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Abstract: Emotion recognition based on physiological data classification has been a topic of
increasingly growing interest for more than a decade. However, there is a lack of systematic analysis in
literature regarding the selection of classifiers to use, sensor modalities, features and range of expected
accuracy, just to name a few limitations. In this work, we evaluate emotion in terms of low/high
arousal and valence classification through Supervised Learning (SL), Decision Fusion (DF) and
Feature Fusion (FF) techniques using multimodal physiological data, namely, Electrocardiography
(ECG), Electrodermal Activity (EDA), Respiration (RESP), or Blood Volume Pulse (BVP). The main
contribution of our work is a systematic study across five public datasets commonly used in the
Emotion Recognition (ER) state-of-the-art, namely: (1) Classification performance analysis of ER
benchmarking datasets in the arousal/valence space; (2) Summarising the ranges of the classification
accuracy reported across the existing literature; (3) Characterising the results for diverse classifiers,
sensor modalities and feature set combinations for ER using accuracy and F1-score; (4) Exploration of
an extended feature set for each modality; (5) Systematic analysis of multimodal classification in DF
and FF approaches. The experimental results showed that FF is the most competitive technique in
terms of classification accuracy and computational complexity. We obtain superior or comparable
results to those reported in the state-of-the-art for the selected datasets.

Keywords: emotion recognition; physiological signals; machine learning; signal processing

1. Introduction

Emotion is an integral part of human behaviour, exerting a powerful influence in mechanisms
such as perception, attention, decision making and learning. Indeed, what humans tend to notice
and memorise are usually not monotonous, commonplace events but the ones that evoke feelings of
joy, sorrow, pleasure, or pain [1]. Therefore, understanding emotional states is crucial to understand
human behaviour, cognition and decision making. The computer science field dedicated to the
study of emotions is denoted as Affective Computing, whose modern potential applications include,
among many others: (1) automated driver assistance—e.g., through an alert system monitoring
and warning the user for sleepiness, unconscious or unhealthy states potentially hindering driving;
(2) healthcare—e.g., through wellness monitoring applications identifying causes of stress, anxiety,
depression or chronic diseases; (3) adaptive learning—e.g., through a teaching application able to adjust
the content delivery rate and number of iterations according to the user enthusiasm and frustration
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level; (4) recommendation systems—e.g., assisting and asserting personalised content according to the
user preferences as perceived by their response.

Emotions are communicated via external (facial or body expressions such as a smile, tense shoulders,
and others) and internal body expressions (alterations in heart rate (HR), respiration rate, perspiration,
and others). Such manifestations generally occur naturally and subconsciously, and their sentic
modulation can be used to infer the subjects’ current emotional state. Acquired in a systematic daily
setting, it could be possible to infer the probability of a subjects’ mood for the following day and their
health condition.

External physical manifestations (e.g., facial expressions) are easily collected through a camera;
however, they present low reliability since they depend highly on the user environment (if he is
alone or in a group setting), or cultural background (if the subject grew up in a society promoting the
externalisation or internalisation of emotion), and can be easily faked or manipulated according to
the subject goals, compromising the assessment of the true emotional state [2]. On the other hand,
for internal physical manifestations, these constraints are less prominent, since the subject has little
control over his bodily states. Alterations in the physiological signals are not easily controlled by the
subject, thus, these entitle a more authentic insight into the subject emotional experience.

Given these considerations, our work aims to perform a comprehensive study on automatic
emotion recognition using physiological data, namely from Electrocardiography (ECG), Electrodermal
Activity (EDA), Respiration (RESP), Blood Volume Pulse (BVP) sensors. This choice of modalities is
due to three factors: (1) Data can be easily extracted from pervasive, discrete wearable technology,
rather than more intrusive sensors (e.g., Electroencephalography (EEG), or Functional near-infrared
spectroscopy (fNIRS)); (2) Widely reported in the recent state-of-the-art; (3) Publicly available
multimodal datasets validated in literature. We use five public state-of-the-art datasets to evaluate two
major techniques: Feature Fusion (FF) versus Decision Fusion (DF) on a feature-based representation,
exploring also an extensive set of features comparatively to previous work. Furthermore, instead
of the discrete model, the users’ emotional response is assessed on the two-dimensional space:
Valence (measuring how unpleasant or pleasant is the emotion), and Arousal (measuring the emotion
intensity level).

