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Abstract: Nowadays, autonomous vehicle is an active research area, especially after the emergence
of machine vision tasks with deep learning. In such a visual navigation system for autonomous
vehicle, the controller captures images and predicts information so that the autonomous vehicle
can safely navigate. In this paper, we first introduced small and medium-sized obstacles that were
intentionally or unintentionally left on the road, which can pose hazards for both autonomous and
human driving situations. Then, we discuss Markov random field (MRF) model by fusing three
potentials (gradient potential, curvature prior potential, and depth variance potential) to segment
the obstacles and non-obstacles into the hazardous environment. Since the segment of obstacles is
done by MRF model, we can predict the information to safely navigate the autonomous vehicle form
hazardous environment on the roadway by DNN model. We found that our proposed method can
segment the obstacles accuracy from the blended background road and improve the navigation skills
of the autonomous vehicle.

Keywords: roadway hazard; Markov random field; autonomous vehicle; deep learning; image
processing; self-driving car

1. Introduction

Global Status Report on Road Safety is released by World Health Organization (WHO,
Geneva 27, Switzerland) 2018, in which WHO claims that about 1.35 million people die each year in
road traffic accidents [1,2]. Similarly, American Automobile Association (AAA) Foundation released
press report in 2016 that 50,658 vehicle roads accidents occurred only in America from the year 2011 to
2014 due to roadway obstacles. Roadway obstacles were the main factor of vehicle crashes and caused
9850 injuries and 125 deaths annually in the United States [3]. Reports indicate that over 90% of crashes
are caused by errors of driver [4]. To improve this situation, governments, municipal departments,
and car manufacture companies have considered significant investments to support the development
of various technologies such as autonomous vehicles and cognitive robots. About 1 billion euros
already have been invested by EU agencies on such type of projects [5].

In 2009, autonomous vehicles were developed and tested in four different states in the United
States under the supervision of companies such as Waymo (Google, Mountain View, CA, U.S) and Uber
with the support of traditional car manufacturers such as Ford and BMW [6]. Since then, this technology
has been evolved and currently it is introduced in 33 different states of the United States with its
specific regulations. In addition, Victoria Transport Policy Institute quoted that this technology will be
widely used after 2040–2050 [7]. Currently, the most advanced features found in autonomous vehicles
are Lane Changing (LC) Control [8,9], Adaptive Cruise Control (ACC) [10], Automatic Emergency
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Braking System (AEBS) [11], Light Detection and Ranging (LIDAR) [12], Street Sign Recognition [13],
Vehicle to Vehicle (V2V) Communication [14], Object or Collision Avoidance System (CAS) [15], etc.

With the continuous development of the highways, roads, city streets, and expressways,
challenging problems are increasing to distinguish because the road environment is complex and
constantly developing. It will be influenced by small obstacles or debris, shadows, light, water spots,
and other factors. Those objects have been fallen from vehicles, construction sites or are littering.
Different types of sensors, active sensors (RADAR or LIDAR) to passive sensors (camera), were used to
solve this problem. Active sensors such as RADAR or LIDAR offer high precision in measuring distance
and speed from point to point but they often suffer from low resolution and high costs. However,
in comparison of passive sensors such as camera, its accuracy is crucial for the timely detection of
small obstacles and an appropriate response by safety critical moving platforms. Detecting the small
obstacle that is displayed in a very small area of the image with all possible shapes and forms is also
very challenging problem. Gradient induced by the edges of obstacles can also be caused by paper or
soil dust on the road or due to moisture gradient after a rain, mud, or road marking, which can be
potential sources of false positives. Figure 2 describes the phenomena very well.

In recent research and development, Convolutional Neural Network (CNN) models are used in
autonomous vehicles to navigate safely. For example, during training, the CNN-based end to end
driving model maps a relationship between the driving behavior of humans using roadway images
collected from stereo camera and the steering wheel angle [16–18], and during testing, the CNN-models
predict the steering wheel angle to navigate the autonomous vehicle safely. So that the autonomous
vehicle is depended on the training dataset. If the CNN model is not trained on the roadway obstacle
than navigation system of autonomous vehicle may generate incorrect information about the steering
wheel angle and cause a collision in result. In addition, the number of research studies shows that
the autonomous vehicle navigation system may fail to navigate safely due to several reasons, such
as Radar sensor failure, camera sensor failure, and software failure [19]. For example, Tesla Model 3
failing to stop for an overturned truck and slamming right into it on highway in Taiwan even ignores
the pedestrian with autopilot on.

This study addresses how to improve the robustness of obstacle detection method in a complex
environment, by integrating a Markov random field (MRF) for obstacles detection, road segmentation,
and CNN model to navigate safely [20]. We segment out the obstacle from the image in the framework
of MRF by fuses intensity gradient, curvature cues, and variance in disparity. After analyzing the
obstacle from the captured image, CNN-model helps to navigate the autonomous vehicle safely.
The main contributions of this study are as follows:

• Pixel label optimization of images as a small obstacle or hindrance on the road detected by using
an MRF model.

• Navigating an autonomous vehicle on a roadway from unexpected obstacle.

The remaining part of the research is organized as follows:

• Section 2—Reviews the relevant works carried out and developed in the past few years.
• Section 3—Introduces the method for detecting the physical obstacles or hindrances on the road

and predicts the steering wheel angle for AV.
• Section 4—Shows demonstration and simulation.
• Section 5—Discusses the results and its comparison.

