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Abstract: Localization is an indispensable technology for underwater wireless sensor networks 
(UWSNs). In what concerns UWSNs, the accurate location information is not only the requirement 
of the marine field applications but also the basis of the other corresponding research, for instance, 
network routing and topology control. Recently, an astonishing surge of interest has been drawn in 
the received signal strength (RSS)-based scheme due to cost-effectiveness and synchronization-free 
compared with others. However, unlike the terrestrial wireless sensor networks (WSNs), the 
acoustic signal may suffer the absorption loss in the underwater environment besides the path loss, 
which degrades the localization accuracy and limits the capability of the RSS-based technology in 
UWSNs. In this context, a robust localization method with an absorption mitigation technique 
(AMT) is developed. First, an RSS-based analytically tractable measurement model is conducted, 
where the maximum likelihood estimator (MLE) is derived. Nevertheless, it is quite challenging to 
solve the problem using MLE under a non-convex expression. Therefore, by exploiting certain 
approximations, the considered localization problem is converted into an optimization expression 
with a maximum absorption loss involved. A min–max strategy is then presented, with which the 
problem is turned to minimize the worst situation of the absorption loss. After a simple 
manipulation, the problem is further investigated as a generalized trust region sub-problem (GTRS) 
framework. Although the GTRS is a non-convex scheme, the solution can be obtained through an 
iteration method by introducing a multiplier. In addition, the closed-form expression of the Cramer–
Rao lower bound (CRLB) of the analytically tractable measurement model is derived. Numerical 
simulations demonstrate the effectiveness of the proposed method compared with the state-of-the-
art approaches in different scenarios. 

Keywords: received signal strength (RSS); localization; min–max strategy; robust localization 
algorithm; absorption mitigation technique (AMT); underwater wireless sensor networks (UWSNs) 
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1. Introduction 

The ocean is vast, covering 140 million square miles, some 72 percent of the Earth’s surface, one 
of the most valuable natural resources that attract people to explore [1]. As an efficient tool for 
exploration, underwater wireless sensor networks (UWSNs) have played a pivotal role in a vast 
number of scientific or commercial missions in civilian and military applications [2–7]. It is worth 
noting that the data collected by sensors are meaningful only when the latter are geo-referenced [8]. 
However, it is infeasible to obtain the location information because traditional localization methods 
that rely on GPS techniques cannot be utilized in the underwater environment [9]. In this context, the 
message interaction, usually using acoustic communications, between surface nodes (or other 
reference nodes with known locations) and the submerged target must be carried out for localization 
[10]. The general system architecture of UWSNs is shown in Figure 1. With the knowledge of some 
internode distances (ranges), the targets’ position would be determined, and thus a considerable body 
of research has been investigated in the literature regarding localization in UWSNs [4,6–8,10–26]. 

 
Figure 1. System architecture of underwater wireless sensor networks (UWSNs). 

Two main categories could be concluded among the techniques, i.e., the range-based scheme 
and the range-free scheme [16]. In the range-based scheme, the position is estimated by the 
measurements through some specific ranging methods, including time of arrival (TOA), time 
difference of arrival (TDOA), angle of arrival (AOA), and received signal strength (RSS) [7,10]. On 
the contrary, the estimate procedure could be done through, for instance, hop counts or sensors 
density, in the range-free scheme without any measurements involved. Although no extra facilities 
need to be pre-installed, the range-free scheme only can provide a rough estimate [16]. To satisfy a 
certain level of quality for localization in some tasks, the range-based scheme seems to be a better 
choice and has been widely used in marine applications [10,16,23]. 

