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Abstract: Cancer identification and classification from histopathological images of the breast depends
greatly on experts, and computer-aided diagnosis can play an important role in disagreement of
experts. This automatic process has increased the accuracy of the classification at a reduced cost.
The advancement in Convolution Neural Network (CNN) structure has outperformed the traditional
approaches in biomedical imaging applications. One of the limiting factors of CNN is it uses
spatial image features only for classification. The spectral features from the transform domain have
equivalent importance in the complex image classification algorithm. This paper proposes a new CNN
structure to classify the histopathological cancer images based on integrating the spectral features
obtained using a multi-resolution wavelet transform with the spatial features of CNN. In addition,
batch normalization process is used after every layer in the convolution network to improve the poor
convergence problem of CNN and the deep layers of CNN are trained with spectral–spatial features.
The proposed structure is tested on malignant histology images of the breast for both binary and
multi-class classification of tissue using the BreaKHis Dataset and the Breast Cancer Classification
Challenge 2015 Datasest. Experimental results show that the combination of spectral–spatial features
improves classification accuracy of the CNN network and requires less training parameters in
comparison with the well known models (i.e., VGG16 and ALEXNET). The proposed structure
achieves an average accuracy of 97.58% and 97.45% with 7.6 million training parameters on both
datasets, respectively.

Keywords: biomedical imaging; convolutional neural network; deep learning; wavelet transform;
breast cancer classification

1. Introduction

Breast cancer is reported as one of the most leading cause in deaths of women by the International
Agency for Research on Cancer (IARC) [1–3]. The clinical diagnosis of breast cancer includes
inspection of medical images including mammograms, MRI, ultrasound, and histopathology images
obtained from a biopsy [4,5]. Among all these, biopsy is the only procedure used for determining
a suspicious region by cancer from the breast tissue image. A pathologist analyzes the tissue’s
microscopic structure histologically and classifies this structure as normal tissue, benign tissue,
and malignant lesions. Variations in normal breast parenchyma’s tissue refer to the benign lesion.
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The carcinoma tissues can be classified into an in-situ tissue or an invasive tissue. The in-situ tissue
contains mammary ductal-lobular inside it, while the invasive carcinoma tissues spread beyond the
mammary ductal-lobular structure [6]. The tissue classification is established by examining of the
structure of imprints. In some structures, the changes are very elusive causing difficulties in the
classification process. Therefore, different magnification factors are utilized by pathologists in analysis
and classification of the tissues. This helps to enrich the standard of healthcare with quick and accurate
quantification of the tissues. This magnification process requires zooming and focusing on each image
and later, scanning of these images entirely for correct diagnosis. This process is a time-consuming
and tedious process resulting in delay and sometime inaccuracy in diagnosis.

Classification of signals or images categorize the image into one of the predefined classes [7].
This process is partitioned into two stages: Feature extraction from the images and classification
of the features. Features are defined as a characteristic of an image that distinguishes it from the
other image class. Previous approaches are based on extraction of traditional features from the
images, such histogram of gradient (HoG), local binary pattern (LBP), gray level co-occurrence matrix
(GLCM), and SIFT [8]. Then, either supervised or unsupervised algorithms are used to classify
these features belongs to any one of the category [9]. Though these approaches have been proven
successful in promoting discrimination problems such as healthy and invasive cancer-causing region,
the information retrieved by these features is limited for more complex tasks. Supervised classification
algorithms like support vector machine and neural network have outperformed the unsupervised
classification algorithm including support vector decomposition, principal component analysis,
K-mean clustering, and so on.

Since last decade, supervised machine learning algorithms have gained immense popularity
and all researchers are extensively using them for computer vision applications [10]. Support vector
machine capability to distinguish between the image class highly depends on the feature extraction
stage. So, if the extracted features are lacking of representation to distinguish from the classes,
then classification accuracy suffers substantially for a given algorithm. A common approach among
the past methods following the traditional framework is to pick up multiple features and fuse them
intuitively to create more robust features. Yet, it requires both heuristic and manual labor to tweak
domain parameters to achieve a decent level of precision. The convolution neural networks (CNNs)
integrate these two stages of feature extraction and classification into one black box. The progressive
learning from the dataset makes it more robust and achieves better accuracy in contrast to the
traditional methods.

