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Abstract: In this paper, the application of a microsphere-based fiber-optic sensor with a 200 nm zinc
oxide (ZnO) coating, deposited by the Atomic Layer Deposition (ALD) method, for temperature
measurements between 100 and 300 ◦C, is presented. The main advantage of integrating a fiber-optic
microsphere with a sensing device is the possibility of monitoring the integrity of the sensor head in
real-time, which allows for higher accuracy during measurements. The study has demonstrated that
ZnO ALD-coated microsphere-based sensors can be successfully used for temperature measurements.
The sensitivity of the tested device was found to be 103.5 nW/◦C when the sensor was coupled with a
light source of 1300 nm central wavelength. The measured coefficient R2 of the sensor head was over
0.99, indicating a good fit of the theoretical linear model to the measured experimental data.
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1. Introduction

Temperature is one of the most important parameters, measured in many different fields, such as
science, medicine or industry [1–5]. It is used to monitor quality of the products, procedures and
energy consumption. Accurate temperature measurements are highly dependent on carefully chosen
instruments, which should be selected based on conditions in which the device will be used, external
influences and the parameters suitable for each task, especially temperature range, pollution, sensitivity
and period of time, over which the measurements will be performed [6,7].

One of the fields, where the temperature is strictly controlled is the food industry. This is to
ensure that the proper standards are preserved and to minimize the risks, such as bacteria growth and
formation of toxins, while processing and storing the food [8,9]. Maintaining the right temperature
helps to avoid food poisoning or its spoiling [10,11]. Another area, where those measurements are also
highly utilized are electrochemical batteries and energy storage cells, where temperature control is used
to monitor device performance and stability during charging cycles, therefore preserving its properties
for as long as possible and estimating its lifetime [12,13]. Monitoring temperature is also useful during
plastic or metal production to ensure the quality of the products and workplace security [14–16].

There is an abundance of instruments for temperature measurements, from contact sensors, such as
thermocouples and thermistors to contactless devices, i.e., infrared thermal detectors [17–19]. Among them,
all fiber-optic sensors stand out and, as a consequence, their development has been steadily progressing
throughout the years thanks to the ease of use of these devices, their high durability, low fabrication
cost, and chemical inertness [20–22]. Over the last decade, researchers gained new measurement
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techniques using fiber-optic sensors, such as: hybrid fiber-optic sensing, GOD-complex-based (glucose
oxidase complex) sensors, multi-parameter sensors, deformable micro-mirror sensors or core-offset
splicing [23–28]. The requirement for the long-term monitoring of temperature in severe, remote
conditions caused fiber-optic sensors application in many fields, including industry, e.g., building
applications, oil leakage railway infrastructure [29–33], but also they are used in biochemistry [34].
Moreover, fiber-optic sensors can be adapted to best suit the needs of specific applications, by modifying
geometrical parameters or by adding additional passive components, such as coatings [35–37].

In traditional fiber-optic sensors, many desired properties have been hampered by low sensitivity,
limited measurement range and the lack of protection against mechanical damage. In order to address
these shortcomings, the sensors with various coatings (metal, metal oxides, diamond, etc.), deposited
on the surface of the sensor head by different methods (atomic layer deposition, magnetron sputtering,
electron beam evaporation e-beam) [38–40], have started to be developed in recent years.

Geometrical modifications have also been introduced to increase resolution, employ phenomena
such as resonance or Whispering Mode Gallery, and control the optical path of the light within the
utilized medium [41]. The most used optical-fiber structures include tapers and microspheres [42,43].

One of the most challenging aspects in remote sensing, especially under volatile conditions,
is determining whether the integrity of the sensor head remains preserved. Ensuring that the sensor
head keeps its integrity, it helps to eliminate inaccuracies from the obtained data and prevent major
disruptions of the measurement process. Incorporating a microsphere to the fiber-optic sensor allows
one to monitor the state of the sensor head during real-time measurements.

This work presents the advantages of combining a fiber-optic microsphere and ZnO (zinc
oxide) ALD (Atomic Layer Deposition) 200 nm coating into one sensor, designed for temperature
measurements at the central wavelength of 1300 nm.

2. Materials and Methods

2.1. Microsphere Development

The fiber-optic microsphere was manufactured at the end of a standard single-mode optical fiber
(SMF-28, Thorlabs Inc., Newton, NJ, USA) by using an electric arc from the splicer (FSU975, Ericsson,
Sweden), which provided sufficient energy to affect the original structure of the fiber and allowed
for the microsphere to be formed by a three-step pull. During the fabrication process, the splicing
parameters were carefully controlled, ensuring the high reproducibility of the microsphere structure.
The diameter of the microsphere used for this study was 245 µm.

The microsphere was coated with a 200-nm-thick ZnO layer using Atomic Layer Deposition
(ALD), as described elsewhere [38,44].

The described device worked as an interferometric fiber-optic sensor with an intrinsic fixed cavity.
The principle of the operation of the sensor is shown in Figure 1.

