale indoor scene change captioning dataset.

To solve the above problems, we propose an automatic dataset generation process for indoor
scene change captioning based on the existing large-scale indoor scene dataset Matterport3D [45] and
two object model datasets, namely, NEDO [47] and YCB [48]. We create the before- and after-change
scenes by arranging object models in indoor scenes. We set four atomic change types: add (add an
object to a scene), delete (delete an object), move (change the position of an object), and replace (replace
an object with a different one). We also set a distractor type in our dataset that indicates only camera
position changes compared to original scenes. Implementing changes in the original 3D dataset is an
alternative approach for creating datasets; however, this will result in artifacts, such as large holes after
an object is deleted or moved from its original position. Thus, we sample object models from existing
object model datasets and arrange them in 3D scenes to create before- and after-change scenes.

In the following subsections, we give the details of the automatic dataset generation process and
the datasets created for experiments.

4.1. Automatic Dataset Generation

4.1.1. Scene and Object Models

We generated before- and after-change scene observation pairs based on arranging object models
in 3D scenes. We used the Matterport3D dataset (consisting of 3D mesh models of 90 buildings with
2056 rooms) as our scene source. We selected 115 cuboid rooms that contain fewer artifacts (e.g., large
holes in geometry) from the Matterport3D dataset. The object models used in our dataset generation
were sampled from the NEDO and YCB datasets. We list the object class and instances in Table 1.

Table 1. Set-ups of object classes and instances for datasets used in this study.

Setups Class (Number of Instances)

10-object setup barsoap (2); cup (2); dishwasher (2); minicar (2); snack (2)

85-object setup snack (12); dishwasher (11); tv dinner (11); minicar (7); barsoap (5); cup (5); plate (3); soft drink (3); sponge (3);
air brush (2); baseball (2); bowl (2); facial tissue (2); magic marker (2); sauce (2); water bottle (2); weight (2); glass
(1); glue (1); shampoo (1); soccer ball (1); tape (1); teddy bear (1); timer (1); toilet tissue (1); tooth paste (1)

4.1.2. Virtual Camera Setups

We took RGB and depth images from multiple camera viewpoints along with PCD for each scene
observation. To obtain an overall observation for each room scene, as shown in Figure 4, we used
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cuboid rooms and set eight virtual cameras (four corners and four centers of edges of the ceiling) for
observing scenes. Each virtual camera was set to look at the center of the room. In addition, to enhance
robustness to camera position transformation, we added random offsets of [–10.0 cm, +10.0 cm] in
three dimensions for each camera during the dataset acquisition.

Figure 4. Virtual camera set-ups. Eight virtual cameras (four corners and four centers of edges of the
ceiling) are set to look at the center of the room.

The data acquisition process can be implemented by using a single RGBD camera to observe a
scene multiple times from various camera viewpoints.

4.1.3. Generation Process

We use AI Habitat [58] as the simulator for data acquisition. AI habitat enables generating RGB
and depth images of given viewpoints from a mesh file. We generated each before- and after-change
scene observation pair and related change captions in four steps. We first randomly selected a room
scene from the scene sets and object models (three to five) from the object sets. The AI Habitat
simulator provides a function named “get_random_navigable_point()”, which computes a random
position where the agent can walk on based on the mesh data and semantic information (semantic label
information, such as “floor” and “wall”, for each triangle vertex, provided in Matterport3D dataset).
In the second step, we utilized the function to obtain random navigable positions and arranged objects
on those positions. We took eight RGB and depth images and generated PCD as the original scene
observation through the AI Habitat simulator. The Matterport3D dataset provides mesh data of
every building and position annotation for each room. We generated PCD by transforming vertices
of mesh data (triangular mesh) into points of PCD. We extracted PCD for each room from PCD of
building based on room position annotation (3D bounding box annotation of rooms provided by the
Matterport3D dataset). Next, we implemented the four change types (add, delete, move, and replace)
for the original scene along with a distractor (only camera position transformation) and obtained scene
observations. The change information, including change type and object attributes, was recorded.
Finally, we generated five change captions for each change type and the distractor based on the
recorded change information and predefined sentence structure templates (25 captions in total for each
scene). We show an example of our dataset in Figure 5. The above process makes it easy to generate
datasets with various levels of complexity by adjusting scene and object numbers, change types, and
sentence templates.