The remaining of this paper is organised as follows: Section 2 presents a brief literature review
on ER, with special emphasis on articles that describe the datasets used in our work. Section 3 describes
the overall machine learning pipeline of the proposed methods. Section 4 evaluates our methodology
in five public datasets. Lastly, in Section 5, the main conclusions of this work are presented along with
future work directions.

2. State of the Art

In literature, human emotion processing is generally described using two models:
One decomposing emotion in discrete categories divided into basic/primary (arriving from innate,
fast and in response to “flight-or-fight” behaviour) and complex/secondary emotions (deriving from
cognitive processes) [3,4]. On the other hand, the second model quantifies emotions into continuous
dimensions. A popular model, proposed by Lang [5], suggested a Valence (unpleasant–pleasant level)
versus Arousal (activation level) two-dimensional model [6], which we adopt in this work. Concerning
affect elicitation, it is generally performed through films snippets [6], virtual reality [7], music [8],
recall [9], or stressful environments [6], with no commonly established norm on which is the optimal
methodology for ER elicitation.

Regarding the automated recognition of emotional states, it is usually performed based on
two methodologies [2,10,11]: (1) Traditional Machine Learning (ML) techniques [12–14]; (2) Deep
learning approaches [15–17]. Due to the limited size of existing datasets, most of the work focuses on
traditional ML algorithms, in particular Supervised Learning (SL), such as Support Vector Machines
(SVM) [18–20], k-Nearest Neighbour (kNN) [21–23], Decision Trees (DT) [24,25], and others [26,27],
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with the SVM method being the most commonly applied algorithm, showing overall good results and
low computational complexity.

Many physiological modalities and features have been evaluated for ER, namely
Electroencephalography (EEG) [28–30], Electrocardiography (ECG) [31–33], Electrodermal Activity
(EDA) [34–36], Respiration (RESP) [26], Blood Volume Pulse (BVP) [26,35] and Temperature
(TEMP) [26]. Multi-modal approaches have prevailed; however, there is still no clear evidence of
which feature combinations and physiological signals are the most relevant. The literature has shown
that the classification performance improves with the simultaneous exploitation of different signal
modalities [2,8,10,37], and that modality fusion can be performed at two main levels: FF [24,38,39] and
DF [8,26,37,40,41]. In the former, features are extracted from each modality and latter concatenated to
form a single feature vector space, to be used as input for the ML model. On the other hand, in DF,
from each modality, a feature vector is extracted to form a classifier prediction through a voting system.
Hence, with k modalities, k classifiers will be created leading to k predictions that can be combined to
yield a final result. Both methodologies are found in the state-of-the art [42], but it is unclear which
is the best to use in the area of ER using multimodal physiological data obtained from non-intrusive
wearable technology.

Detailed information on the current state-of-the-art in a more generalized perspective, we refer the
reader to the surveys [2,11,43–47] and references therein, where a comprehensive review of the latest
work on ER using ML and physiological signals can be found, highlighting the main achievements,
challenges, take-home messages, and possible future opportunities.

The present work extends the state-of-the-art of ER through: (1) Classification performance
analysis, in the arousal/valence space, of ER for five publicly available datasets that cover multiple
elicitation methods; (2) Summarising the ranges of the classification accuracy reported across the
existing literature for the evaluated datasets; (3) Characterising the results for diverse classifiers, sensor
modalities and feature set combinations for ER using accuracy and F1-score as evaluation metrics
(the later not being commonly reported albeit important to evaluate classification bias); (4) Exploration
of an extended feature set for each modality, analyzing also their relevance through feature selection;
(5) Systematic analysis of multimodal classification in DF and FF approaches, with superior or
comparable results to those reported in the state-of-the-art for the selected datasets.

3. Methods

To evaluate the classification accuracy in ER from physiological signals, we adopted the two
dimensional Valence/Arousal space. As previously mentioned, the ECG, RESP, EDA, and BVP
signals are used, and we compare FF and DF techniques in a feature space based framework. In the
forthcoming sub-sections, a more detailed description of each approach is presented.