During operation, part of the optical signal propagating through the fiber is reflected at the
boundary between the core and the cladding of the microsphere, whereas the rest passes through and
reflects off the microsphere surface. Cross-section of the sensor head presented in Figure 1b provides
visualization how the signal propagates through the sensor.

These two beams interfere with each other. While the reflection on the boundary between the
core and the cladding is constant, the reflection from the microsphere surface depends on the optical
properties of the deposited ZnO coating. By adjusting the thermal radiation around the device, the ZnO
coating is influenced, which affects the intensity of the output signal.

The sensor head has been subjected to Scanning Electron Microscopy (SEM) imaging to provide
the characterization of the ZnO coating after its deposition on the surface of the microsphere. The image
presented in Figure 2 is of 5000×magnification and it shows the uniformity of the ALD ZnO coating.
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Figure 2. Scanning Electron Microscopy (SEM) image of the ALD ZnO coating deposited on the surface
of the microsphere with 5000×magnification.
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2.2. Experimental Setup

To validate the sensing capabilities of the device, experimental measurements were performed.
Test measurements were performed in order to obtain a spectral response of the signal during
temperature changes. The temperature was measured using a low-coherence light source, temperature
calibrator and an optical signal analyzer in a configuration presented in Figure 3.
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Figure 3. Schematic of the experimental setup used for temperature measurement, where:
1—superluminescent diode, 2—Optical Signal Analyzer, 3—optical coupler, 4—temperature calibrator.

During measurements, an optical signal, that was generated and provided by the low-coherent
light source—superluminescent diode with a center wavelength of 1310 nm (SLD-1310-18-W, FiberLabs
Inc., Fujimino, Japan), propagated through a typical 2:1 50/50% optical coupler (G657A, CELLCO,
Kobylanka, Poland) to the microsphere-based fiber-optic sensor, placed in the temperature calibrator
(ETC-400A, Ametek, Berwyn, PA, USA).

The reflected signal intensity was measured in a temperature range from 100 to 300 ◦C with a
10 ◦C step. The temperature was adjusted every 5 min in order to allow the sensor to adapt to the
change. After the signal was reflected by the microsphere, it was received and analyzed by the Optical
Signal Analyzer (OSA, Ando AQ6319, Yokohama, Japan).

3. Results and Discussion

The results presented in this section were obtained according to the procedures described in
Section 2.

Several series of measurements were carried out in order to test the device temperature sensing
abilities. During measurements, the sensor head was placed inside the temperature calibrator, while
the range was increased with 10 ◦C steps, between 100 and 300 ◦C.

Figure 4 shows an example of the measured response of the microsphere-based fiber-optic sensor
at a wavelength of 1300 nm. As shown, the intensity of the reflected signal increased with the increase
in the temperature. Not all of the measured responses were plotted to maintain clarity of the graph.
A slight shift in wavelength (±2 nm) is a result of an optical coupler loss.
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Figure 4. Measured response of the reflected signal intensity for the microsphere-based sensor with
200 nm ZnO ALD coating at 100, 200 and 300 ◦C.

The temperature dependence of the reflected signal peak intensity measured in the entire
temperature range is presented in Figure 5. Additionally, Figure 5 shows a theoretical linear fit
indicating the accuracy of the device. As shown, the intensity of the reflected signal increased linearly
with the temperature. The obtained coefficient R2, which represents the quality of the fit, is 0.995, i.e.,
close to 1, suggesting good agreement of the experimental data and theoretical linear fit.
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The sensitivity of the sensor was calculated according to Formula (1):

S =
∆I
∆T

(1)

where: S—sensitivity, ∆I—intensity, ∆T—temperature.
The sensitivity of the sensor calculated from the data in Figure 5 equals 103.5 nW/◦C.
The presented results indicate that the microsphere-based sensor with 200 nm ZnO ALD coating is

a promising device for temperature measurements. The described device maintains stable conditions
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to perform such measurements. In addition, its design provides an opportunity for constant, real-time
monitoring of the integrity of the sensor head structure.

4. Conclusions

This paper introduces a ZnO ALD coated microsphere-based sensor for temperature measurements.
The presented ZnO ALD coated microsphere-based sensor is demonstrated to be a precise device
ideal for long-term monitoring temperature, which is crucial for industrial applications, such as
manufacturing, processing, storing and controlling products in various sectors. Investigated sensor
is a reliable device during harsh conditions and remote or hard-to-get places, where the cost of
measurement system is balanced by safety considerations or service and operation costs. The presented
sensor can, for example, be utilized for the investigation of processes occurring inside of electrochemical
battery cells during their charging-discharging cycles. The sensor is fabricated at the end-face of an
optical fiber and the coating of 200 nm in thickness is deposited on its surface by the ALD method.
By using a microsphere sensor head, not only can the measured parameters be controlled, but also
the structural integrity of the sensor. To optimize the metrological parameters of the device, such as
sensitivity or resolution, the thickness of the coating can be modified as needed [44].
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