We currently used PCD generated from meshes, which contains fewer artifacts, such as holes and
less occlusion. To further improve the practicality of our method, we plan to use PCD generated from
RGBD images and conduct experiments to discuss the effects of occlusion and artifacts.

4.2. Dataset Statistics

We generated dataset s15_o10 with 9000 scenes for training and 3000 scenes for testing. In s15_o10,
we used 15 scenes and 10 object models (10-object set-up in Table 1). We used the s15_o10 dataset to
evaluate the performance obtained with various input modalities, encoders, and ensembles.

To evaluate model performance under more complex scene settings, we adjusted the number of
scenes and objects and generated dataset s15_o85 with 85 object models (85-object set-up in Table 1)
and dataset s100_o10 with 100 scenes. The other settings of s15_o85 and s100_o10 are the same as
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those for s15_o10. The detailed dataset statistics are shown in Table 2. Experiments with these three
datasets are presented below.

Figure 5. Dataset instance example of adding an object. From the top row: before-change RGB
images observed from eight virtual cameras; after-change RGB images; before-change depth images;
after-change depth images; before- and after-change PCD; five ground truth change captions.

Table 2. Statistics for datasets used in this study.

Dataset No. of Scenes No. of Captions Change Types Viewpoints Scene Types Object Classes Objects Per Scene
(Train/Test) (Train/Test)

s15_o10 (9000/3000) (225,000/75,000) 5 8 15 10 2–6

s15_o85 (9000/3000) (225,000/75,000) 5 8 15 85 2–6
s100_o10 (9000/3000) (225,000/75,000) 5 8 100 10 2–6

5. Experiments

We used datasets s15_o10, s15_o85, and s100_o10 for training and evaluation. Specifically, we first
used s15_o10 for the comparison of different input modalities, encoders (MVCNN and GQN for RGB
images), and ensembles of input modalities. We then used s15_o85 and s100_o10 for assessing the
models’ abilities under more complex scene setups with an increased number of objects and scenes.

We adopted several conventional image captioning evaluation metrics in each experiment.
In addition to these metrics, we conducted a caption correctness evaluation to examine the detailed
information given by the generated captions (change types and object attributes).

5.1. Evaluation Metrics

We used four conventional evaluation metrics widely adopted in image captioning: BLEU-4 [59],
ROUGE [60], SPICE [61], and METEOR [62]. These metrics evaluate the similarities between the
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generated captions and the ground truth captions. BLEU-4 is used to evaluate the recall of words or
phrases (multiple words) of generated captions in the ground truth captions. ROUGE evaluates the
recall of ground truth captions in generated captions. SPICE considers the correctness of the sentence
structures of generated captions. METEOR introduces the similarity between words to encourage the
generation of captions with diverse words.

The correctness of change type and object attributes is important in the change captioning task.
Therefore, in addition to the above metrics, we conducted a caption correctness evaluation. We neglect
the correctness of the sentence structure and extract change type, class, color, and object (including
class and color, such as “red cup”) from the generated captions and compute the accuracy when
compared to the ground truth captions. This evaluation indicates how well the generated captions
reflect the detailed change information.

5.2. Implementation Details

Here, we give the details of all the implementations. We set the input image size of both MVCNN
and GQN to 64× 64. We set the point number of PCD to 5000 for PointNet by random selecting
points from PCD of rooms. For the pretraining process of GQN, we set the learning rate to 10−4 and
trained the overall GQN network for 10 epochs in all experiments. For the overall framework training
(including all single modalities and ensembles), we set the learning rate to 10−3 for PointNet and 10−4

for MVCNN and the decoder. All ablations were trained for 40 epochs. We used the Adam optimizer
in all experiments.

5.3. Experiments on Input Modality and Model Ablations

We first used dataset s15_o10 to evaluate the performance of various input modalities, encoders,
and ensembles. Here, we implemented four single-modality ablations, namely, depth images with the
MVCNN encoder, RGB images with MVCNN and GQN encoders, and PCD with the PointNet encoder.
We implemented five two-modality ablations containing two different input modalities, where the
RGB images were processed using MVCNN and GQN encoders. We also implemented two ensembles
with three modalities, where different RGB encoders were adopted.