3.1. Feature Fusion

As previously mentioned, when working with multi-modal approaches the exploitation of the
different signal modalities can be performed resorting to different techniques. We start by testing
the FF technique. In FF, the features are independently extracted from each sensor modality (in our
case ECG, BVP, EDA, and RESP), and are concatenated afterwards to form a single, global, feature
vector (570 features for EDA, 373 for ECG, 322 for BVP, and 487 for RESP, implemented and detailed in
the BioSPPy software library https://github.com/PIA-Group/BioSPPy). Additionally, we applied
sequential forward feature selection (SFFS) in order to preserve only the most informative features,
and save time and computational power of the machine learning algorithm to be applied in the next
step. All the presented methods were implemented in Python and made available as open source
software https://github.com/PIA-Group/BioSPPy.

https://github.com/PIA-Group/BioSPPy
https://github.com/PIA-Group/BioSPPy
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3.2. Decision Fusion

In contrast to FF, in DF, from each sensor signal, a feature vector is extracted and used
independently to train and learn a classifier, so that each modality returns a set of predicted labels.
Hence, with k modalities, k classifiers will be created returning k predictions per sample. The returned
predictions are then combined to yield a final result, in our case, via a weighted majority voting system.
In this voting system, the ensemble decides on the class that receives the highest number of votes
taking into account all sensor modalities, and a weight (W) parameter per modality to give the more
competent classifiers a greater power for the final decision. The weights were chosen for each modality
according to the classifier accuracy on the validation set. In case of a draw in the class prediction,
the selection is random.

3.3. Classifier

To perform the classification seven SL classifiers were tested: K-Nearest Neighbour (k-NN);
Decision Tree (DT); Random Forest (RF); Support Vector Machines (SVM); AdaBoost (AB); Gaussian
Naive Bayes (GNB); and Quadratic Discriminant Analysis (QDA). For more detail regarding these
classifiers, the author refers the reader to [48] and references therein.

A comprehensive study of these classifiers performance and parameter tunning was performed
using 4-fold Cross Validation (CV) to ensure a meaningful validation and avoiding overfitting.
The value of 4 was selected to optimise the number of iterations and the homogeneity in number of the
classes in the training and test set, since some of the datasets used were highly imbalanced. The best
performing classifier was chosen using Leave-One-Subject-Out (LOSO) to be incorporated into the FF
and DF frameworks.

To obtain a measurable evaluation of the model performance, the following metrics are computed:
Accuracy— TP+TN

TP+TN+FP+FN ; Precision— TP
TP+FP ; Recall— TP

TP+FN ; F1-score—the harmonic mean of
precision and recall [49]. Nomenclature: TP—True Positive; FP—False Positive; FP—False Positive;
FN—False negative.

4. Experimental Results

In this section, we start by introducing the datasets used in this paper, followed by an analysis
and classification performance comparison of the FF and DF approaches.

4.1. Datasets

In the scope of our work we used five publicly available datasets for ER, commonly used in
previous work for benchmarking:

1. IT Multimodal Dataset for Emotion Recognition (ITMDER) [7]: contains the physiological
signals of interest to our work (EDA, RESP, ECG, and BVP) of 18 individuals using two devices
based on the BITalino system [50,51] (one placed on the arm and the other on the chest of
the participants), collected while the subjects watched seven VR videos to elicit the emotions:
Boredom, Joyfulness, Panic/Fear, Interest, Anger, Sadness and Relaxation. The ground-truth
annotations were obtained by the subjects self-report per video using the Self-Assessment Manikin
(SAM), in the Valence-Arousal space. For more information regarding the dataset, the authors
refer the reader to [7].

2. Multimodal Dataset for Wearable Stress and Affect Detection (WESAD) [6]: contains EDA,
ECG, BVP, and RESP sensors data collected from 15 participants using a chest- and a wrist-worn
device: a RespiBAN Professional (biosignalsplux.com/index.php/respiban-professional) and
an Empatica E4 (empatica.com/en-eu/research/e4) under 4 main conditions: Baseline
(reading neutral magazines); Amusement (funny video clips); Stress (Trier Social Stress Test
(TSST) consisting of public speaking and a mental arithmetic task); and lastly, meditation.
The annotations were obtained using 4 self-reports: PANAS; SAM in Valence-Arousal space;

biosignalsplux.com/index.php/respiban-professional
empatica.com/en-eu/research/e4
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State-Trait Anxiety Inventory (STAI); and Short Stress State Questionnaire (SSSQ). For more
information regarding the dataset, the authors refer the reader to [6].

3. A dataset for Emotion Analysis using Physiological Signals (DEAP) [8]: contains EEG and
peripheral (EDA, BVP, and RESP) physiological data from 32 participants, recorded as each
watched 40 one-minute-long excerpts of music videos. The participants rated each video in terms
of the levels of Arousal, Valence, like/dislike, dominance and familiarity. For more information
regarding the dataset, the authors refer the reader to [8].