2. Related Work

The probability of occupation map is one of the main directions of work for obstacle detection [21].
It is developed through orthogonal projection of the 3D world onto a plane road surface (assuming
that the environment structured of the road surface is almost planar). The plane is discretized in cells
to form a grid; therefore, the algorithm predicts the probability of occupation of each cell. We conclude
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that this method can accurately detect the large obstacle (such as cyclists or cars) by using the stereo
vision sensor [22] and can also help to identify the road boundaries by using LIDAR data [23]. However,
since the probability function is closely related to the number of measurements in one grid, this method
may not be suitable for small obstacle detection by using the stereo vision if the observation is scarce
and noisy.

Digital Elevation Map (DEM) [24] is one of the algorithms that tries to detect obstacles relying
on the fact that they protrude up from a dominant ground surface. The obstacle detection algorithm
proposed in [24] marks DEM cells as road or obstacles, using the density of 3D points as a criterion.
It also involves fitting a surface model to the road surface. Oniga and Nedevschi [25] presented a
random sample consensus (RANSAC)-based algorithm for road surface estimation and density base
classifier for obstacle detection by using the DEM constructed on stereo data, whereas in [26], authors
used a similar RANSAC-based methodology for curb detection by using the polynomial fitting in stereo
DEM. Although, RANSAC-based algorithm is not suitable for detection of small obstacle because the
small obstacle and variation of disparity in the image is often similar to the noise levels and a least
square fitting may smooth out the small obstacle along with road surface, RANSAC shows an accurate
estimate of the vehicles position relative to the road [27].

Fusion of 3D-LIDAR and high-resolution camera seems to be a reasonable approach for robust
curb detection. Traditional range visual fusion methods [28,29] use the detection results from the range
data to guide the curb searching in the image, which have the advantage of enlarging the detection
spot. However, fusion of 3D-LIDAR and visual data search small obstacle in the visual images is more
reliable in enhance the robustness of obstacle and edge detection as compared to traditional range visual
fusion methods [30]. It recovers a dense depth image of the scene by propagating depth information
from sparse range points to the whole high-resolution visual image [31]. J. Tan and J. Li et al. [32] used
the following geometric properties to robustly curb detection such as depth image recovery, curb point
detection, curb point linking and curb refinement, and parametrization.

Scene flow-based approach is also used for obstacle detection [33,34], where each point in
constructed 3D cloud is tracked temporally and the flow is analyzed to classify the object in the
image such as road surface, obstacle, pedestrian, etc. This approach has limited applicability because
it just detected the moving obstacles such as moving vehicle, bicycle, or pedestrians. In addition,
the decision-making process is based on the flow of nearby points in 3D cloud, which can be too sparse
for small obstacles. For obstacle detection in [35], authors used advanced stereo-based algorithms,
combining full 3D data with motion-based approach, and yet it focuses only on large obstacle detection
such as vehicles.

Hadsell et al. [36] presented the method of vision-based neural network classifier. His idea was to
use an online classifier, which is optimized for long-distance prediction and deep stereo analysis to
predict the obstacles and to navigate vehicles safely. Ess A. et al. [37] defined the method of combining
image-based category detectors with its geometric information received from stereo cameras (such as
vehicle or pedestrian detection). However, due to the large differences in its shape, size, and visual
look, it will become difficult for vision sensor to train the dataset on small obstacles along the way.

Bernini and Bertozzi et al. [38] proposed an overview of several stereo-based generic obstacle
detection such as Stixels algorithm [39] and geometric point clusters [40,41]. The Stixels algorithm
distinguishes between a global ground surface model and a set of obstacle segments in rectangular
vertical, thus, providing a compact and robust representation of the 3D scene. However, geometric
relation between 3D point is used to detect and cluster obstacle point. This method is suitable for
detecting medium-sized obstacle over close or medium distance. If the distance increases and the size
of the obstacle decreases, then position accuracy and obstacle detection become challenging.

Zhou J. and J. Li [42] proposed a solution to detect obstacles using a ground plane estimation
algorithm based on homography. This work extends [43] to a smaller obstacle by combining several
indicators, such as homography score, super-pixel segmentation, and line segment detector in an MRF
framework. However, such indexation based on appearance such as line segment detection and pixel
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segmentation fail when they occurred. Therefore, we directly use the lowest level of details available,
i.e., image gradients in both stereo depth images and appearance.

Many researchers [44–46] work on the hypothesis of a flat surface assumption, free space, or the
ground as a single planar and characterize the obstacles according to their height from the ground.
The geometric deviation from the reference plan can be estimated directly from the image data,
precalculated point cloud [47], or by extracting from v-disparity histogram model [48]. Instead of
relying on the flatness of the road [49], the vertical road profile is modeled as a clothoid [50] and
splines [51], which is estimated from the lateral projection of the 3D points. Similarly, free ground
profile model was examined using adaptive threshold values in v-disparity domain and multiple filter
steps [52].

In addition, we also explore existing datasets that are used in autonomous vehicle community.
The dataset is provided by the Udacity (Mountain View, CA, USA) [53], which supports the end-to-end
data and image segmentation, but it does not provide the ground truth for the obstacle in the roadway
lane. Similarly, KTTI [54] and Cityscape [55] datasets also do not support the obstacle detection as a
ground truth data. The dataset which matches our requirements is the Lost and Found dataset [56].