Evaluation results on the test split of s15_o10 in terms of conventional evaluation metrics are
shown in the top 11 rows of Table 3. The four single-modality ablation results show that PCD with
the PointNet encoder obtained the best performance and that depth with the MVCNN encoder
obtained the lowest scores for all metrics. RGB images with the GQN encoder outperformed the
ablation with the MVCNN encoder. PCD contain geometric and object edge information, which is
an advantage in a task that requires recognizing object change and detailed object attributes. GQN
was trained to obtain a compact scene representation from multiview images, which likely made it
better at correlating multiview information compared to MVCNN. Depth images do not contain color
information and it is difficult to obtain object shapes from them, making it challenging to understand
a scene change from only depth images. We found that although depth images alone performed
poorly, ensembles containing RGB (MVCNN or GQN encoder) and depth images outperformed RGB
images alone. We think that this resulted from the geometric information in depth images, which is
difficult to extract from RGB images. The two ensembles with three input modalities outperformed all
single-modalities and ensembles with two input modalities composed of their subsets. Scene change
captioning performance can thus be enhanced by using both geometric and RGB information.

The caption correctness evaluation results are shown in the top 11 rows in Table 4. We found
that ablation with RGB input (GQN encoder) outperformed PCD input in terms of object correctness,
whereas PCD obtained higher accuracy in change type prediction (single modality). The abundant
geometric and edge information contained in PCD is beneficial for change type prediction. We also
found that models with both RGB and PCD (or depth) input obtained higher object correctness than
that of single modalities. This result indicates that combining geometric and RGB information leads to
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a better understanding of detailed object information, which is critical for obtaining high performance
in this task.

Table 3. Results of evaluation using s15_o10 (top 11 rows), s15_o85 (middle 6 rows), and s100_o10
(bottom 6 rows). The highest scores are shown in bold.

Modality (Encoder) ROUGE SPICE METEOR BLEU-4 [59]
[60] [61] [62] Overall Add Delete Move Replace Distractor

Depth (MVCNN) 58.36 18.46 26.50 36.93 21.30 39.15 42.22 32.90 45.11
RGB (MVCNN) 65.53 26.52 34.80 49.43 25.73 49.83 54.18 51.83 60.60
RGB (GQN) 81.98 36.02 48.49 71.01 59.59 77.31 59.52 68.52 85.80
PCD (PointNet) 89.75 35.32 49.34 76.17 62.89 79.19 77.98 71.73 96.19
Depth,RGB (MVCNN,MVCNN) 80.74 34.44 46.30 67.58 55.04 71.82 69.25 63.41 75.80
Depth,RGB (MVCNN,GQN) 84.52 36.51 50.71 74.46 63.99 77.12 65.49 71.48 90.22
Depth,PCD (MVCNN,PointNet) 84.41 27.74 43.03 65.91 54.84 68.73 59.37 58.00 98.85
RGB,PCD (MVCNN,PointNet) 89.31 36.40 50.50 75.65 65.97 80.02 75.76 70.93 91.00
RGB,PCD (GQN,PointNet) 92.36 41.36 57.00 84.74 81.65 89.87 70.67 80.77 99.41
Depth,RGB,PCD (MVCNN,MVCNN,PointNet) 89.87 35.99 52.11 79.02 64.18 82.38 77.06 73.49 96.51
Depth,RGB,PCD (MVCNN,GQN,PointNet) 93.38 44.29 58.46 86.33 83.32 89.69 80.21 82.84 98.55

Depth (MVCNN) 57.56 15.27 24.19 36.46 12.44 33.70 30.21 19.83 74.73
RGB (MVCNN) 57.31 15.17 24.80 35.67 18.08 31.78 32.46 29.78 59.91
RGB (GQN) 63.90 18.94 29.05 43.75 23.83 42.51 34.60 34.96 77.00
PCD (PointNet) 80.44 21.04 34.98 52.02 33.26 52.79 55.59 53.63 52.66
Depth,RGB,PCD (MVCNN,MVCNN,PointNet) 81.26 23.76 38.72 59.79 43.52 60.90 43.64 55.96 95.98
Depth,RGB,PCD (MVCNN,GQN,PointNet) 78.83 24.49 36.86 57.11 39.74 59.96 41.75 43.27 97.69