4. Multimodal dataset for Affect Recognition and Implicit Tagging (MAHNOB-HCI) [52]:
contains face videos, audio signals, eye gaze data, and peripheral physiological data (EDA,
ECG, RESP) of 27 participants watching 20 emotional videos, self-reported in Arousal, Valence,
dominance, predictability, and additional emotional keywords. For more information regarding
the dataset, the authors refer the reader to [52].

5. Eight-Emotion Sentics Data (EESD) [9]: contains physiological data (EMG, BVP, EDA, and RESP)
from an actress during deliberate emotional expressions of Neutral, Anger, Hate, Grief, Platonic
Love, Romantic Love, Joy, and Reverence. For more information regarding the dataset, the authors
refer the reader to [9].

Table 1 shows a summary of the datasets used in this paper, highlighting their main characteristics.
One should notice that the datasets are heavily imbalanced.
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Table 1. Summary of the datasets information on: classes; ratio of number (No) of samples per class label shown between parenthesis—No samples per class label/
total number of samples, for the classes 0 and 1, shown between parenthesis; demographic Information (DI)—number of participants; ages (years old) ± standard
deviation, and Female (F)-Male (M) subject distribution; device used for this paper; and sampling rate. Dataset nomenclature: ITMDER—IT Multimodal Dataset for
Emotion Recognition; WESAD—Multimodal Dataset for Wearable Stress and Affect Detection; DEAP—A dataset for Emotion Analysis using Physiological Signals;
MAHNOB-HCI—Multimodal dataset for Affect Recognition and Implicit Tagging; EESD—Eight-Emotion Sentics Data.

Dataset Classes No of Samples per Class DI Device Sampling Rate

ITMDER Low-high Arousal/Valence
Arousal: 0.54 (0); 0.46 (1)
Valence: 0.12 (0); 0.88 (1)

18
23 ± 3.7

10 (F) – 13 (M)
Chest strap and armband based on BITalino a 1000

WESAD Neutral, Stress, Amusement + 4 Questionnaires
Arousal: 0.86 (0); 0.14 (1)
Valence: 0.07 (0); 0.93 (1)

15
27.5 ± 2.4

3 (F) – 12 (M)
RespiBAN Professional b, Empatica E4

ECG and RESP: 700;
EDA: 4; BVP: 64

DEAP Arousal, Valence, Like/dislike, Dominance and Familiarity
Arousal: 0.41 (0); 0.59 (1)
Valence: 0.43 (0); 0.57 (1)

32
16 (F) – 16 (M)

19 – 37
Biosemi Active II system c 128

MAHNOB-HCI Arousal, Valence, Dominance
Arousal: 0.48 (0); 0.52 (1)
Valence: 0.47 (0); 0.53 (1)

27
26.06 ± 4.39
17(F) – 13(M)

Biosemi Active II system 256

EESD
Neutral, Anger, Hate, Grief,

Platonic love, Romantic Love, Joy, and Reverence
Arousal: 0.5 (0); 0.5 (1)
Valence: 0.5 (0); 0.5 (1)

1
1 (F) Thought Technologies ProComp prototype d 256

a https://bitalino.com/en/; b https://biosignalsplux.com; c https://www.biosemi.com; d http://thoughttechnology.com/index.php/procomp-infiniti-343.html.

https://bitalino.com/en/
https://biosignalsplux.com
https://www.biosemi.com
http://thoughttechnology.com/index.php/procomp-infiniti-343.html
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4.2. Signal Pre-Processing

The raw data recorded from the sensors usually shows a low signal-to-noise ratio, thus,
it is generally necessary to pre-process the data, namely filtering to remove motion artefacts,
outliers, and further noise. Additionally, since different modalities were acquired, different filtering
specifications are required according to each sensor modality. Considering what is typically found in
the state-of-the-art [11], the filtering for which each modality was performed as follows:

• Electrocardiography (ECG): Finite impulse response (FIR) band-pass filter of order 300 and
3–45 Hz cut-off frequency.

• Electrodermal Activity (EDA): Butterworth low-pass pass filter of order 4 and 1 Hz
cut-off frequency.

• Respiration (RESP): Butterworth band-pass filter of order 2 and 0.1–0.35 Hz cut-off frequency.
• Blood Volume Pulse (BVP): Butterworth band-pass filter of order 4 and 1–8 Hz cut-off frequency.

After noise removal, the data was segmented into 40 s sliding windows with 75% overlap. Lastly,
the data was normalised per user, by subtracting the mean and dividing by the standard deviation,
to values between 0–1 to remove subjective bias.