Pinggera P. and Kanzow C. have worked on planar hypothesis testing (PHT) [57,58], fast direct
planar hypothesis testing (FPHT), point compatibility (PC) [40,41], Stixels [39,59], and mid-level
representation: Cluster-Stixels (CStix) [60–62] for detecting the small obstacle in dataset. In addition,
Ramos and Gehrig et al. [63] further extends this work by merging the deep learning with Lost and
Found dataset hypothesis results. The people who have worked on Lost and Found dataset [56] did
not discuss that how to navigate an autonomous vehicle safely or predict the steering wheel angle for
an autonomous vehicle from unexpected obstacle on a roadway.

Since the existing dataset is not able to meet our requirements, we have carefully created our
dataset using the steering angle sensor (SAS) and ZED stereo device mounted on an electric vehicle as
discuss in the experimental setup section. After that, pixel labelling of small obstacles or hindrance on
the road are detected by using MRF model and road segmentation model, which help the CNN-model
to navigate the autonomous vehicle on roadways from unexpected obstacle by prediction the steering
wheel angle.

3. Method

In this section, we will describe how to develop a safe autonomous driving system in unexpected
and dangerous environments. In this section, we discussed three models.

(a) In the first model, we used various stochastic techniques (such as curvature prepotential,
gradient potential, and depth variance potential) to segment obstacles in the image from Markov
random field (MRF) frames. These three techniques measure pixel-level images to extract useful
information and store it for orientation. In this method, each pixel in the node of interest was
distributed in the MRF. Finally, instead of using OR gates, we used AND gates to combine the
results of previous techniques.

(b) In the second model, semantic segmentation technology was used to segment paths and filter
outliers and other important obstacles.

(c) Third model was used to predict the steering wheel angle of the autonomous vehicle. We analyzed
the unexpected obstacle on the roadway and determined the threat factor (Ttf). This threat factor
helped us to ignore that obstacle or consider as accident risk.

The overall pipeline is graphically illustrated in Figure 1. The system input consisted of optical
encoders used in applications for angle detection as a SAS in vehicles and two stereo images,
which were used to calculate depth using the SGBM algorithm (semi-global block matching) proposed
by Hirschmuller [64]. The depth variance and color images were used to calculate three different cues,
i.e., image gradient, disparity variance, and depth curvature. These three cues were combined to a
unary potential in an MRF with an additional pairwise potential. Then, the standard graph cuts were
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used to obtain the obstacle. In addition, deep learning-based semantic segmentation [65] was used to
segment the roads and filter out the abnormal values.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 24 

 

used to obtain the obstacle. In addition, deep learning-based semantic segmentation [65] was used to 
segment the roads and filter out the abnormal values. 

 
Figure 1. Pipeline of detection of hazard object and prediction of steering wheel angles. 

3.1. The Markov Random Field (MRF) Model 

During the past decade, various MRF models, inference, and learning methods have been 
developed to solve many low-, medium-, and high-level vision problems [66]. While inference 
concern underlying the image and scene structure to solve problem such as image restoration, 
reconstruction, segmentation, edge detection, 3D vision, and the object labeling in the image [67]. In 
our research work, we elaborate our query regarding small obstacle segmentation from the road by 
defining an energy function (such as cost) over an MRF. We associate the image with random process 
X with the elements ܺ௦, where s ϵ S represents a position of a pixel in the image. Each pixel position 
in the image is considered as a node in the MRF and affiliates each node with the unary or pairwise 
cost [68]. Minimum energy function E is defined in equation as: ܧ(ܺ) = 	෍ܧ௨(ݏ) +	 ෍ ,௣(ܺ௥ܧ ܺ௦)(௥,௦)ఢே௦  (1) 

where (ݏ)௨ܧ  represents the unary term and ܧ௣(ܺ௥, ܺ௦)  represents the pairwise term. ܺ =ሼ ଵܺ, ܺଶ, … , ܺ୬ሽ is set of random variables associated with the set of nodes S that takes label Xୱ ϵ [0, 1], 
which depends on the nature of appearance, either it is road, texture, or the small obstacle on the 
road. Around each pixel, we calculate the unary term (ܧ௨(ݏ)) independently. It is the combination 
of three cues such as gradient potentialቀܧ௨௚(ݏ)ቁ , depth curvature potential ൫ܧ௨௖(ݏ)൯ , and depth 
variance potential (ܧ௨௩(ݏ)). The unary term (ܧ௨(ݏ)) is defined as follows: ܧ௨(ݏ) = .(ݏ)௨௚ܧ .(ݏ)௨௖ܧ  (2) (ݏ)௨௩ܧ

3.2. Gradient Potential 

The potential gradient at the site (i, j) is defined as follows: ܧ௨௚(݅, ݆) = ටܩ௫(݅, ݆)ଶ + ,݅)௬ܩ ݆)ଶమ  (3) 

Figure 1. Pipeline of detection of hazard object and prediction of steering wheel angles.