Regarding the range-based scheme, the RSS-based method has been drawn much attention in 
the studies due to cost-effectiveness and synchronization-free, compared with TOA, AOA, and 
TDOA [26]. However, unlike terrestrial wireless sensor networks (WSNs), it is quite challenging to 
utilize the RSS-based method to locate the target in UWSNs because the acoustic signal may suffer 
the absorption loss in the underwater environment besides the path loss [15,27]. The hybrid 
attenuation of the signal may dramatically degrade localization accuracy and limit the RSS-based 
technology capability in UWSNs. For this reason, researchers have explored various estimators to 
improve the localization accuracy under such signal loss [4,6,11,13,14,19,22,24,28–30]. 
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To name a few, the authors in [4] have presented an RSS-based localization framework for 
energy harvesting UWSNs, which reduces the localization error of the shortest path for each block 
kernel matrix by using a majorization-approach-based localization method (MABL). MABL can 
accurately locate the target under a good quality of the initial guess with relatively low energy 
consumption. However, as an iterative method via first-order Taylor linearization approximation, 
the localization accuracy of MABL may not be guaranteed if the quality of the initial guess is terrible. 
In this case, the authors in [24] have proposed an initial guess-free method, which converted the 
considered localization problem into a generalized trust-region subproblem (GTRS). A novel 
weighted least squares (NWLS) has been developed with a known transmit power scheme (NWLS-
K) and an unknown transmit power scheme (NWLS-U). The same transformation strategy has been 
developed in [11], different from [24], the authors transformed the original problem into a mixed 
semidefinite programming/second-order cone programming (SD/SOCP) problem for reaching an 
efficient solution. However, both NWLS in [24] and SD/SOCP in [11] were investigated under the low 
transmission frequency with a relatively small absorption loss. When it comes to a relatively 
significant absorption loss, the localization accuracy of NWLS and SD/SOCP cannot be guaranteed. 
In [14], the authors have proposed a robust, non-cooperative localization algorithm (RNLA), wherein 
a robust function is developed. The three-dimensional localization problem has been transformed 
into a two-dimensional localization problem in [14] with prior knowledge of the sea depth. Although 
RNLA can reduce the estimation error in the presence of outliers, the authors did not consider the 
signal loss caused by the absorption effect. In addition, the authors in [19] have investigated the 
localization error caused by inhomogeneous underwater medium and presented an oversampled 
matched filter-based RSS localization method (OSMF-RSS) under a low transmission frequency. The 
localization error caused by the inhomogeneous transmission is mitigated by using OSMF-RSS. 
Unfortunately, OSMF-RSS is based on the Gauss–Newton method, which needs a good start-point in 
the iteration. If the start-point is far from the exact point, the method could get lost. In other words, 
OSMF-RSS is infeasible to obtain a global solution. 

While considerable efforts have been devoted to improving the localization accuracy in terms of 
the RSS-based scheme, the general effectiveness of these techniques has remained elusive in practice. 
Most existing works were investigated at a relatively low transmission frequency, for instance, 10 
kHz to 100 kHz in [11,13,24], which, in other words, means a relatively low transmission data rate 
[26]. If one would like to have a higher transmission data rate, it must level up the transmission 
frequency. However, the problem is that the absorption loss would increase dramatically over the 
rise in the transmission frequency, according to [15]. For instance, if the distance between a receiver 
and a transmitter is 200 m while the transmission frequency is 484 kHz, i.e., the absorption coefficient 
is 0.1 dB/m [13,15], the absorption loss would reach 20 dB, which could degrade the localization 
accuracy dramatically. In this case, from the practical point of view, it is entirely meaningful to 
investigate an absorption mitigation technique to decrease the adverse impact of the absorption on 
localization in UWSNs. 

In this context, a robust localization method, i.e., absorption mitigation technique (AMT), is 
presented. The considered localization problem is transformed into an optimization expression by 
exploiting certain approximations. With a maximum absorption loss introduced, the problem is 
divided into two subproblems by exploiting a min–max strategy. Moreover, after a simple 
manipulation, the optimization problem is further investigated in a GTRS framework, wherein a 
bisection method with a multiplier is deployed to figure out the solution. In addition, to mimic the 
situation of the dynamics in the presence of currents, we execute the simulations in which all sensors 
(anchors and the target) are deployed randomly at each Monte Carlo trial (MCT). In other words, the 
positions of all sensors in the area of interest are not fixed. To the best of our knowledge, such this 
absorption mitigation method for localization in such dynamic UWSNs has not been fully addressed. 

The main contributions of the paper are summarized as follows: 

(1) A min–max strategy is presented, where we minimize the worst situation of the absorption loss 
with the prior knowledge of the area of interest. The adverse impact of absorption loss on 
localization is mitigated through iteration. 
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(2) The considered localization problem is converted into an optimization expression by exploiting 
certain approximations and further solved in a GTRS framework. 

(3) A closed-form expression of Cramer–Rao Low Bound (CRLB) in terms of the considered RSS-
based analytically tractable measurement model is conducted. 

To organize the paper, we formulate the problem in Section 2. In Section 3, the proposed method, 
AMT, is illustrated. Comprehensive simulation results are discussed in Section 4. In the last section, 
Section 5, we conclude this paper. 