4.3. Supervised Learning Using Single Modality Classifiers

The ER classification is performed with a classifier tuned for Arousal and another for Valence.
Table 2 presents the experimental results for the SL techniques.

As it can be seen, for the ITMDER dataset, the state-of-the-art results [7] were available for each
sensor modality, which we display and, overall our methodology was able to achieve superior results.
Additionally, altogether, we observe higher accuracy values in the Valence dimension compared to the
Arousal scale. Thirdly, for the WESAD dataset, the F1-score drops significantly to 0.0, compared to the
Accuracy score value. The F1-score low value derives from the fact, that the class labels were largely
unbalanced, with some of the test sets having none of one of the labels. To conclude, overall, all the
sensors modalities display competitive results with no individual sensor modality standing out as the
optimal for ER.

We present the classifiers used per sensor modality and class dimension in Table 3. Additionally,
the features obtained using the forward feature selection algorithm are displayed in Tables 4 and 5, for
the Arousal and Valence dimensions, respectively. As shown, they explore similar correlated aspects
in each modality.

Both the presented classifiers and features were selected via a 4-fold CV, to be used for the SL
evaluation and for the DF algorithm, which is detailed in the next section. Hence, no classifier was
generally able to emerge as the optimal for ER on the aforementioned axis. Lastly, concerning the
features for each modality, we used 570, 373, 322, and 487 features respectively for the EDA, ECG, BVP,
and RESP sensor data. However, such high dimension feature vector can be highly redundant and has
many zero column features, therefore, we were able to reduce the feature vector without significant
degradation of the classification performance.

Figure A1 in Appendix A displays two histograms merging the features used in the SL
methodologies in all the datasets for the Arousal and Valence axis, respectively. The figure shows
that most features are selected via the SFFS methodology, specifically for each dataset (a value of 1
means that the features were selected in just one dataset). The features EDA onsets spectrum mean
value, and BVP signal mean are selected in 2 datasets for the Arousal axis; while, the features EDA
onsets spectrum mean value (in 4), RESP signal mean (in 2), BVP (in 2) signal mean, and ECG NNI
(NN intervals) minimum peaks value, are repeated for the Valence axis.
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Table 2. Experimental results in terms of the classifier’s Accuracy (1st row) and F1-score (2nd row) in %. All listed values are obtained using Leave-One-Subject-Out
(LOSO). Nomenclature: SOA—State-of-the-art results; EDA H, EDA F—EDA obtained on a device placed on the hand and finger, respectively. The SOA column
contains the results found in the literature [7]. The best results are shown in bold.

ITMDER WESAD DEAP MAHNOB-HCI EESD

Arousal SOA Valence SOA Arousal Valence Arousal Valence Arousal Valence Arousal Valence

EDA 59.65 ± 13.46 0.572 89.26 ± 17.3 0.721 85.78 ± 16.55 92.86 ± 11.96 58.91 ± 15.21 56.56 ± 9.07 50.61 ± 21.84 56.43 ± 34.84 59.38 ± 16.24 68.75 ± 18.75
H 40.74 ± 26.0 93.2 ± 12.37 0.0 ± 0.0 95.86 ± 6.99 72.91 ± 12.92 71.83 ± 7.42 47.53 ± 31.47 64.63 ± 34.57 56.82 ± 20.8 66.71 ± 23.1
EDA 56.03 ± 11.0 0.572 90.91 ± 11.29 0.721
F 45.67 ± 20.01 91.24 ± 18.75
ECG 68.33 ± 5.58 0.656 89.26 ± 17.3 0.7 85.75 ± 16.61 92.86 ± 11.96 49.36 ± 37.5 59.15 ± 24.5

58.79 ± 21.54 93.2 ± 12.37 0.0 ± 0.0 95.86 ± 6.99 53.0 ± 39.62 56.58 ± 32.61
BVP 58.44 ± 12.69 0.660 89.35 ± 17.23 0.695 85.78 ± 16.55 94.39 ± 9.98 58.88 ± 15.19 56.56 ± 9.07 67.5 ± 13.35 66.25 ± 16.35

45.91 ± 25.24 93.25 ± 12.34 0.0 ± 0.0 96.68 ± 6.01 72.9 ± 12.91 71.83 ± 7.42 66.98 ± 15.95 64.49 ± 22.07
RESP 62.37 ± 16.83 0.585 89.26 ± 17.3 0.629 85.78 ± 16.55 92.86 ± 11.96 58.83 ± 14.78 56.56 ± 9.07 50.62 ± 21.25 46.57 ± 20.67 72.5 ± 12.87 67.5 ± 10.0