3.1. The Markov Random Field (MRF) Model

During the past decade, various MRF models, inference, and learning methods have been
developed to solve many low-, medium-, and high-level vision problems [66]. While inference concern
underlying the image and scene structure to solve problem such as image restoration, reconstruction,
segmentation, edge detection, 3D vision, and the object labeling in the image [67]. In our research
work, we elaborate our query regarding small obstacle segmentation from the road by defining an
energy function (such as cost) over an MRF. We associate the image with random process X with
the elements Xs, where s ε S represents a position of a pixel in the image. Each pixel position in the
image is considered as a node in the MRF and affiliates each node with the unary or pairwise cost [68].
Minimum energy function E is defined in equation as:

E(X) =
∑

s
Eu(s) +

∑
(r,s)εN

Ep(Xr, Xs) (1)

where Eu(s) represents the unary term and Ep(Xr, Xs) represents the pairwise term. X =

{X1, X2, . . . , Xn} is set of random variables associated with the set of nodes S that takes label Xs

ε [0, 1], which depends on the nature of appearance, either it is road, texture, or the small obstacle on
the road. Around each pixel, we calculate the unary term (Eu(s)) independently. It is the combination
of three cues such as gradient potential

(
Eg

u(s)
)
, depth curvature potential (Ec

u(s)), and depth variance
potential (Ev

u(s)). The unary term (Eu(s)) is defined as follows:

Eu(s) = Eg
u(s).E

c
u(s).E

v
u(s) (2)
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3.2. Gradient Potential

The potential gradient at the site (i, j) is defined as follows:

Eg
u(i, j) =

2
√

Gx(i, j)2 + Gy(i, j)2 (3)

Partial derivative (Gx(i, j) and Gy(i, j)) is calculated in the horizontal and vertical direction in
the original color image [69]. In our work, we use the image gradients rather than edge detectors,
because edge detectors mostly perform the thresholding on the feeble gradient response, whereas our
work avoid such types of thresholding, and it builds several weak cues as a strong cue.

3.3. Curvature Prior Potential

Curvature can be defined as the reciprocal of the radius of a circle that is tangent to the given curve
at a point. Curvature is “1” for a curve and “0” for a straight line. Smaller circles bend more sharply
and hence have higher curvature. This feature is very useful for autonomous vehicle in multiple
purposes such as free space detection, curb detection, etc. [70,71]. When performing an Eigen analysis
near the 3D point under consideration, the algorithm greatly quantifies the changes along the normal
surface. Equation of the curvature potential is defined:

Ec
u(s) =

2√λ3
2√λ1 +

2√λ2 +
2√λ3

(4)

where Ec
u(s) is a curvature prior at the corresponding position obtained after reprojection the 3D point

in the image space. The 2
√ of the eigenvalue (λ1,λ2,λ3) can better distinguish nonplanar surfaces.

This technique is little different than the M. Pauly and M. Gross et al. [70] algorithm. The curvature
prior feature is stable and robust and stable than tangent plane normal vectors because it does not
make a plane surface assumption very clearly.

3.4. Depth Variance Potential

If we slide horizontally on the image, we can calculate this potential to detect sudden changes
in depth [72]. This is computed by summation of these sudden depth horizontal windows (Wh) in a
square window (Ws) and multiplying the figured-out value with corresponding disparity in the pixel,
even the obstacles are not available. Equation of depth variance is defined as:

Dvar(i, j) = var
([

D
(
i−

Wh
2

, j
)

: D
(
i +

Wh
2

, j
)])

(5)

Here, the depth map is represented by D, which we obtained with the help of stereo equipment.
The final variance potential is defined as follows:

Ev
u(i, j) =

 Ws/2∑
a= −Ws/2

Ws∑
b=0

Dvar(i + a, j− b)

 . d(i, j) (6)

Here, parallax value of the specific located pixel (i, j) is represented by d(i, j).
The results of above three potentials are shown in Figure 2. Thus, we can see that the curvature

prior potential and depth variance potential are reliable. However, adding some noisy depth values
to the stereo will result in false positive values, as shown in Figure 2b,c. To get the more accurate
unary potential result, as seen in Figure 2e, weighting the gradient potential in Figure 2d can pacify the
problem by using the depth potential.
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3.5. Pairwise Potential

By using the Potts model, we define the pairwise potential Ep(Xr, Xs):

Ep(Xr, Xs) = −Jp

∑
(r,s)

δ(Xr, Xs) (7)

In the above equation, Kronecker delta is represented by δ(Xr, Xs); whenever Xr = Xs, the value
is 1 otherwise 0. The equation of finding the global minima of energy function of the small obstacle
that is detected on the road is:

X∗ =
argmin E(X)

x
(8)

With the help of graph cut feature, we can find the global minima efficiently, whereas minimum
graph cut is found using Boykov Y. and Kolmogorov V. et al. [73] procedure of min-cut/max-flow.
Appendix A provides the pseudocode for obstacles detection by using the MRF-model.

3.6. Determination of the Obstacle Threat Value in the Image

In this model, we determine the threat value (Tt f ) by detecting obstacles in the capture image.
Coordinate (x, y) of the obstacle in the capture image is identified once we combine the result of
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semantic segmentation model and MRK mode. We can compute the threat value (Tt f ) by measuring
the distance of the obstacles in the image size (height (h) and width (w)) from the bottom center pixel
(h, w

2 ). Finally, the threat value is computed from the following formula:

Tt f = 1−

√√√√√√ (x− h)2 +
(
y− w

2

)2

h2 +
(

w
2

)2 (9)

To obtain the latitudinal and longitudinal distance of the obstacle from the center line, we subtract
the height (h) with half of the width ( w

2 ) values from x and y values, respectively. Code related
detection of obstacle in the captured image whose pixels size >= 50 along with it coordinate specified
in Appendix A.