The deep architecture of CNN learns hierarchy of features like pixel, edge, pattern, region from the
set of training images [11]. CNN based approaches achieved a considerable response in cancer image
classification. However, all CNN architectures use predefined convolutional filters which extract the
spatial features only. Histopathological image classification depends on the structure/pattern of the
cell. The wavelet can discriminate this structure using local features in spatial and frequency domains
as well. Therefore, this paper proposes the inclusion of spectral features obtained from the wavelet in
CNN for further improvement. The advancement in CNN enabled faster diagnosis of cancer from
different magnified histopathological images with higher accuracy. The major confront associated in
this classification includes the intrinsic complexity of histopathological images like cell overlapping,
irregular color distribution, and subtle variation between images. In this work, a new approach of
CNN is developed for cancer image classification between normal, benign, in-situ, and invasive types
by concentrating on modifying the CNN architecture considering computation cost. The contributions
of this work are summarized as follows:

• A CNN model is proposed utilizing both spectral and spatial information based on a concatenation
of multiresolution spectral information obtained from the wavelet transform at the various deep
layer of CNN.

• Utilization of average pooling instead of max pooling operation and batch normalization after
each convolution operation is introduced to solve the poor convergence problem.
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• Performance comparison of the proposed model with various CNN models is presented on two
datasets, namely, Breast Cancer Classification Challenge 2015 and BreaKHis.

The rest of this paper is organized as follows. Section 2 provides a brief review of related works
on histopathological image classification. Section 3 describes details of fusion spectral and spatial
features in CNN for the multi-classification of cancer images. Section 4 presents datasets used in the
evaluation and quantitative measures followed by the experimental results. Conclusions are finally
given in Section 5.

2. Related Work

A binary classification model using a residual learning CNN approach was proposed to
learn discriminative features from histopathological images [12]. The algorithm achieved 84.34%
and 92.52% classification accuracy without and with augmentation preprocess in the network on
the BreaKHis dataset respectively. The Inception recurrent residual convolutional neural network
(IRRCNN), a hybrid network consists of residual networks, inception network, and RCNN
was created and tested with BreakHis and Breast Cancer Classification Challenge (BCC) 2015
datasets [13] achieving an accuracy of 97.57%. In [14], a dataset from 79 patients was developed
and classified using parameter-free Threshold Adjacency Statistics (PFTS) based features and SVM
model. Concatenated histogram features are obtained using PFTS and generated a 162-D feature
vector. Later, 1-NN and SVM were tested for these datasets. Nahid et al. [15] integrated structural and
statistical features using a combination of LSTM and CNN for BCC image classification. In addition
to combined NN, they used SVM for binary classification purposes with accuracy limited to 91% for
200× images. Overall the complexity of this structure is very large due to the combination of CNN,
LSTM, and SVM.

In the same context, Xie et al. [16] used the transfer learning approach to train the CNN model.
They adapted Inception_V3 and Inception_ResNet _V2 for both binary and multi-class classification.
The feature size is minimized in Inception_ResNet_V2 using the clustering method, where the
K-NN clustering achieves the best results for 2-neighbor and it helps to reduce the feature size.
The Inception_ResNet_V2 network outperforms the Inception_V3 network in classification rate.
To reduce number of parameters, a small SE-ResNet model was proposed in [17]. Separable filters were
utilized in CNN layers providing a light-weight CNN. The algorithm was tested on the BHCNet-3
dataset achieving maximum accuracy of 93.81%. In [18], a prior information from class labels of
images have been used to minimize the features distances of cancer images for binary classification
and obtained an accuracy of 97% with image augmentation.