51.79 ± 23.16 93.2 ± 12.37 0.0 ± 0.0 95.86 ± 6.99 72.6 ± 12.74 71.83 ± 7.42 44.28 ± 31.66 48.27 ± 28.44 70.12 ± 15.72 57.92 ± 15.12

Table 3. Classifier used per dataset and sensor modality for the Arousal and Valence dimensions respectively used in the SL and DF methodologies, obtained using
4-fold CV. Nomenclature: K-Nearest Neighbour (k-NN); Decision Tree (DT); Random Forest (RF); Support Vector Machines (SVM); Gaussian Naive Bayes (GNB);
and Quadratic Discriminant Analysis (QDA).

ITMDER WESAD DEAP MAHNOB-HCI EESD

Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence

EDA Hand DT RF RF RF SVM SVM AdaBoost SVM AdaBoost AdaBoost
EDA Finger AdaBoost QDA
ECG AdaBoost RF QDA RF RF AdaBoost
BVP QDA RF AdaBoost RF RF RF AdaBoost AdaBoost
Resp AdaBoost RF RF RF AdaBoost RF QDA AdaBoost AdaBoost QDA
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Table 4. Features used per dataset and sensor modality for the Arousal dimension in the SL and DF methodologies, obtained using 4-fold CV.

ITMDER WESAD DEAP MAHNOB-HCI EESD

EDA
Hand

peaksOnVol_minpeaks
EDRVolRatio_iqr
onsets_temp_dev

EDA_onsets_spectrum_mean onsets_spectrum_mean

half_rec_minAmp
half_rec_rms

amplitude_dist
onsets_spectrum_statistic_hist43

rise_ts_temp_curve_distance
phasic_rate_maxpeaks

onsets_spectrum_meddiff
EDRVolRatio_zero_cross

phasic_rate_abs_dev
onsetspeaksVol_minpeaks

EDA
Finger

onsets_spectrum_statistic_hist81
peaksOnVol_iqr
six_rise_autocorr

ECG

statistic_hist73, statistic_hist115
hr_sadiff

statistic_hist7
statistic_hist137

mean
rpeaks_medadev

hr_meandiff
hr_mindiff

BVP hr_max
hr_meandiff mean mean

spectral_skewness
temp_curve_distance

statistic_hist18
statistic_hist13
statistic_hist15

meddiff

RESP exhale_counter
inhExhRatio_iqr statistic_hist0 mean

hr_total_energy
meandiff

statistic_hist95
inhale_dur_temp_curve_distance

statistic_hist27
hr_meandiff

exhale_meanadiff
max, zeros_mean
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Table 5. Features used per dataset and sensor modality for the Valence dimension in the SL and DF methodology, obtained using 4-fold CV.

ITMDER WESAD DEAP MAHNOB-HCI EESD

EDA Hand
onsets_spectrum_mean

rise_ts_temp_curve_distance
rise_ts_medadev

onsets_spectrum_mean onsets_spectrum_mean onsets_spectrum_mean

amplitude_mean
onsets_spectrum_meanadev

half_rise_medadev
onsets_spectrum_statistic_hist9

EDRVolRatio_medadiff
half_rec_minpeaks

EDA Finger

onset_peaks_Vol_max
half_rise_mean, peaks_max

onsets_spectrum_statistic_hist120
half_rec_meandiff

onsets_spectrum_statistic_hist91
half_rise_var

peaks_Onset_Vol_skewness

ECG nni_minpeaks nni_minpeaks
statistic_hist95

rpeaks_meandiff
max

mindiff

BVP

statistic_hist44
meanadiff

hr_meanadiff
onsets_mean
hr_meandiff

median
minAmp mean

mean
statistic_hist16
statistic_hist5

statistic_hist31
meddiff

Resp
mean

exhale_median
statistic_hist196

mean mean

hr_maxpeaks
statistic_hist55

zeros_skewness
statistic_hist36

iqr
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4.4. Decision Fusion vs. Feature Fusion

In the current sub-section we present the experimental results for the DF and FF methodologies.
Table 6 shows the experimental results in terms of Accuracy and F1-score for the Arousal and
Valence dimensions in the 5 studied datasets, along with some state-of-the-art results. As it can
be seen, once gain, both of our techniques outperform the results obtained for ITMDER [7], with more
expression in the Valence dimension. Similarly for the DEAP dataset [8], where only for the Valence
axis in terms of Accuracy we did not succeed, attaining, however, competitive results, and surpassing
in terms of F1-score.