2. Problem Formulation 

Consider a 3-Dimensional UWSN containing N  reference/anchor nodes with known locations 
and a target whose position needs to be determined. Suppose the position of the thi  anchor node at 

time t  is , ,
T

i ix iy iza a a =  a , where 1, ,i N=  and the target’s position is [ ]1 2 3, , Tx x x=x . We assume 

that the target could transmit the acoustic signal with RSS information to anchors, of which the signal 
is modeled as [11,24] 

0 10
0

10 log ,i
ri f i iP P

d
α α η

−
= − − − +

x a
x a  (1) 

where riP  denotes the received signal power of the thi anchor node from the target, 0P  is the 
transmit power of the target, α  represents the path loss exponent, ⋅  is the 2  norm, 0d  is the 
reference distance (1 m), iη  is the shadowing noise modeled as Gaussian distribution with zero 
mean and variance 2

iσ , and fα  is the absorption coefficient that can be obtained from Thorp’s 
formula with a frequency f  following [15] 

2 2
4 2

2 20.11 44 2.75 10 0.003.
1 4100f
f f f
f f

α −= + + × +
+ +

 (2) 

The relationship between f  and fα  is shown in Figure 2, according to [15]. In addition, it 
should be noted that a standard RSS-based terrestrial localization scheme is obtained if = 0fα . 

 
Figure 2. Relationship of the frequency and the absorption coefficient. 

Let i f ic α= −x a , then (1) can be rewritten as 
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Given the observation vector [ ]TriP=P , the probability density function (PDF) is given as 

( )

2

0 10
0

22
1

10 log
1, exp .

22

ri iN

i ii

P P c
d

p
α

σπσ=

  − 
 − + + 
  =  
 
 
 

∏
ix a

P x c  (4) 

By maximizing the joint PDF, the maximum likelihood (ML) estimator will be derived as 
2

0 10
0

2
1

10 log
ˆ arg min .

2

ri iN

i i

P P c
d

α

σ=

 − 
− + + 

 = 
ix a

x  
(5) 

However, it is quite challenging to solve the problem in (5) accurately due to its high non-
convexity in the presence of ic , which is the motivation to develop the proposed method. 

3. Proposed Method (AMT) 

3.1. Min–Max Strategy 

First, we manipulate a simple transformation from (3) as 
0

10 10 1010 10 10 .
ri i iP P c

i

η
α α α

−

⋅ − = ⋅x a  (6) 

When the noise is relatively small, the right side of (6) can be approximated using the first-order 
Taylor series expansion as [13,14,24] 

ln10(1 ) ,
10i i i i i iμ ν σ ν ε

α
⋅ − ≈ ⋅ + = +x a  (7) 

where 
1010
riP

i
αμ = , 

0
1010

iP c

iv α
−

= , and ln10
10i i ivε σ

α
= ⋅ . 

Further, assuming that the maximum absorption is m axc , i.e., max ic c> . Then, the maximum 
absorption can be determined if the deployment area of UWSNs is known. For instance, if the area is 
100 m × 100 m × 100 m, referred to as Figure 3, the maximum distance of two nodes is AG or BH or 
CE or DF, i.e., 100√5 m. Assuming that f  is 454 kHz, i.e., =0.1 dB/mfα  according to [13,15], then 

max 100 5 10 5 dBfc α= ⋅ = . 
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Figure 3. Deployment area of UWSNs with the side length of 100 m. 

We insert max

2
c

 into both sides of (3), then (7) can be expressed as 

,i i i iμ ν ε⋅ − ≈ +  x a  (8) 

where 

max
2

1010
ri
c

P

i
αμ

+

= , 

max
0 2

1010
i
c

P c

iv α

− +

= , and ln10
10i i ivε σ

α
= ⋅  . 

The original problem in (5) could be rewritten as (9) after squaring. 

( )222 2

1
arg min .

N

i i i
i

μ ν
=

⋅ − − 
x

x a  (9) 

To ensure the objective in (9) is minimum, we should minimize the worst situation, namely, 

( )222 2

1
minimize maximize .

i

N

i i i
iν

μ ν
=

 ⋅ − − 
 




x
x a  (10) 

Let ( )ρ ⋅  be the function of iν . The maximization of the function ( )ρ ⋅  subject to iν  can be 

expressed as ( )2

1
maximize  

i

N

i
iν

ρ ν
=


 , where ( ) 22 2
i i i iρ ν μ ν= ⋅ − −  x a . Maximizing the sum of the 

function is equivalent to maximizing each item of the sum. Thus, (10) can be converted into 

( )
2 2

22 2

1 1
maximize  maximize  .

i i

N N

i i i i
i iν ν

ρ ν μ ν
= =

   = ⋅ − −        
  x a  (11) 

Proposition 1: Assume 
max

0 2
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1 10

c
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+

=  and 
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0 2
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2 10

c
P

iv α

−

= , the maximization of ( )ivρ   in (11) has two 

possible solutions (either max

2
cρ  − 
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2
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), i.e., 
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ρ
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where 
22 2

1i i iA vμ= ⋅ − − x a
 and 

22 2
2i i iB vμ= ⋅ − − x a

. 