A similar approach based on the restricted Boltzmann machine in DNN was introduced in [19].
The contrast of images is enhanced in the pre-processing step using gamma correction and region
growing approaches. Texture, tumor shape, and histogram of the image are used as a feature vector
in SVM for the classification and the algorithm is validated with a binary classification of BreaKHis
images. They summarized that the features belonging to curvature information contribute significantly
in the classification in comparison to the other types of features and their achieved accuracy is
limited to 89.47%. Mahbod et al. [20] used a transfer learning approach where a natural scene trained
two ResNET Neural networks were fine-tuned by modifying the fully connected layer of ResNET.
Initially, images are pre-processed, normalized, and then classified using two ResNET networks.
A deep CNN with transition layers and dense blocks in contrast to original CNN has been used for
BreaKHis and ICIAR image classification and obtained 97.22% maximum accuracy on the BreaKHis
dataset. A feature learning based prior information from the structure of images is used in deep
CNN by Han et al. [21]. They obtained an average accuracy of 93.2% on the BreaKHis dataset.
In [22], ALexNet CNN was adapted and trained from the random patches obtained using a sliding
window approach achieved an accuracy of 79.85%. Shen et al. [23] developed a VGG-16 NN with
15 million weight parameters in comparison with ResNET requiring 24 million weight parameters.
In this end-to-end training approach, lesion annotations is employed in the early training stage and
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image-level labels in the later stages. The network is tested on the CBIS-DDSM mammogram dataset
and INbreast database achieving 95% AUC.

In [24], the authors used DenseNet where they used concatenation of the features from the
previous layer instead of summation. Pre-trained weights obtained from the ImageNet were used in
DenseNet and re-trained only a fully connected layer from scratch. The highest achieved accuracy
is 96% for multi-classification. Benhammou et al. [25] presented taxonomy on BreakHis dataset
by formulating the system using a combination of two classification levels (binary classification
and multi-class classification) and dependency on magnification factors (magnification specific
and magnification independent). It is reported that histopathological image classification using
magnification-independent multi-category is most important than other combination. To avoid class
imbalance, data were pre-processed. ImageNet pre-trained ResNet model is used to classify images
irrespective of magnification factor and achieved 88.9% accuracy. Kumar et al. [26] used pre-trained
VGGNet-16 CNN by removing the fully connected (FC) layer from the network and adding average
pooling layer instead of max pooling to extract the features from BreaKHis images. It was reported
that polynomial kernels achieved higher accuracy in comparison with linear and RBF kernel. In [27],
a fine-grained BreaKHis classification model was proposed using transfer learning approach with
Xception model. The architecture was built to multi-task CNN and combined two loss function
including Euclidean distance and loss function from the softmax layer to classify images. Sharma and
Mehra [28] compared handcrafted features based approach with transfer learning based CNN approach
and reported that VGG16 with SVM achieved the best results for the BreaKHis multi-classification task.

In [29], image-wise classification was presented for four classes using CNN. Features were
extracted from CNN and classified using a radial basis kernel function based SVM. Experimental results
on the BreaKHis dataset showed an accuracy of 90% and 85% for two-class for four-class classification
respectively. Zhu et al. [30] assembled multiple CNN networks for the classification. One network
obtained features from the patch of images and the second network used downsampled images to
obtain features sets. Then, a voting method was used for the classification. Das et al. [31] presented
multiple learning CNN framework by aggregating features of the various patches from the same slide
in CNN which does not require inter-patch overlap.

3. The Proposed Method

The main idea of the proposed method is to fuse the spectral information obtained from
the multi-resolution wavelet transform with spatial information obtained using CNN layers.
Wavelet transform allows decomposition of an image at various resolution levels providing powerful
insight information at frequency level. It helps to scrutinize the local discriminative characteristics
in histopathological images [32]. One of the basic wavelet transforms is a Haar wavelet transform.
The Haar scaling function and Haar wavelet can be defined by:

φ(x) =

{
1 for 0 ≤ x ≤ 1

0, otherwise
(1)

ψ(x) =


1 for 0 ≤ x ≤ 0.5

−1 for 0.5 ≤ x ≤ 1

0, otherwise

(2)

This can be extended for two-dimensional image analysis, i.e., two-dimensional scaling function
and separable decomposition of the wavelets can be expressed as follow

φ(x, y) = φ(x)φ(y) (3)

ψH(x, y) = ψ(x)φ(y) (4)
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ψV(x, y) = φ(x)ψ(y) (5)

ψD(x, y) = ψ(x)ψ(y) (6)

The discrete wavelet transform of an image I(x, y) with a dimension of (M, N) can be expressed as

Wφ(j0, m, n) =
1√
(MN

M−1

∑
x=0

N−1

∑
y=0

I(x, y)φj0,m,n(x, y) (7)

Wq
ψ(j, m, n) =

1√
(MN

M−1

∑
x=0

N−1

∑
y=0

I(x, y)ψq
j,m,n(x, y) (8)

where, q = H, V, D, Wφ(j0, m, n) is the approximation coefficient of I(x, y) at scale j0 and Wq
ψ(j, m, n)

gives detail coefficients for scales j > jo.
Thus, Haar wavelet transform decomposes the image by convolving it with low pass and high pass

filter generating coefficients at low-frequency values (approximate coefficients) and high frequency
values (horizontal, vertical and diagonal coefficients). The further decomposition of low-frequency
values generates next level coefficients at another resolution level. This hierarchical structure of the
wavelet transform is shown in Figure 1.