3.7. DNN-based Autonomous Vehicle Driving Model

In our research, we have implemented an autonomous driving model similar to DAVE-2,
i.e., an end-to-end autonomous driving model [18]. Here, we train the weights of the network to
minimize the average square error between the steering command issue. As shown in Figure 3,
the network receives an obstacle detection and labeling image of 400 × 600 × 3 pixels and generates a
steering wheel angle as output. This network architecture consists of 11 layers, including 1 lambda
layer, 1 normalization layer, 5 convolution layers, and 4 fully connected layers. We use 5 × 5 kernel
and 2 × 2 stride in the first three convolution layers and 3 × 3 kernel and 1 × 1 stride used in last two
convolution layers. The whole network contains 7,970,619 trainable parameters.
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We train autonomous vehicle models based on the result of obstacle detection by MRF and SAS
and then test their performance through prediction of steering wheel angle as describe in Algorithm 1.
After training, our well-trained autonomous vehicle model detects high threat value obstacle on the
roadway and navigate the autonomous vehicle safely. Appendix A shows the model generation code
used for steering wheel angle prediction.
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Algorithm 1 Pseudocode for Predicting the Steering Angle

#Nvidia Model
Lambda: Output shape: 400 × 600 × 3
Image normalization to avoid saturation and make gradients work better.
#2D Convolution Neural Network for handle features.
Convolution1: 5 × 5, filter: 24, strides: 2 × 2, activation: ELU
Convolution2: 5 × 5, filter: 24, strides: 2 × 2, activation: ELU
Convolution3: 5 × 5, filter: 48, strides: 2 × 2, activation: ELU
Convolution4: 3 × 3, filter: 64, strides: 1 × 1, activation: ELU
Convolution5: 3 × 3, filter: 64, strides: 1 × 1, activation: ELU
#Dropout avoids overfitting
Drop out (0.5)
#Fully Connected Layer for predicting the steering angle.
Fully connected 1: neurons: 100, activation: ELU
Fully connected 2: neurons: 50, activation: ELU
Fully connected 3: neurons: 10, activation: ELU
Fully connected 4: neurons: 1 (output)
model.compile(Adam(lr = 0.0001), loss=’mse’)
return model

4. Dataset

Since little attention has been paid to finding small obstacles in the past, no reasonable dataset is
available for public use. Therefore, we created a new small dataset for obstacle detection. The dataset
contains 5626 stereo images. These images are obtained from ZED stereo device, which were installed
on electric vehicles in various environments. ZED camera can create the real-time point cloud at a
framerate of 30 fps with the resolution of 2 × (1280 × 720), and we extracted them from different video
sequences of electric vehicle view, while running on road. Specification of the ZED camera is presented
in Table 1.

Table 1. Spec/parameters of ZED stereo device.

Camera ZED M

Frame per second 30 fps
Resolution 2 × (1280 × 720)

RGB sensor type 1/3” 4MP CMOS
Field of view Max. 90◦ (H) × 60◦ (V) × 100◦ (D)

Exposure time Set exposure to 50% of camera framerate
Focal length 2.8 mm (0.11”)—f/2.0

Interface USB 3.0 Type-C port

Optical encoders or separate arrays of LEDs and photodiodes are used as steering angle sensor
(SAS) in vehicle angle sensing applications [74,75]. Accurate and reliable steering angle detection
is the main challenge of modern vehicles. This data is used not only for electronic power steering
(EPS) and electronic stability control (ECS) but also for controlling adaptive headlights, lane keeping
assist system, or other advanced driver assistance systems (ADAS). Optical steering angle sensor
consists of an LED and a photodiode array or a CMOS line sensor. The sensor output is a digital square
wave signal whose frequency depends on the speed of the turning wheel. Thus, the sensor can help
determine the actual angle of rotation (ground truth value), which allows us to compare it with our
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proposed model. There are some mathematical tools that can adjust the steering angle values between
different vehicles according to the formula of Equation (10):

R =
s√

2− 2 cos
(

2a
n

) (10)

where “R” is the radius of curvature, “a” is the steering wheel angle, “n” is the steering ratio, and
“s” is the steering wheel frame. The onboard computer is NVIDA Jetson TX2. In the training phase,
the captured images from ZED stereo cameras associated with steering angle are sent to this main
computer and saved frame by frame as a custom image object. Later, the training can be accomplished
offline using a more powerful computer than the onboard computer.