Proof. Let max

2i i
cc c= − , then 

0
1010

iP c

iv α
−

=


 . According to max ic c> , we have max max

2 2i i
c cc c= − ≤ . If 

0ic > , the extreme value of ic can be max

2
c

, whereas, if 0ic < , the extreme value of ic  is max

2
c

− . 

Therefore, iv  can be either 
max

0 2
10

1 10

c
P

iv α

+

=  or 
max

0 2
10

2 10

c
P

iv α

−

= . In addition, if A B> , the maximization 

of ( )ivρ   can be ( )1ivρ  , i.e., max

2
cρ  − 

 
. Otherwise, the maximization of ( )ivρ   is ( )2ivρ  , i.e., 

max

2
cρ  

 
 

. □ 

It should be noted that { }max ,d e d e≤ + , for , 0d e ≥ . In this case, by joining the two branches, 
we convert the problem in (9) into (13) via minimizing an upper bound of ( )ivρ  , i.e., 



Sensors 2020, 20, 4698 7 of 18 

 

1 2minimize ,J J+
x

 (13) 

where 
( )222 2

1 1
1

N

i i i
i

J μ ν
=

= ⋅ − −  x a
 and 

( )222 2
2 2

1

N

i i i
i

J μ ν
=

= ⋅ − −  x a
. 

3.2. Generalized Trust Region Subproblem (GTRS) 

By expanding the squared norm part in (13), the problem is further converted into a GTRS. 

( ) 2=minimize  ( )

    subject to   2 0T T

J −

+ =

  ，

，

                     y
y y

y Dy f y

ω κ℘
 (14) 

where 
2[ , ]T T=y x x

, ( )2d iag N1ω = , [ ] ;℘ = ℘ ℘ , [ ]1 2;κ = κ κ , and 

2 22 2 2 22 2
11 1 1 12 1 11 1 1

3 3 1
1 2

1 32 2 2 22 2 2 2
1 2

-2
,           ,

0
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T

T
N N N N N N N N N

a aa

a a a

ν μ ν μμ μ

μ μ ν μ ν μ

×

×

   − − 
      = = = = =      

      − −        

   
   
    

I 0
, ,D f

0
κ κ℘

 

(15) 

wherein I, 0, and 1 represent identity matrix, zeros matrix, and ones matrix, respectively. 

Definition 1: Suppose n:q →   and n:u →   to be quadratics and assume ( ){ }n : 0uτ τ∈ =  

is not empty. If 

0, 0 0,T Tm m Um m Qm≠ =  >  (16) 

where 2Q q= ∇ , 2U u= ∇ , then the optimization problem ( ) ( ){ }min : 0q uτ τ =  has a global 

minimizer. 

Definition 2: Let n:q →   and n:u →   to be the quadratics, and assume that

( ){ } ( ){ }n ninf : 0 sup :u uτ τ τ τ∈ < < ∈   with 2 0u∇ ≠ . A vector *τ  is a global minimizer of the 

problem ( ) ( ){ }min : 0q uτ τ =  if and only if ( )* 0u τ =  and there is a multiplier *λ ∈  such that the 

Kuhn–Tucker condition 

( ) ( )* * * 0q uτ λ τ∇ + ∇ =  (17) 

is satisfied with 

( ) ( )2 * * 2 *q uτ λ τ∇ + ∇  (18) 

Positive semidefinite. 

Under Definition 1, we can easily verify that (16) holds for the considered problem in (14). 
Therefore, a global minimizer of the solution of (14) would be acquired. With Definition 2, an optimal 
solution ky  at the thk  iteration would be obtained if there is a multiplier λ such that the Kuhn–
Tucker condition, i.e., 



Sensors 2020, 20, 4698 8 of 18 

 

( )
( )

,

2 0,

0,

T k T k

Tk k T k

T k

λ λ

λ

+ =

+ =

+

   

  

D y f

y Dy f y

D

ω ωκ −

ω

℘ ℘ ℘

℘ ℘

 (19) 

At each iteration, the optimal solution is acquired by 

( ) ( ) ( )1ˆ ,k T T Tλ λ λ
−

= + −   y D fω ω κ℘ ℘ ℘  (20) 

where ( ) ( )* max /k Tdiag diagλ λ = −   ，Dω℘ ℘  and λ  is defined as the solution of the function (21) 

when ( ) 0ϕ λ = . 