On the other hand, with the MAHNOB-HCI dataset [53], our proposal does not attain the literature
results. For the EESD and the WESAD datasets, no state-of-the-art results are presented since it is
yet, to the best of our knowledge, to be applied to ER. Thus, we denote as an un-explored annotation
dimension which we evaluate in the present paper. Secondly, when comparing DF with FF, the former
surpasses the latter for the EESD dataset in both the Arousal and Valence scale. For the remaining
datasets, very competitive results are reached on both techniques. Regarding the computational time,
FF is more competitive than DF, with an average execution time two orders of magnitude lower
comparatively to DF (Language: Python 3.7.4; Memory: 16 GB 2133 MHz LPDDR3; Processor: 2.9 GHz
Intel Core i7 quadruple core).

Table 7 presents the classifiers used per dataset and sensor modality for the Arousal and Valence
dimension in the FF methodology.

The experimental results show that the selection was: 2 QDA; 1 SVM; 1 GNB; 1 DT (for the
Arousal scale); and 2 RF; 1 SVM; 1 GNB; and 1 QDA (for the Valence scale). These results exhibit
once again that, as for the SL techniques, no particular type of classifier was globally selected for all
the datasets. Additionally, Table 8 displays the features used per dataset and sensor modality for the
Arousal and Valence dimension in the FF methodology.

Results also showed that, similarly to the SL methodology, most features are specific per to a
given dataset, with zero features being selected through the SFFS in common in all the datasets feature
selection step.

In summary, this paper explored the datasets in new emotion dimensions and evaluation metrics
yet to be reported in the literature, and attained similar or competitive results comparatively to
the available state-of-the-art. The experimental results showed that between FF and DF using SL,
very similar results are attained, and the best performing methodology is highly dependent on
the dataset. These results are possibly due to the features being different for each dataset and
sensor modality. In the SL classifier results, the best performing sensor modality is uncertain.
While the DF methodology displayed the higher computation and time complexity. Therefore,
considering these points, we select the FF methodology as the best modality fusion option since,
with a single classifier, and pre-selected features, high results are reached with low processing time
and computational complexity.
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Table 6. Experimental results for the FF and DF methodologies in terms of Accuracy (A) and F1-score (F1), and time (T) in seconds, per dataset for the Arousal dimension
in the FF methodology. Results obtained using LOSO. The SOA column contains the results found in the literature (ITMDER [7], DEAP [8], MAHNOB-HCI [53]).
The best results are shown in bold.

ITMDER WESAD DEAP MAHNOB-HCI EESD

Arousal SOA Valence SOA Arousal Valence Arousal SOA Valence SOA Arousal SOA Valence SOA Arousal Valence

DF

A 66.7 ± 9.0 58.1 89.3 ± 17.3 57.12 85.8 ± 16.5 92.9 ± 12.0 58.9 ± 15.2 56.6 ± 9.1 54.7 ± 13.3 58.1 ± 6.1 75.0 ± 14.8 75.6 ± 17.9
F1 50.9 ± 23.5 93.2 ± 12.4 0.0 ± 0.0 95.9 ± 7.0 72.9 ± 12.9 71.8 ± 7.4 63.8 ± 15.8 68.1 ± 8.9 73.4 ± 16.4 72.4 ± 22.5
T 1.5 ± 0.0 1.35 ± 0.0 2.04 ± 0.0 2.0 ± 0.0 1.58 ± 0.0 1.73 ± 0.0 1.1 ± 0.0 1.35 ± 0.0 0.6 ± 0.0 0.7 ± 0.0

FF

A 87.6 ± 16.7 89.26 ± 17.3 87.6 ± 16.7 92.9 ± 12.0 60.0 ± 13.9 57.0 56.9 ± 8.2 62.7 55.2 ± 15.4
64.2
57
55 ± 3.9

56.0 ± 10.2
68.7
62.7
57.5

± 3.9 60.0 ± 18.4 68.7 ± 22.2

F1 19.4 ± 34.4 93.2 ± 12.4 19.4 ± 34.4 95.9 ± 7.0 67.3 ± 23.8 53.3 70.7 ± 7.6 60.8 67.5 ± 16.6 59.0 ± 15.1 56.7 ± 22.5 67.7 ± 24.7
T 0.02 ± 0.0 0.02 ± 0.0 0.02 ± 0.0 0.07 ± 0.01 0.02 ± 0.01 0.02 ± 0.0 0.01 ± 0.0 0.01 ± 0.0 0.0 ± 0.0 0.01 ± 0.0

Table 7. Classifier used per dataset and sensor modality for the Arousal and Valence dimension in the FF methodology. Results obtained using 4-fold CV.