Depth (MVCNN) 56.06 16.51 24.56 33.46 16.45 31.00 35.64 29.72 48.53
RGB (MVCNN) 65.72 25.02 33.80 47.01 31.74 43.49 51.31 51.69 50.32
RGB (GQN) 65.23 23.91 32.24 47.10 35.31 46.79 47.36 39.92 58.85
PCD (PointNet) 82.93 26.29 41.48 63.30 47.22 66.04 49.33 62.50 99.60
Depth,RGB,PCD (MVCNN,MVCNN,PointNet) 87.99 35.72 49.68 75.31 60.49 77.45 73.79 68.44 96.72
Depth,RGB,PCD (MVCNN,GQN,PointNet) 86.07 35.97 47.23 73.10 60.46 74.30 63.08 67.83 99.02

Table 4. Results of change caption correctness evaluation using s15_o10 (top 11 rows), s15_o85 (middle
6 rows), and s100_o10 (bottom 6 rows). The highest scores are shown in bold.

Modality (Encoder) Accuracy (%)
Change Type Object Color Class

Depth (MVCNN) 44.54 26.82 35.11 36.78
RGB (MVCNN) 49.26 49.52 62.16 53.18
RGB (GQN) 74.48 69.41 79.54 71.88
PCD (PointNet) 97.24 53.65 59.20 65.44
Depth,RGB (MVCNN,MVCNN) 73.59 62.53 73.74 66.38
Depth,RGB (MVCNN,GQN) 78.44 72.46 81.84 74.91
Depth,PCD (MVCNN,PointNet) 93.03 39.64 48.75 52.06
RGB,PCD (MVCNN,PointNet) 93.37 58.52 70.68 65.29
RGB,PCD (GQN,PointNet) 93.94 74.39 83.85 77.39
Depth,RGB,PCD (MVCNN,MVCNN,PointNet) 93.09 63.02 73.32 69.32
Depth,RGB,PCD (MVCNN,GQN,PointNet) 94.96 75.35 84.05 78.30

Depth (MVCNN) 52.42 9.13 22.10 19.73
RGB (MVCNN) 46.38 17.23 38.99 23.34
RGB (GQN) 59.68 17.33 34.45 26.77
PCD (PointNet) 96.17 14.62 27.53 27.28
Depth,RGB,PCD (MVCNN,MVCNN,PointNet) 92.55 23.51 44.92 32.18
Depth,RGB,PCD (MVCNN,GQN,PointNet) 90.75 20.29 37.65 32.18

Depth (MVCNN) 42.88 19.85 29.70 31.29
RGB (MVCNN) 50.66 43.58 58.18 47.73
RGB (GQN) 52.00 40.28 52.13 45.72
PCD (PointNet) 90.49 33.73 44.60 47.13
Depth,RGB,PCD (MVCNN,MVCNN,PointNet) 91.54 55.28 69.60 61.64
Depth,RGB,PCD (MVCNN,GQN,PointNet) 90.07 48.20 59.93 55.77

We show two example results in Figure 6. For the first example (object moved), all ensembles
predict change captions correctly. Ablations with depth images and RGB images (MVCNN encoder)
correctly determined the related object attributes (cyan minicar) but failed to predict the correct change
type (move). In contrast, the single-modality ablation with PCD predicted the correct change type
but gave the wrong color. For the second example (distractor with no object change), all models with
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PCD and the ensemble with RGB (GQN encoder) and depth images gave correct change captions.
However, the other models predicted wrong change captions. These results indicate that combining
modalities enhances performance, and that PCD can provide geometry information, which is beneficial
for predicting change type.

Figure 6. Example results for s15_o10. From the top row: before-change RGB images observed from eight
virtual cameras for first example; after-change RGB images; ground truth and generated captions for
various models; before-change RGB images for second example; after-change RGB images (distractor
with only camera position transformation); ground truth and generated captions. Correct captions are
shown in green and false captions are shown in red.

5.4. Experiments on Dataset Complexity (Object Class Number)

In this experiment, we evaluated model performance under a more complex set-up s15_o85,
where the object instance number was 85 (10 objects in s15_o10). We conducted experiments on four
single-modality and two three-modality ablations.

The results of conventional evaluation metrics are shown in the middle six rows of Table 3.
The performance for all ablations is lower than that for s15_o10. Notably, the performance of models
with RGB images and the GQN encoder degraded significantly. This result indicates that the GQN
encoder is less robust to scene set-ups with high complexity. Similar to s15_o10, for single-modality
input, PCD with PointNet performed the best. Ensembles outperformed single modalities.