( ) ( ) ( ) ( )ˆ ˆ ˆ2
Tk k T kϕ λ λ λ λ = + y Dy f y  (21) 

The entire process of the proposed method, AMT, could be expressed as shown below Algorithm 
1. 

Algorithm 1: AMT 

1: Initiation: anchors’ position, target’s position, 1k = , 0pre =y , 1e 7Threshold = −  

2: Calculate the RSS measurements 
3: While maxk k<  Do 

4:   Figure out λ at each iteration according to (21) 

5:   Optimal λ at thk  iteration following ( ) ( )* max /k Tdiag diagλ λ = −   ，Dω℘ ℘  

6:   Figure out the optimal ˆ ky  at each iteration according to (20) 

7:     If /k k
pre Threshold− <y y y  

8:        Break 
9:     End If 
10:  k

pre =y y  

11:  1k k= +  
12: End While 

In addition, a flowchart is depicted to understand better the proposed localization scheme, 
referred to as Figure 4. 
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Figure 4. The flowchart of the proposed localization scheme in UWSNs. 

3.3. Cramer–Rao Low Bound (CRLB) 

As a covariance matrix representing a lower bound of any unbiased estimators [31], CRLB would 
be conducted in this part to provide the benchmark. Basically, CRLB could be indicated as the trace 
of the inverse of the Fisher information matrix (FIM) when the noise is Gaussian, i.e., 

( )
1

1 1Tr Tr ,
T

CRLB FIM
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− −
 ∂ ∂   =     ∂ ∂     

 P P
x x

 (22) 

where   denotes ( )1d iag , , Nσ σ , ( )Tr ⋅  is the trace of a matrix, and 

1 1 1 1 1 1
2 2

11

2 1 2 1 2 2
2 2

11

3 1 3 1 3 3
2 2

11

, ,

, , ,
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 (23) 
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10
ln10

αψ =
. 

Let 

RSS information with the hybrid loss

Maximizing manipulation 
in Eqn. (11) 

Minimizing manipulation 
in Eqn. (13) 

Min-max Strategy

GTRS in Eqn. (14)

AMT algorithm

Start

Considered framework after transformation

( )222 2
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arg min
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⋅ − − 
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End
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(24) 

then the FIM could be expressed as 

FIM
Γ ϒ Ξ 
 = ϒ Ψ Π 
 Ξ Π Λ 

 (25) 

Assume ˆ error− =x x , the root mean square error (RMSE) is related to the obtained CRLB 
through 

( ) ( )2 1E error Tr FIM CRLB−≥   (26) 

3.4. Complexity Analysis 

Several state-of-the-art methods are discussed for the comparison in terms of the complexity in 
this part, i.e., weighted least square (WLS) with RSS-only in the non-cooperative scheme in [20], 
NWLS-K in [24], active set method (ASM) in [8], RNLA in [14], and unconstrained squared range 
majorization-minimization (USRMM) in [21]. It is noteworthy that the acquirement of an estimate of 
the target’s location via AMT is by the bisection principle. Therefore, the computational complexity 
is linear to N , i.e., O (kmax·N), which is the same as NWLS-K and RNLA when it comes to the 
maximum iteration m axk  (the worst case). It is also worth mentioning that a majorization-
minimization method is involved in USRMM; the computation complexity comes to O (N + kmax). The 
computational complexity of the rest is concluded in Table 1. 

Table 1. Complexity analysis of the considered methods. 

Method Complexity 
WLS  O (N) 

NWLS-K O (kmax·N) 
ASM O (N) 

USRMM O (N + kmax) 
RNLA O (kmax·N) 
AMT O (kmax·N) 

4. Numerical Simulations 

In this section, a set of numerical simulations are carried out in Matlab to assess the proposed 
method, compared with WLS [20], NWLS-K [24], ASM [8], USRMM [21], RNLA [14], and CRLB 
conducted in (26) in different scenarios. It should be noted that the positions of anchors and the target 
are not fixed due to the dynamics of the currents. In this case, to simulate such a situation, the target 
and anchor nodes are deployed randomly for each MCT. The area of interest in the simulation is a 
cube with side length Side . At each MCT, the position of anchors and the target could be expressed 
as ( )3,1 *i rand Side=a  and ( )3,1 *rand Side=x , respectively. The rest of the fixed parameters are 
concluded in Table 2. In addition, as the calibration of the performance, the root means squared error 
(RMSE) would be conducted as 
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1

1 ˆ ,
MCT

mct mct
mct

RMSE
MCT =

= − x x  (27) 

where mctx and ˆ mctx  denote the exact position and the estimate in the thMCT  trial. 