According to the steering angle sensor, we have many zero steering values and only a few left and
right steering values. In fact, we mostly go straight, if we put all of them equal, then it will go left and
right frequently. We cutoff 4402 images with zero values, which help us to balance the dataset, and the
remaining 1224 stereo images are used to train the model as shown in Figure 4.Sensors 2020, 20, x FOR PEER REVIEW 10 of 24 
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Many obstacles can be found in this dataset, such as bricks, dirt, newspapers, animals,
and pedestrians, and even, we can see the nature of the road to provide driving assistance and
more information. Naturally, there are many obstacles on the road, while we have deliberately placed
a few obstacles to further complicate our dataset. There are total of 52 obstacles found in this dataset
with variable height (8–45 cm). In addition, we also create the ground truth by manually driving
the electric vehicle on the roadways. In order to obtain satisfactory driving model performance, it is
necessary to train the model on multiple training dataset. Increasing the size of existing data through
affine transformation [76], specifically by random change in contrast or brightness, horizontal flipping
of the image, and random rotation. After development of autonomous vehicle driving model, we use
the augmented dataset for training. The pseudocode for augmented dataset is included in Appendix A.
This dataset is divided into two parts, 80% for training and 20% for validation, as shown in Table 2.

Table 2. Dataset distribution for training and validation.

Proposed Method Dataset Size after Expansion

Size of dataset 1224 2448
Size of training dataset 980 1958

Size of validation dataset 244 490
Size of testing dataset (contain obstacle) 52 104
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5. Results and Comparisons

We can use the following quantitative indicators to analyze the performance of the model: root
mean square error (RMSE) and mean absolute error (MAE), as well as qualitative indicators through
visualization: appearance challenges, distance and size challenges, clustering and shape challenges,
and prediction of steering wheel angle challenges.

5.1. Quantitative Results

5.1.1. Model Performance

Through our method and the measurement of RMSE and MAE, quantitative comparisons can
be made to successfully identifying the obstacles. By comparing the RMSE and MAE values, we can
predict the angle of the steering wheel. If the number of pixels of the obstacle is greater than the
50 pixels marked by the MRF model, the obstacle can be identified. If the pixel size of the segmented
obstacle is higher than 50 pixels, it will be marked as a false alarm or high threat value and label it on
the autonomous vehicle lane.

After successfully detecting the obstacles on the roadway by using the MRF model, we extracted
the following two errors, root mean square error (RMSE) and mean absolute error (MAE), by which
we can compare ground truth value with predicting steering wheel angle. For extracting these errors,
we used following equations:

RMSE =

√√√
1
N

N∑
i=1

(Gi − Pi)
2 (11)

MAE =
1
N

N∑
i=1

(|Gi − Pi|)
2 (12)

Total number of images in the dataset is represented by “N”, ground truth represented by “Gi”,
and the steering wheel angle represented by “Pi” for the image ith of the dataset.

We find out the RMSE and MAE values in different weather conditions and different times of the
day and compare it with the ground truth value of the electric vehicle. In Figure 5, RMSE and MAE
values are low in the following situation: daytime, shadow, and street light, while the error values are
high in the following situations: night and rainy weather. The RMSE and MAE values are less than the
value indicating that the predicted steering wheel angle closely follows the ground truth values.
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5.1.2. Path Follow

The Frenet Coordinate System [77] is used to analyze the situation avoiding the obstacles on the
roadway of autonomous vehicle. We did not follow the Frenet Coordinate System for performance
evaluation, but compared the ground truth value and RMSE value with time steps from 72,000 to
82,000 ms (represented on x-axis) and latitude (represented on y-axis). It can help us to understand
that how autonomous vehicle closely follow the ground truth trajectory data and avoid the obstacle on
the road as shown in Figure 6. As we can see in Figure 6, in the following situation: daytime, shadow,
and under street light, the autonomous driving model closely follows the ground truth values while
difference between the night and rainy weather is high. When camera performance declines at night or
in rainy weather, it is a challenge to identify obstacles in such situations. Appendix A mentions code
related to extracting the ground truth and predicting RMSE values of steering wheel for comparison.
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different situation.

5.2. Qualitative Results

Here, we will examine methods implemented for proposed dataset. We categorize them based
on challenges related to appearance, distance and size, cluttering and shape, and steering wheel
angle prediction.

5.2.1. Appearance Challenges

The appearance is challenging to see in two ways. First, the deceptive texture by dirt or mud on the
road due to rain or flat object (such as newspaper and cardboard box) is very different from other objects
(such as rock and brick) that may mislead autonomous vehicle. Second, the appearance of obstacles
seems to be its background. It is very challenging to detect obstacle due to week intensity gradient.
However, the method we propose can solve the above problems and robustly extract obstacles. As you
can see in Figure 7d, we can accurately identify obstacle even if the road is wet. Likewise, it can avoid
the objects such as mud and shadow in Figure 7c. It also helps to identify obstacles that look like road
(obstacle 4 in Figure 7d). Our method can also take into account local changes in the road structure
and even applies to cement floors (Figure 7a,c).



Sensors 2020, 20, 4719 13 of 22

Sensors 2020, 20, x FOR PEER REVIEW 13 of 24 

 

  
(a) Sunny day (b) Street light 

 
 

(c) Tree shadow (d) Wet road 

 
(e) Cement floor 

Figure 7. Obstacles in the captured image successfully identified by Markov random field (MRF) 
model. 

5.2.4. Prediction of Steering Wheel Angle 

The rule-based classification method is used to divide all obstacles into two categories: (a) the 
ones to be ignored (the pixel size of obstacle is less than 50) and (b) which causes of vehicle to collide 
(the pixel size of the obstacle is greater than 50). We use MRF model and segmented image to calculate 
the threat value using equation 9 as discuss in methodology section. After pixel segmentation of 
obstacles, the coordinates of the risky obstacles in the image are obtained. 