Figure 1. Hierarchical structure of wavelet transform.

Kausar et al. [33] preprocessed an image by normalization to remove color variance in
images. A 2D-Haar wavelet transform was obtained from these pre-process images. Then, an image
obtained from the second level decomposition was used in VGG-16 CNN network for classification.
Thus, they are not utilizing all multi-resolution features obtained from the DWT. In contrast,
the proposed method fuses features obtained from all resolution in Deep CNN. An intuitive block
diagram of the proposed method is shown in Figure 2. On the other hand, the success of a convolutional
neural network (CNN) depends on the number of parameters and hidden layers and the number
of images available for training. The VGG-16 requires 138 million parameters. ResNet [34] and
DenseNet [35] models achieve considerably better performance on large size ImageNet (10 million
images, 1000 categories) dataset [36], they need more memory and computations compared to
VGG16-net. In contrast to these models, the proposed model has a total 7.6 million parameters
including 13,440 non-trainable parameters. The detailed structure is presented in Table 1.
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Table 1. Details of the proposed Convolution Neural Network (CNN) model layer connection with
wavelet transform.

Layer (Type) Output Shape Parameters Connected to

InputLayer (512,512,3) 0
wavelet (256,256,12) 0 InputLayer
conv_1 (256,256,64) 6976 wavelet
norm_1 (256,256,64) 256 conv_1
relu_1 (256,256,64) 0 norm_1

conv_1_2 (128,128,64) 36,928 relu_1
conv_a (128,128,128) 13,952 wavelet[1]

norm_1_2 (128,128,64) 256 conv_1_2
norm_a (128,128,128) 512 conv_a
relu_1_2 (128,128,64) 0 norm_1_2
relu_a (128,128,128) 0 norm_a

concate_1 (128,128,192) 0
relu_1_2,

relu_a
conv_2 (128,128,128) 221,312 concate_1
conv_b (64,64,64) 6976 wavelet[2]
norm_2 (128,128,128) 512 conv_2
norm_b (64,64,64) 256 conv_b
relu_2 (128,128,128) 0 norm_2
relu_b (64,64,64) 0 norm_b

conv_2_2 (64,64,128) 147,584 relu_2
conv_b_2 (64,64,128) 73,856 relu_b
norm_2_2 (64,64,128) 512 conv_2_2
norm_b_2 (64,64,128) 512 conv_b_2

conv_c (32,32,256) 27,904 wavelet[3]
relu_2_2 (64,64,128) 0 norm_2_2
relu_b_2 (64,64,128) 0 norm_b_2
norm_c (32,32,256) 1024 conv_c

concate_2 (64,64,256) 0
relu_2_2
relu_b_2

relu_c (32,32,256) 0 norm_c
conv_3 (64,64,256) 590,080 concate_2

conv_c_2 (32,32,256) 590,080 relu_c
nomr_3 (64,64,256) 1024 conv_3

norm_c_2 (32,32,256) 1024 conv_c_2
relu_3 (64,64,256) 0 nomr_3

relu_c_2 (32,32,256) 0 norm_c_2
conv_3_2 (32,32,256) 590,080 relu_3
conv_c_3 (32,32,256) 590,080 relu_c_2
norm_3_2 (32,32,256) 1024 conv_3_2
norm_c_3 (32,32,256) 1024 conv_c_3
relu_3_2 (32,32,256) 0 norm_3_2
elu_c_3 (32,32,256) 0 norm_c_3

concate_3 (32,32,512) 0
relu_3_2
relu_c_3

conv_4 (32,32,256) 1179904 concate_3
relu_4 (32,32,256) 0 norm_4

conv_4_2 (16,16,256) 590,080 relu_4
norm_4_2 (16,16,256) 1024 conv_4_2
relu_4_2 (16,16,256) 0 norm_4_2
conv_5_1 (16,16,128) 295,040 relu_4_2
norm_5_1 (16,16,128) 512 conv_5_1
relu_5_1 (16,16,128) 0 norm_5_1
pool_5_1 (16,16,128) 0 relu_5_1
flat_5_1 (32768) 0 pool_5_1