The caption correctness evaluation is shown in the middle six rows of Table 4. The performance of
all modalities degraded compared to that for s15_o10 in terms of object correctness. However, models
with PCD, including both single modalities and ensembles, tended to be more robust for change type
prediction. This result indicates that the geometry and edge information make change type prediction
more consistent.
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We show one example result (object deleted) in Figure 7 (top) . All single modalities failed to give
correct captions, whereas the two ensembles predicted the correct caption. Single-modality models
with depth or RGB images gave the wrong change type, whereas that with PCD correctly predicted the
change type (delete). s15_o85 is more challenging than s15_o10 because it included more objects (85 vs.
10). Combining different modalities is effective for handling datasets with relatively high complexity.

Figure 7. Example results for s15_o85 and s100_o10. From the top row: before-change RGB images
observed from eight virtual cameras for example from s15_o85; after-change RGB images; ground truth
and generated captions for various models; before-change RGB images for example from s100_o10;
after-change RGB images; ground truth and generated captions. Correct captions are shown in green
and false captions are shown in red.

5.5. Experiments on Dataset Complexity (Scene Number)

Here, we evaluate four single-modality and two three-modality ablations with dataset s100_o10,
which included 100 scenes (15 scenes in s15_o10 and s15_o85).

The experimental results (bottom six rows of Table 3) for conventional evaluation metrics show
that the performance of all ablations degraded compared to that for s15_o10. This is especially true for
RGB images with the GQN encoder, which indicates that GQN is less suitable for large-scale scene
datasets. Similar to s15_o10, PCD with PointNet obtained the highest scores and depth images showed
poor performance. Ensembles tended to outperform single modalities. The caption correctness results
(bottom six rows of Table 4) also show that performance degraded (especially for object correctness)
compared to that for s15_o10. PCD with the PointNet encoder and ensembles tended to be more robust
for caption type prediction.

One example result (object addition) for s100_o10 is shown in Figure 7 (bottom). Here, PCD with
the PointNet encoder and the ensemble model with PCD, depth, and RGB images (MVCNN encoder)
correctly predicted the change caption. For s100_o10, which contains 100 scenes, the performance
of GQN encoder dramatically degraded, which may have influenced the performance of the
ensemble model.
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5.6. Discussion

The experiments using s15_o10, s15_o85, and s100_o10 indicate that for single modalities, PCD
with the PointNet encoder consistently obtained the highest scores for most conventional caption
evaluation metrics and the depth images with MVCNN encoder obtained the low scores in most
experiments. A further evaluation of caption correctness indicated that models with RGB images
(both MVCNN and GQN encoders) performed well in recognizing object attributes and those with
PCD performed well in predicting change types. Model performance can be enhanced by adopting
ensembles. In addition, both the RGB images and PCD are crucial for obtaining high performance
with ensembles. Additional depth images improve the performance of models with RGB images but
degrade that of models with PCD alone.

We found that for all modalities, performance degraded in experiments using datasets with more
objects (s15_o85) and more scenes (s100_o10). However, models with PCD and the PointNet encoder
tended to be relatively robust for change type prediction. Regarding the two types of RGB encoder,
GQN outperformed MVCNN for s15_o10. For s15_o85 and s100_o10, the performance of GQN encoder
significantly degraded, becoming worse than that of MVCNN. This result indicates that compared to
MVCNN, the GQN network is less suitable for in large-scale scene-setting.

The experimental results reported here will facilitate future research on scene change
understanding and captioning. To understand and describe scene changes, both geometry and color
information are critical. Because we used the concatenation operation to aggregate the information
of various modalities, introducing an attention mechanism to dynamically determine the needed
features could help enhance model performance. We evaluated model performance under complex
scene settings through experiments using s15_o85 and s100_o10. It is important to further study the
adaptiveness of models to scene complexity by conducting more experiments using diverse dataset
setups. PCD used in this study consist of scenes and object models with integral shapes that are
beneficial in change captioning task. However, in real-world applications, obtaining PCD with integral
object shapes is challenging. One way to enhance the practicality of our work is to conduct experiments
on partially observed PCD further.

To the best of our knowledge, our work is the first attempt for indoor scene change captioning.
It is an essential future direction to adapt existing indoor scene change detection methods, such as
those in [51–53], to the change detection task and conduct comparison experiments between our work
and existing change detection methods.