After collecting the data, we prepare the image dataset for end-to-end driving model training by 
normalizing and resizing of the images [78,79]. As shown in Figure 8, the steering wheel angle is 
normalized between the −1.0 to +1.0, where positive values represent right rotation and a negative 
value represents the left rotation of the steering wheel. We normalize the values by using the liner 
transformation Equation (13): ߠ௡௢௥௠௔௟௜௭௘ௗ = 	−1.0 + max	൬0,min ൬1.0, ௥௔௪ߠ − ௠௔௫ߠ௠௜௡ߠ −  ௠௜௡൰൰ (13)ߠ

Among them, ߠ௡௢௥௠௔௟௜௭௘ௗ is the normalized steering wheel angle between −1.0 and +1.0, ߠ௥௔௪ is 
steering wheel angle in radians, and ߠ௠௜௡	and	ߠ௠௔௫ are the minimum and maximum steering wheel 
angle, respectively. 

Figure 7. Obstacles in the captured image successfully identified by Markov random field (MRF) model.

5.2.2. Distance and Size Challenges

As we all know, stereo depth is unreliable after the range of 10–12 m, which makes obstacle
detection challenging at long distance. Detecting the small obstacles from distance, large changes
in noise, or light reflection can cause serious problem. Our model solves these two problems well.
As shown in Figure 7e, label 1 shows that our method has detected a 9 cm height obstacle at a distance
of 8 m. Similarly, in Figure 7a, an obstacle of 7 cm height is detected at a distance of 7 m.

5.2.3. Cluttering and Shape Challenges

Obstacle appear on the road in random shapes. Therefore, it makes sense to only allow certain
shapes to use for modeled. However, our proposed algorithm has advantages in this regard because it
does not require any assumptions about the shape or appearance of obstacles and always performs
reliable detection. We can be seen rocks and tires in Figure 7b,c, respectively.

5.2.4. Prediction of Steering Wheel Angle

The rule-based classification method is used to divide all obstacles into two categories: (a) the ones
to be ignored (the pixel size of obstacle is less than 50) and (b) which causes of vehicle to collide
(the pixel size of the obstacle is greater than 50). We use MRF model and segmented image to calculate
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the threat value using equation 9 as discuss in methodology section. After pixel segmentation of
obstacles, the coordinates of the risky obstacles in the image are obtained.

After collecting the data, we prepare the image dataset for end-to-end driving model training
by normalizing and resizing of the images [78,79]. As shown in Figure 8, the steering wheel angle is
normalized between the −1.0 to +1.0, where positive values represent right rotation and a negative
value represents the left rotation of the steering wheel. We normalize the values by using the liner
transformation Equation (13):

θnormalized = −1.0 + max
(
0, min

(
1.0,

θraw − θmin
θmax − θmin

))
(13)
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Among them, θnormalized is the normalized steering wheel angle between −1.0 and +1.0, θraw is
steering wheel angle in radians, and θmin and θmax are the minimum and maximum steering wheel
angle, respectively.

In the Figure 8, we have plotted the “steering angle” and “image sequence” on the y-axis and
x-axis, respectively. Figure 8 shows that how closely proposed model follows the ground truth values.
Using our model, we conducted a statistical significance test between the ground truth values and
prediction values; we obtained a 91.5% confidence interval.

The accuracy of the prediction can be qualitatively represented by observing the direction of the
driving angle of an autonomous vehicle as shown in Figure 9. As shown in Figure 9, when there are
obstacles on the road, our proposed model can predict that the angle of the steering wheel will be
closer to the ground truth angle. In Figure 9, the green line represents the ground truth angle and red
line represents the expected angle of the steering wheel of our proposed model.
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6. Conclusions

This research addresses how the robustness of obstacle detection method in a complex environment,
by integrating a Markov random field (MRF) for obstacle detection, which is left intentionally or
unintentionally on roadway, road segmentation, and CNN-model to navigate the autonomous vehicle
safely. Our designed model predicts the steering wheel angle after the high threat value found of
obstacle on the roadway of autonomous vehicle for both manual and self-driving vehicle. We conclude
on the basis of analysis that our approach improves the safety of autonomous vehicle or human driving
vehicle in terms of risk or collision with obstacles on the road by 35% as compared to vision-based
navigation system rather than those who do not have the capability of detecting the high threat value
obstacle on the road from long distances.
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Appendix A

def load_image(data_dir, 2 x ZED stereo image_file):
“““
Load images from a file

Crop the image (removing the sky at the top and the car front at the bottom)
Resize the image to the input shape used by the network model

Convert the image from RGB to YUV (This is what the NVIDIA model does.)
Randomly flip the image left <-> right, and adjust the steering angle.
Randomly adjust brightness of the image.
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Randomly shift the image virtually and horizontally (translation).
Generate an augmented image and adjust steering angle.