fc_5(Dense) (2048) 67,110,912 flat_5_1
norm_5 (2048) 8192 fc_5
relu_5 (2048) 0 norm_5
drop_5 (2048) 0 relu_5

fc_6 (2048) 4,196,352 drop_5
norm_6 (2048) 8192 fc_6
relu_6 (2048) 0 norm_6
drop_6 (2048) 0 relu_6

fc_7 (4) 8196 drop_6



Sensors 2020, 20, 4747 7 of 15

Figure 2. Intuitive block structure of the proposed wavelet-CNN-based method. (⊕ represents
concatenation of features)

Performance of wavelet level decomposition at level 6 is better than others irrespective of
decomposition type [37]. After decomposition level 6, the modeling accuracy becomes stable
(i.e., marginal improvement). In the proposed structure, the wavelet transform is obtained for four
decomposition levels over histological image size of 512, 512× 3. Various numbers of filters with
size of 3× 3 are used in each convolutional layer of the model, i.e., 64 in layer 1, 64 in layer 2, 128 in
layer 3, and so on. The batch normalization process is used after every layer in the convolution
network to improve the poor convergence problem of CNN. Additionally, to increase the speed of the
training process, an activation function Rectified Linear unit (ReLU) is utilized after normalization.
Further, the max-pooling operation is used to reduce the future vector size from the output of the
activation function in the CNN network. The average pooling operation can be expressed as

Y = (I ∗ P) ↓ p (9)

where, I is the input image, P is the average filter and p = 2 is stride. In the proposed model,
the wavelet transform fulfills the requirement of the pooling operation. The Haar wavelet transform is
obtained by convolving the image with a low pass filter WLL to obtain low-frequency coefficients and
three high pass filter WLH , WHL, WHH giving high-frequency coefficients. For Haar wavelet, these filters
are defined as

WLL =

[
1 1
1 1

]
, WLH =

[
−1 −1
1 1

]
, WHL =

[
−1 1
−1 1

]
, WHH =

[
1 −1
−1 1

]
(10)

Therefore, wavelet transform can be represented equivalent to pooling operation as

Xij = I ∗Wij|2 (11)

Instead of using a fixed average filter in the average pooling operation, the wavelet transform
uses four filters with stride 2. This down-samples the size of the features by 2. To get the advantage of
both spectral as well as spatial information the concatenation of wavelet features and spatial features
obtained from the convolution layer is carried out.

4. Experiment Results

4.1. Datasets

In this work, the histopathological images are augmented and then the model is trained using
this augmented dataset. The performance of the model is evaluated on two publically available
datasets, namely BreaKHis dataset [14] and Breast Cancer Classification Challenge 2015 (BCC2015) [38].
The BreaKHis dataset contains a total of 7909 images including 2480 benign images and 5429 malignant
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images with four magnification factors of 40×, 100×, 200×, and 400×. All images have an RGB
color map with a 700 × 460 resolution. Sample images of the BreaKHis dataset are shown in
Figure 3. The BCC2015 dataset has a total of 5229 images including 1155 normal images, 1449 benign
images, 1323 In situ, and 1302 invasive images with 2040 × 1536 resolution. Sample images of the
BCC2015 dataset are shown in Figure 4. Experiments are conducted using patch-wise evaluation.
It should be noted CNN cannot be used with images of high resolution (i.e., entire slide tissue
images). Moreover, applying CNN to such high resolution images requires downsampling process.
However, it loses the most discriminative information. To encode these discriminative information,
images are partitioned to patches of size 512 × 512.

Figure 3. Sample images of the BreaKHis dataset for benign (first row) and malignant (second row)
with zooming of 40×, 100×, 200×, and 400× (left to right, respectively).

Figure 4. Sample images of the BCC2015 dataset, left to right: Normal, benign, in situ carcinoma,
and invasive carcinoma.