Table 2. Some fixed parameters in simulations. 

Parameters Value 
α  (path loss exponent) 3 
MCT  (Monte Carlo Trials) 1000 

maxk  (Maximum iteration) 1000 

0d  (Reference distance) 1 m 

4.1. Scenario with Variable fα  

The RMSE versus variable fα  is depicted in Figure 5. In addition to the fixed parameters in 
Table 2, the rest of the parameters in the scenario with variable fα  are shown in Table 3. It is 
noteworthy that the frequency that the acoustic system operates varies from 10 kHz to 1000 kHz [26], 
where the corresponding fα  could be 0.001 dB/m to 0.32 dB/m [27]. However, we only conduct the 
simulation with fα  varying from 0.001 dB/m to 0.2 dB/m, which is more practical for UWSNs to 
operate [13]. In addition, it should be noted that the maximum of the absorption could be known 
because the side length of the cube is determined according to Figure 3 if 50 mSide = , i.e., 

max 50 5  dBfc α= . Theoretically, the increase of fα  accelerate the signal attenuation caused by the 
absorption, according to Equation (1). Therefore, it can be seen from Figure 5 that the performance of 
the methods, including WLS, NWLS-K, ASM, USRMM, and RNLA, deteriorates over the rise in fα
. On the contrary, the performance of the proposed method (AMT) is inverse proportion to the rise 
in fα  from 0.001 dB/m to 0.14 dB/m, and get close to the trend of CRLB. The outperformance of 
AMT can be explained to some extent by the fact that we mitigate the worst case of the absorption 
via a min–max strategy in the iteration. Nevertheless, it should be noted that if the bias exceeds the 
tolerance of the estimator, the performance of mitigation would degrade due to the limits of the 
bisection method. In other words, the performance of AMT would deteriorate if the absorption loss 
reaches a tolerant value. As shown in Figure 5, the tolerance is =0.14 dB/mfα . In addition, we can 
observe that when 0.06 dB/mfα < , the error of AMT is more significant than most of the methods 
due to the intrinsic error of the estimator. When fα  is relatively low, the absorption loss for AMT is 
relatively larger than the rest because we assume the worst situation (maximum distance between 
nodes). Fortunately, the error could be reduced when fα  increases via iteration. Similarly, the same 
situation comes to CRLB when 0.04 dB/mfα < . The localization accuracy of CRLB is relatively lower 
than that of some considered methods due to the intrinsic error when fα  is low. Although the rate 
of deterioration of AMT is larger than the rest when 0.14 dB/mfα > , the performance of AMT is 
better than the rest. 

Table 3. Parameters in the scenario with variable fα . 

Parameters Value 

0P  (Transmit power) −55 dBm 
N  (The number of anchors) 10 

2
iσ  (Variance) 4 dB 

Side  (Side length of the area) 50 m 
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Figure 5. RMSE versus variable fα  with 0 55 dBmP = − , 10N = , 2 4 dBiσ = , and the side length 

of the cube 50 mSide = . 

4.2. Scenario with Variable 2
iσ  

The result of the RMSE versus variable 2
iσ  is shown in Figure 6. In addition to the fixed 

parameters in Table 2, the rest of the parameters in the scenario with variable 2
iσ  are shown in Table 

4. As expected, the RMSE increases as 2
iσ  grows, among which the performance of WLS is the 

poorest, and RNLA seems to be more sensitive to the growing of 2
iσ . The ratio of deterioration for 

RNLA is the largest than that of the considered methods. From Figure 6, we could see that AMT beats 
the others and gets close to CRLB. When 2

iσ  is relatively low, the performance of AMT seems to be 
better than the others. Even though similar results are performed between AMT and USRMM, 
especially when 2 6 and 7 dBiσ = , the margin is more sizeable since 2

iσ  increases further from 7 dB. 

Table 4. Parameters in the scenario with variable 2
iσ . 