ITMDER WESAD DEAP MAHNOB-HCI EESD

Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence

Classifier SVM RF QDA SVM QDA GNB GNB QDA DT RF
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Table 8. Features used per dataset and sensor modality for the Arousal and Valence dimension in the FF methodology. Results obtained using 4-fold CV.

ITMDER WESAD DEAP MAHNOB-HCI EESD

Arousal

EDA_H_onsets_spectrum_mean
BVP_median

ECG_min
Resp_statistic_hist64

Resp_zeros_sadiff
BVP_statistic_hist29

EDA_phasic_rate_total_energy
EDA_rise_ts_mindiff
Resp_statistic_hist25

Resp_inhExhRatio_maxpeaks
EDA_phasic_rate_iqr

Resp_inhExhRatio_zero_cross
Resp_inhExhRatio_skewness

ECG_rpeaks_meanadiff
ECG_minpeaks
Resp_meandiff

EDA_onsets_spectrum_minAmp
EDA_onsets_spectrum_statistic_hist22

ECG_hr_dist
EDA_onsets_spectrum_statistic_hist62

Resp_exhale_max
EDA_amplitude_kurtosis

Valence

EDA_H_peaksOnVol_minAmp
BVP_mean

EDA_F_EDRVolRatio_total_energy
EDA_H_onsets_spectrum_statistic_hist112

BVP_median
ECG_dist

ECG_zero_cross
ECG_statistic_hist143

Resp_statistic_hist60
EDA_half_rise_dist
BVP_statistic_hist10
BVP_statistic_hist39

EDA_half_rise_temp_curve_distance
BVP_hr_maxAmp

ECG_meanadiff
EDA_rise_ts_meandiff
Resp_inhale_dur_dist

EDA_onsets_spectrum_statistic_hist5

EDA_amplitude_mean
BVP_statistic_hist35

Resp_rms
Resp_zeros_meandiff

EDA_onsets_spectrum_statistic_hist22
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5. Conclusions and Future Work

Over the past decade, the field of affective computing has grown, with many datasets being
created [6–9,52], however, a consolidation is lacking concerning: (1) What are the ranges of the
expected classification performance; (2) The definition of the best sensor modality, SL classifier and
features per modality for ER; (3) Which is the best technique to deal with multimodality and their
limitations (FF or DF); (4) Selection of the classification model. Therefore, in this work, we studied
the recognition of low/high emotional response in two dimensions: Arousal and Valence, for five
publicly available datasets commonly found in literature. For this, we focus on physiological data
sources easily measured from pervasive wearable technology, namely ECG, EDA, RESP and BVP data.
Then, to deal with the multimodality, we analyse two techniques: FF and DF.

We extend the state-of-the-art with: (1) Benchmarking the ER classification performance for SL,
FF and DF in a systematic way; (2) Summarising the accuracy and F1-score (important due to the
imbalanced nature of the datasets); (3) Comprehensive study of SL classifiers and extended feature
set for each modality; (4) Systematic analysis of multimodal classification in DF and FF approaches.
We were able to obtain superior or comparable results to those found in literature for the selected
datasets. Experimental results showed that FF is the most competitive technique.

For future work, we identified the following research lines: (1) Acquisition of additional data for
the development of a subject-dependent model, since emotions are highly subject-dependent resulting,
according to literature [11], in a higher classification performance; (2) Grouping the users by clusters
of response might provide a look into sub-groups of personalities, a further parameter that must be
taken into consideration when characterising emotion; (3) As stated in Section 4.3 we used a SFFS
methodology to select the best feature set to use in all our tested techniques, however, it is not optimal,
so the classification results using additional feature selection techniques should be tested; (4) Lastly,
our work is highly conditioned on the extracted features, while lately, higher focus has been made to
Deep Learning techniques, but in an approach where the feature extraction step is embedded in the
neural network - ongoing work concerns the exploration and comparison of feature engineering and
data representation learning approaches, with emphasis on performance and explainability aspects.
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Figure A1. Histogram combining the features used in the SL (Supervised Learning) methodologies in
all the datasets for the Arousal and Valence axis in (a,b), respectively. For information regarding the
features the authors refer the reader to (https://github.com/PIA-Group/BioSPPy).
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