6. Conclusions

This study proposes an end-to-end framework for describing scene change based on before- and
after-change scenes observed by multiple modalities, including multiview RGB and depth images
and PCD. Because indoor scenes are constantly changing due to human activities, the ability to
automatically understand scene changes is crucial for HRI applications. Previous scene change
detection methods do not specify detailed scene changes, such as change types or attributes of changed
objects. Existing scene change captioning methods use RGB images and conduct experiments using
small-scale datasets with limited visual complexity. We automatically generated large-scale indoor
scene change captioning datasets with high visual complexity and proposed a unified framework
that handles multiple input modalities. For all experiments, models with PCD input obtained the
best performance among single-modality models, which indicates that the geometry information
contained in PCD is beneficial for change understanding. The experimental results show that both
geometry and color information are critical for better understanding and describing scene changes.
Models with the RGB images and PCD have promising performance in scene change captioning
and exhibit high robustness for change type prediction. Because we used a concatenation operation
for aggregating information from various modalities, model performance could be enhanced by
introducing an attention mechanism to determine the required features. Experiments on datasets with
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high levels of complexity show that there is still room for improvement, especially for object attribute
understanding. We plan to conduct more experiments on the adaptiveness to scene complexity.
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3D Three-Dimensional
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PCD Point Cloud Data
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51. Ambruş, R.; Bore, N.; Folkesson, J.; Jensfelt, P. Meta-rooms: Building and maintaining long term spatial
models in a dynamic world. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 1854–1861.

52. Fehr, M.; Furrer, F.; Dryanovski, I.; Sturm, J.; Gilitschenski, I.; Siegwart, R.; Cadena, C. TSDF-based change
detection for consistent long-term dense reconstruction and dynamic object discovery. In Proceedings
of the 2017 IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017;
pp. 5237–5244.

53. Jinno, I.; Sasaki, Y.; Mizoguchi, H. 3D Map Update in Human Environment Using Change Detection from
LIDAR Equipped Mobile Robot. In Proceedings of the 2019 IEEE/SICE International Symposium on System
Integration (SII), Paris, France, 14–16 January 2019; pp. 330–335.

54. Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 12, 120–125.
55. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
56. Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput.

2000, 12, 2451–2471. [CrossRef] [PubMed]
57. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Polosukhin, I. Attention is all you

need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA,
4–9 December 2017; pp. 5998–6008.

58. Savva, M.; Kadian, A.; Maksymets, O.; Zhao, Y.; Wijmans, E.; Jain, B.; Parikh, D. Habitat: A platform for
embodied ai research. In Proceedings of the IEEE International Conference on Computer Vision, Seoul,
Korea, 27 October–2 November 2019; pp. 9339–9347.

59. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. BLEU: A method for automatic evaluation of machine translation.
In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia,
PA, USA, 7–12 July 2002; pp. 311–318.

60. Lin, C.Y. Rouge: A package for automatic evaluation of summaries. In Proceedings of the ACL-02 Workshop
on Automatic Summarization, Phildadelphia, PA, USA, 11–12 July 2002; pp. 45–51.

61. Anderson, P.; Fernando, B.; Johnson, M.; Gould, S. Spice: Semantic propositional image caption evaluation.
In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2016;
pp. 382–398.

62. Denkowski, M.; Lavie, A. Meteor universal: Language specific translation evaluation for any target language.
In Proceedings of the Ninth Workshop on Statistical Machine Translation, Baltimore, MA, USA, 26–27 June
2014; pp. 376–380.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1162/089976600300015015
http://www.ncbi.nlm.nih.gov/pubmed/11032042
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	3D Scene Understanding
	Indoor Scene Datasets
	Change Detection
	Change Captioning

	Approach
	Overall Framework
	Scene Encoder
	Before- and After-Change Scene Fusion
	Caption Generator

	Indoor Scene Change Captioning Dataset
	Automatic Dataset Generation
	Scene and Object Models
	Virtual Camera Setups
	Generation Process

	Dataset Statistics

	Experiments
	Evaluation Metrics
	Implementation Details
	Experiments on Input Modality and Model Ablations
	Experiments on Dataset Complexity (Object Class Number)
	Experiments on Dataset Complexity (Scene Number)
	Discussion

	Conclusions
	References