Parameters Value 

0P  (Transmit power) −55 dBm 
N  (The number of anchors) 10 

fα  (Absorption coefficient) 0.06 dB/m 

Side  (Side length of the area) 50 m 
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4.3. Scenario with Variable N  

The deviation of the considered methods under variable N  is shown in Figure 7. In addition to 
the fixed parameters in Table 2, the rest of the parameters in the scenario with variable N  are shown 
in Table 5. It should be mentioned that the available information for localization increases while N  
grows. Thus, the performance of the methods is improved when the number of anchors increases to 
14 from 5. From Figure 7, we could see that the number of anchors matters the most to WLS, where 
the localization accuracy increases by 36%, compared with that of 27% for AMT, 11% for ASM, 10% 
for RNLA, 10% for USRMM, and 5% for NWLS-K. Among the considered methods, the performance 
of AMT is relatively satisfactory compared with the others, albeit the error of AMT is equal to or 
greater than that of most of the methods when 5 and 6N = . The outperformance seems to be 
remarkable when 14N = . It should be noted that the more anchors engaged in the localization, the 
more available measurement information can be used. In other words, the more, the better. However, 
from the practical point of view, the extra expense would increase over the rise in N . In this case, as 
for a relatively small area of interest, for instance, the shallow water with depth within 100 m, the 
number of anchors is generally from 8 to 20 [24]. From Figure 7, the proposed method seems to be 
the better choice when it comes to practice. 

 

Figure 7. RMSE versus variable N  with 0 55 dBmP = − , 2 4 dBiσ = , 0.06 dB/mfα = , and the 

side length of the cube 50 mSide = . 

Table 5. Parameters in the scenario with variable N . 

Parameters Value 

0P (Transmit power) −55 dBm 
2
iσ (Variance) 4 dB 

fα (Absorption coefficient) 0.06 dB/m 

Side (Side length of the area) 50 m 

4.4. Scenario with Variable 0P  

The RMSE versus variable 0P  is depicted in Figure 8. In addition to the fixed parameters in 
Table 2, the rest of the parameters in the scenario with variable 0P  are shown in Table 6. It can be 
seen that the considered algorithm is robust to 0P , and the performance has relative stability. From 
Figure 8, we could see that similar results are performed for RNLA, ASM, and NWLS-K, of which 
the localization error is around 2.5 m compared with that of 3.1 m for WLS. It is obvious that the 
deviation of AMT is the lowest among them, albeit the difference between AMT and USRMM is small 
(almost 0.1 m). 
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Figure 8. RMSE versus variable 0P  with 10N = , 2 4 dBiσ = , 0.06 dB/mfα = , and the side 

length of the cube 50 mSide = . 

Table 6. Parameters in the scenario with variable 0P . 

Parameters Value 
N  (The number of anchors) 10 

2
iσ  (Variance) 4 dB 

fα  (Absorption coefficient) 0.06 dB/m 

Side  (Side length of the area) 50 m 

4.5. Scenario with the Variable Side Length of the Cube 

It is essential to conduct the simulation in different side lengths of the area because the 
absorption bias is related to the maximum distance between anchors and the target in terms of AMT. 
In addition to the fixed parameters in Table 2, the rest of the parameters in the scenario with variable 
Side  are shown in Table 7. As shown in Figure 9, the side length varies from 50 m to 200 m, which 
means the range of maxc  is from 50 5 dBfα  to 200 5 dBfα , according to Figure 3. As a result that 
the distance between anchors and the target is in proportion to the side length, the adverse impact of 
the absorption on localization accuracy would increase over the rise in the side length. Thus, the 
performance of the considered methods degrades while the side length increases to 200 m from 50 m. 
Interestingly, the ratio of deterioration is relatively low for AMT when the side length is less than or 
equal to 120 m. It indicates that AMT could, to some extent, mitigate the adverse effect of absorption 
on localization. However, the ratio of deterioration climbs dramatically when the side length 
increases further from 120 m, compared with the others. Nevertheless, the performance of AMT is 
better than others when the side length is less than 200 m, albeit a relatively large ratio of deterioration. 
From the results of Figure 9, it seems that the proposed method, AMT, could be adopted when the 
UWSNs are deployed in shallow water. When it comes to the deep sea, AMT is not a preferable 
method for localization due to the exponential increase of the signal attenuation and the absorption. 

Table 7. Parameters in the scenario with variable Side . 

Parameters Value 
N  (The number of anchors) 10 

2
iσ  (Variance) 4 dB 

fα  (Absorption coefficient) 0.06 dB/m 

0P  (Transmit power) −55 dBm 
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Figure 9. RMSE versus variable side length with 10N = , 2 4 dBiσ = , 0.06 dB/mfα = , and 

0 55 dBmP = − . 