4.2. Data Augmentation

The network is likely to overfit with a small dataset. Therefore, training images have been
increased using data augmentation, where, the images have been divided into number of patches
and rotation. Then, mirroring and shifting operations on patches are used to augment dataset.
Image patching and augmentation have been used well on histological images classification [39].
Rotation and shifting operation allows classification of images at various orientation while mirroring
operation allows increasing the number of samples without deteriorating its features. The patches
of 512× 512 pixels are obtained from the images with a 50% overlap. Some example of augmented
patches are shown in Figure 5. Each patch is normalized by subtracting the mean value to the color
channels separately. Then, the patch is altered into eight patches using the rotation of 0, π/2, π, 3π/2,
and vertical mirroring. The label associated with the patches is the same as the original image.
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(a) (b)

(c) (d)
Figure 5. Patches augmentation: (a) Original image. (b) Image at 90◦ rotation. (c) Image at 180◦

rotation. (d) Flipped image using vertical mirroring.

4.3. Evaluation Metrics

To quantify and validate the performance of the proposed method, well-known metrics, namely,
classification accuracy, area under the curve, sensitivity and specificity are used. For classification
problem, a predicted output can be classified into four states. (a) True Positive (TP) suggest that image
is classified as benign correctly, i.e., both label and classification are benign type (b) False Positive (FP)
suggest that image is wrongly classified as benign type. That is the label is not benign and classification
is benign type (c) True Negative (TN) suggest that both label and classification are not benign (d)
False negative (FN) suggest wrong classification, which means image label is benign and classified as
malignant. Using these parameters, sensitivity (also referred as True Positive Rate (TPR)) is defined as
ability of the algorithm to correctly identify images with diseases and Specificity defines the ability of
the algorithm to correctly classify image without diseases. Mathematical formulation of these metrics
are as follows:

Accuracy =
Number of correct classification
Total Number of classification

=
TP + TN

TP + TN + FP + FN
(12)

Sensitivity =
No of true positive classification

Total No of all positive classification
=

TP
TP + FN

(13)

Speci f icity =
No of true negative classification

Total No of all negative classification
=

TN
TN + FP

(14)

The tradeoff between the specificity and sensitivity can be evaluated using receiver operating
characteristic (ROC). Thus increment in the sensitivity values causes decrements in the specificity.
The the area under the ROC (AUC) depicts the balance between these two attributes. The large AUC
indicates the better separability between the classes by the algorithm. The following subsections
represent the performance analysis of proposed algorithm for both binary classification and multi-class
classification using these attributes.

4.4. Performance Analysis on the Breakhis Dataset

The dataset is arbitrarily divided into 70% training dataset and 30% testing dataset. All images
patches are resized to 512 × 512. Four level wavelet decomposition is used in the experiment.
The network is trained for 200 epochs and 3 batch sizes. As listed in the Table 1, the configured network
requires 76,289,732 trainable parameters and 13,440 non-trainable parameters. For the BreaKHis
dataset, binary classification is analyzed. The accuracy analysis for the training as well as test datasets
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at different magnification factors of images for BreaKHis are shown in Figures 6 and 7. We observed
from these figures that the magnification has an impact on the classification accuracy and for 40× and
100× better accuracy is obtained.

Figure 6. Training accuracy for the breaKHis dataset.

Figure 7. Testing accuracy for the breaKHis dataset.

Figure 8 gives the region of convergence graph with consideration of the area under the curve.
The obtained AUC values are 99.49%, 99.20%, 99.33% and 99.40% for 40×, 100×, 200×, and 400×
magnification factors, respectively. The comparative analysis of the obtained accuracy with state-of-art
methods is presented in the Table 2. For 40× magnification, the proposed method achieves the highest
accuracy among all whereas, for remaining magnification, the accuracy is better or comparable with
other methods.
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Figure 8. Area under the curve over four magnification factors for the breaKHis dataset.

Table 2. Comparative analysis of binary classification accuracy (%) with other methods on the
BreaKHis dataset.