(The steering angle is associated with the center image.)
“““
def MRF(augmented images):
“““
Disparity of augmented images

Depth variance potential result 1.
Curvature prior potential result 2

Gradient potential result 3.
Combine all required results 1, 2 and 3 by AND Gate
“““
def batch_generator(data_dir, image_paths, steering_angles, batch_size, is_training):
“““
Generate training image give image paths and associated steering angles
“““
#Stereo Disparity Map Code.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def stereo_disparity_map(rectified_pair):
#image location of an object seen by the left and right image of a stereo pair
global disparity_max
global disparity_min
ZEDLeft = rectified_pair[0]
ZEDRight = rectified_pair[1]
disparity = sbm.compute(ZEDLeft, ZEDRight)
local_max = disparity.max()
local_min = disparity.min()
if (dm_colors_autotune):
disparity_max = max(local_max, disparity_max)
disparity_min = min(local_min, disparity_min)
local_max = disparity_max
local_min = disparity_min
print(disparity_max, disparity_min)
disparity_grayscale = (disparity-local_min)*(65535.0/(local_max-local_min))
#disparity_grayscale = (disparity+208)*(65535.0/1000.0)
# test for jumping colors prevention
disparity_fixtype = cv2.convertScaleAbs(disparity_grayscale, alpha=(255.0/65535.0))
disparity_color = cv2.applyColorMap(disparity_fixtype, cv2.COLORMAP_JET)
cv2.imshow(“Image”, disparity_color)
key = cv2.waitKey(1) & 0xFF
if key == ord(“q”):
quit();
return disparity_color
#Calculate the signed curvature of a 2D curve at each point using interpolating splines.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def curvature(x, y=None, error=0.1):
Parameters
x,y: numpy.array(dtype=float) shape (n_points, )
or
y=None and
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x is a numpy.array(dtype=complex) shape (n_points, )
#In the second case the curve is represented as a np.array of complex numbers.
error: float
#The admissible error when interpolating the splines
Returns
#Detect the obstacle along with coordinate on the roadway whose pixel >= 50
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
for contour in contours:

area = cv2.contourArea(contour)
print(area)
if area > 50:
#Red Color Spot of Obstacle Detection
cv2.drawContours(frame, contour, -1, (0, 0, 255), 5)

x, y, w, h = cv2.boundingRect(contour)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
center = (x, y)
print(center)

#Model with 5 CNNs and 4 FCLs.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def create_nvidia_model1():
model = Sequential()
model.add(Convolution2D(24, 5, 5, subsample=(2, 2), border_mode=“same”, input_shape=(row,

col, ch)))
model.add(Activation(‘relu’))
model.add(Convolution2D(24, 5, 5, subsample=(2, 2), border_mode=“same”))
model.add(Activation(‘relu’))
model.add(Convolution2D(48, 5, 5, subsample=(2, 2), border_mode=“same”))
model.add(Activation(‘relu’))
model.add(Convolution2D(64, 3, 3, border_mode=“same”))
model.add(Activation(‘relu’))
model.add(Convolution2D(64, 3, 3, border_mode=“same”))
model.add(Flatten())

# Added a Dropout layer to help reduce overfitting.
model.add(Dropout(0.5))
model.add(Activation(‘relu’))
model.add(Dense(100))
model.add(Activation(‘relu’))
model.add(Dense(50))
model.add(Activation(‘relu’))
model.add(Dense(10))
model.add(Activation(‘relu’))
model.add(Dense(1))
model.compile(optimizer=“adam”, loss=“mse”)
print(‘Model is created and compiled..’)
return model
# Creates plots of steering angles by consecutive timestamps
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def plotFeatures(data):
# Plot all the time sections of steering data
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j = 0 # Rotating Color
k = 0 # Rotating Marker
jj = 0 # Subplot Number
timebreak = [0] # Store indices of timebreaks
start = 0
c = [‘r’,’b’,’g’,’k’,’m’,’y’,’c’]
marker = [‘.’,’o’,’x’,’+’,’*’,’s’,’d’]
for i in range(1,data.shape[0]):
if data[i,0] != data[i-1,0] and data[i,0] != (data[i-1,0] + 1):
timebreak.append(int(data[i-1,0]))
if jj < 70:
jj = jj + 1
print(jj)
plt.subplot(4,1,jj)
plt.plot(data[start:i-1,0],data[start:i-1,1],c=c[j],marker=marker[k])
start = i
j = j + 1
if jj == 69:
plt.subplot(7,10,jj+1)
plt.plot(data[start:-1,0],data[start:-1,1],c=c[j],marker=marker[k])
if j == 6:
j = 0
k = 0 #k = k + 1
if k == 7:
k = 0
for i in range (1,5):
plt.subplot(4,1,i)
plt.xlabel(‘TimeStamp’)
plt.ylabel(‘Steering Angle’)
plt.grid(True)
plt.suptitle(‘Consecutive Timestamp Steering’)
plt.subplots_adjust(left=0.05,bottom=0.05,right=0.95,top=0.95,wspace=0.4,hspace=0.25)
fig = plt.gcf()
fig.set_size_inches(30, 15)
fig.savefig(‘Steering.png’, dpi=200)
# Calculate RMSE
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
print “Calculating RMSE”
test = pd.read_csv(“submissions/groundtruth_evaluation.csv”)
predictions = pd.read_csv(“submissions/final_predictions.csv”)
t = test[‘steering_angle’]
p = predictions[‘steering_angle’]
length = predictions.shape[0]
print “Predicted angles: “ + str(length)
sq = 0
mse = 0
for j in range(length):
sqd = ((p[j] - t[j])**2)
sq = sq + sqd
print(sq)
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mse = sq/length
print(mse)
rmse = np.sqrt(mse)
print(“model evaluated RMSE:”, rmse)
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