4.6. Cumulative Distribution Function (CDF) 

Figure 10 shows the cumulative distribution function (CDF) of ˆ −x x  for different algorithms 
when 0.06 dB/m and 0.14 dB/mfα = , respectively. In addition to the fixed parameters in Table 2, the 
rest of parameters are shown in Table 8. From Figure 10, we could see that AMT achieves 

ˆ 2.54 m− =x x  at almost 80% when 0.06 dB/mfα = , whereas USRMM, NWLS-K, RNLA, ASM, 

and WLS achieve ˆ 2.64 m− =x x , ˆ 2.78 m− =x x , ˆ 2.83 m− =x x , ˆ 2.93 m− =x x , and 
ˆ 3.84 m− =x x  at the same probability, respectively. The situation gets worse when it comes to 

0.14 dB/mfα = , where, except for AMT, the methods achieve the same probability at more significant 

error than that of 0.06 dB/mfα = , i.e., ˆ 3.61 m− =x x  for USRMM, ˆ 3.75 m− =x x  for NWLS-K, 
ˆ 3.83 m− =x x  for RNLA, ˆ 3.72 m− =x x  for ASM, and ˆ 4.17 m− =x x  for WLS. Regarding 

AMT, the adverse impact of the absorption seems to be mitigated in a way due to the min–max 
strategy that we minimized the worst situation, and the performance is improved to ˆ 1.66 m− =x x  
at almost 80%. 

 

Figure 10. CDF of ˆ −x x  with 10N = , 2 4 dBiσ = , 0 55 dBmP = − , 50 mSide = , and 

0.06 dB/m or 0.14 dB/mfα = . 

  



Sensors 2020, 20, 4698 16 of 18 

 

Table 8. Parameters in the comparison of cumulative distribution function (CDF) of ˆ −x x . 

Parameters Value 
N  (The number of anchors) 10 
Side  (Side length of the area) 50 m 

2
iσ  (Variance) 4 dB 

fα  (Absorption coefficient) 0.06 dB/m or 0.14 dB/m 

0P  (Transmit power) −55 dBm 

4.7. Computational Time 

In addition to the RMSE, the computational time is another crucial factor for an estimator, which 
could intuitively reflect the efficiency of an algorithm. In this context, the simulation with subject to 
the computational time is carried out in different scenarios, and the results are depicted in Figure 11. 
The corresponding parameters in Figure 11 are (1) referred to in Tables 2 and 3 for Figure 11a; (2) 
referred to in Tables 2 and 5 for Figure 11b; (3) referred to in Tables 2 and 4 for Figure 11c; and (4) 
referred to in Tables 2 and 7 for Figure 11d. We could see that the time consumption of RNLA is much 
more than others. This is because a block prox-linear, the method to figure out the global solution, 
involves RNLA, which needs extra time for searching. Regarding the time consumption of AMT, the 
performance is not remarkable but acceptable, compared to that of RMSE. The average time 
consumption of AMT is around 2.7 × 10−3 s for each MCT, which is similar to that of NWLS-K but a 
little bit more than USRMM, ASM, and WLS. 

 
Figure 11. Computational time comparisons under different conditions: (a) Computational time 
under variable fα  with 0 55 dBmP = − , 10N = , 2 4 dBiσ = , and the side length of the cube 

50 mSide = , (b) computational time under variable N  with 0 55 dBmP = − , 2 4 dBiσ = , 

0.06 dB/mfα = , and the side length of the cube 50 mSide = , (c) computational time under variable 
2
iσ  with 0 55 dBmP = − , 10N = , 0.06 dB/mfα = , and the side length of the cube 50 mSide = , 

and (d) computational time under variable side length with 10N = , 2 4 dBiσ = , 0.06 dB/mfα = , 

and 0 55 dBmP = − . 
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5. Conclusions 

In this paper, an absorption mitigation technique, namely AMT, is proposed to mitigate the 
negative influence of the absorption on localization in UWSNs. The considered localization problem 
is reshaped to a GTRS framework via a set of tight approximations for small noise powers. In 
addition, a min–max strategy is presented to minimize the worst situation for the absorption, wherein 
the problem is divided into two subproblems and jointly solved by a bisection method. The 
simulations confirm the effectiveness of the proposed algorithm in different scenarios compared with 
the state-of-the-art approaches. The results reveal that the proposed method, AMT, seems to more 
suitable for localization in the UWSNs deployed in the shallow water. Additionally, it should be 
noted that if the absorption loss exceeds the tolerance of AMT, the performance of mitigation would 
degrade, referred to in Figures 5 and 9. After carrying out plenty of simulations, we find it that the 
tolerant absorption loss of AMT is around 16 dB as the area of interest is a cube. 
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