Methods 40 × 100× 200× 400×

ResHist model [12] 86.38 87.28 91.35 86.29
IRRCNN w/o augmentation [13] 97.16 96.84 96.61 95.78
IRRCNN with augmentation [13] 97.95 97.57 97.32 97.36
Alex Net [22] 85.6 83.5 82.7 80.7
class structure-based deep CNN [21] 92.8 93.9 93.4 92.9
Multi task CNN [40] 81.87 83.39 82.56 80.69
CNN & Fusion Rules [41] 90.0 88.4 84.6 86.1
VLAD encoding [42] 91.8 92.2 91.6 90.5
Structured Deep Learning [43] 95.8 96.9 96.7 94.9
IRV2+1-NN_Aug [16] 98.04 97.50 97.85 97.48
RBM [15] 88.7 85.3 88.6 88.4
DenseNet CNN [24] 93.64 97.42 95.87 94.67
PFTS Features + 1-NN [14] 80.9 80.7 81.5 79.4
PFTS Features + SVM [14] 81.6 79.9 85.1 82.3
VGGNET16-RF [26] 92.22 93.40 95.23 92.80
VGGNET16-SVM(POLY) [26] 94.11 95.12 97.01 93.40
Xception model [27] 95.26 93.37 93.09 91.65
Proposed method 97.58 97.44 97.28 97.02

4.5. Performance Analysis on the Bcc2015 Dataset

The experimental results for the BCC2015 dataset are conducted for multi-class classification,
where images are classified between the four class (normal, benign, in-situ, and invasive type).
The same model with same parameters has been used in the experiment. Images are augmented
as previous described. The training and testing accuracy for this dataset are shown in the Figure 9.
The graph shows that the training accuracy and testing accuracy are matching.
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Figure 9. Training and testing accuracy on the BCC2015 dataset.

Comparison with state-of-art methods is also reported in Table 3. The proposed model
achieves comparable results with IRRCNN model [13]. The hybrid CNN architecture has strong
classification power but requires large memory and more computing resources which prompts higher
diagnosing dormancy in some genuine clinical applications. In [16], the last fully connected layer of
Inception_ResNet_V2(IRV2) architecture trained using ImageNet dataset for histopathology image
classification is modified to reduced feature dimension by passing the features obtained from the
IRV2 to the autoencoder network. However, the IRV2 architecture requires 572 depth with 55 million
of learnable parameters. It should be noted that IRRCNN is a hybrid CNN architecture consisting
of inception network, recurrent CNN and residual network. The inception network concatenates
the features obtained from convolutional operation with different size of the kernels. Then features
obtained from this inception unit are added to the input features of respective unit forming inception-
residual network. Furthermore, They the recurrent structure is formed, where features obtained at the
current time stamp are added with the features of the past time stamp. Thus, the IRRCNN model has
large computational complexity in comparison with the proposed wavelet features concatenated CNN
architectures and it has 9.3 million learnable parameters. The IRRCNN architecture was implemented
with 56G of RAM and an NVIDIA GEFORCE GTX-980 Ti processor. In contrast, the proposed
architecture is implemented on the i7 processor with 8GB RAM and it has 7.6 million learnable
parameters. Therefore, that the proposed architecture deviates with a fraction of percentage in
recognition accuracy with 1.2 times less learnable parameters in comparison with IRRCNN.

Table 3. Comparison of multi-class classification accuracy (%) on the BCC2015 dataset.

Model Sensitivity Specificity Accuracy AUC

CNN [29] 61.1 94.4 77.8 -
CNN+ SVM [29] 66.7 65.6 83.3 -
IRRCNN with augmentation [13] 97.71 98.89 98.59 99.05
multiple compact CNNs [30] - - 86.6 93.91
Proposed Wavelet + CNN 96.59 97.73 97.45 99.03

5. Conclusions

In this paper, we proposed a method for histopathological cancer image classification based on a
modified CNN model. The weakness of the traditional CNN model is that its classification depends on
the spatial features only that can be obtained from the training dataset. However, the spectral features
play an equivalent role to the spatial features in the classification. Hence, the CNN model is modified
and Haar wavelet-based spectral features are fused with spatial features to enhance the performance
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of the classifiers. Two databases, breaKHis dataset and BCC2015, are used in the experiments with
different criteria of magnification factor, augmented patches, binary classification, and multi-class
classification. The proposed model achieved an average accuracy of 97.58% and 97.45% on the breaKHis
dataset and BCC2015 dataset, respectively, which is higher than most of the state-of-art methods. It is
also observed that it requires only 7.6 million learning parameters, which proposes a design of a
lightweight CNN algorithm with inclusion of spatial and spectral information. Future research will
focus on testing other wavelet families, such as Daubechies, Biorthogonal, Coiflet, which may have
good capability in structure discrimination.
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