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Abstract: Phase-coded sequences are widely studied as the transmitted signals of active sonars.
Recently, several design methods have been developed to generate phased-coded sequences
satisfying specific aperiodic or periodic autocorrelation sidelobe level metrics. In this paper,
based on the majorization–minimization strategy and the squared iterative acceleration scheme,
we propose a method to generate sequences with the periodic weighted integrated sidelobe level
metric. Numerical simulations illustrate that the proposed method can effectively suppress the
periodic autocorrelation sidelobe levels in specific time lags. Compared with other sequence design
methods satisfying the periodic weighted integrated sidelobe level metric, our method improves
the computational efficiency significantly. In addition, the proposed sequence demonstrates better
matched filter performance in specific range intervals compared with its counterpart. The results
suggest that the method could be applied as a valid and real-time design method for transmitted
signals of active sonars.

Keywords: active sonar; periodic autocorrelation; weighted integrated sidelobe level;
majorization–minimization; sequence design

1. Introduction

The autocorrelations of transmitted signals are of great significance for the signal processing
in active sonars. A good autocorrelation property indicates that the signal is nearly uncorrelated
with its own time-delay versions [1,2], which ensures that the active sonar can precisely extract
the echo information from the interested time lags while suppressing interferences from other time
lags [3,4]. One of the most widely used transmitted signals with good autocorrelation properties is the
phase-coded sequence [5,6]. Due to practical constraints of sonar transducers such as the frequency
response and the energy efficiency, it is desirable to design the transmitted signals with nearly a constant
amplitude, which aroused a lot of effort to research on unimodular phase-coded sequences [7,8].
The early studies regarding phase-coded sequences mainly focused on binary sequences to reach the
low autocorrelation sidelobes, for example, the Barker sequence [9]. Lately, considering the fact that
binary sequences are of low computational efficiency and difficult to be generated with long length,
researches shifted to other polyphase sequences such as the Golomb sequences [10,11] and the Frank
sequences [12]. Correspondingly, the optimization for polyphase sequences becomes one of the major
interests in the sequence designs. Most researchers optimize this problem with the Integrated Sidelobe
Level (ISL) metric [13–15] or the Weighted Integrated Sidelobe Level (WISL) metric [11,16,17].

The ISL metric is the most commonly-used criterion to evaluate the autocorrelation properties of
phase-coded sequences. Based on the singular value decomposition (SVD), Li first proposed the cyclic
algorithm (CA) to design sequences satisfying the ISL metric [18]. However, as the SVD operations are
relatively computationally intensive, it might be difficult to generate the sequence with length more
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than N3. Afterwards, Stoica developed two extensions of the CA, called ‘Cyclic Algorithm New’ (CAN)
and ‘Periodic-correlation Cyclic Algorithm New’ (PeCAN) to generate sequences of length N~106 in the
aperiodic and periodic ISL case, respectively [13,14]. Compared with the CA, the CAN and the PeCAN
utilize the Fast Fourier Transform (FFT) operations and reduce computational burdens effectively.

For a phase-coded sequence satisfying the ISL metric, it is difficult and time-consuming to
suppress autocorrelation sidelobes at all time lags. As a result, the WISL metric is developed to
reduce autocorrelation sidelobe levels at specific time lags [13]. Hao He proposed the periodic CA
(PeCA) to generate sequence sets with the periodic WISL metric based on the SVD operations [19].
Stoica developed an algorithm called ‘Weighted Cyclic Algorithm New’ (WeCAN) for the design of
sequences with the aperiodic WISL metric [13]. Compared with sequences satisfying the ISL metric,
the PeCA and the WeCAN sequences are flexible in practical applications.

Although the above algorithms, PeCA and WeCAN, can generate sequences with the WISL
metric, the computational burdens are considerably intensive. In order to enhance the computational
efficiency, the majorization–minimization (MM) strategy was applied to sequence design methods.
Instead of optimizing the objective problem directly, the MM strategy constructs surrogate Equations
to approximate the objective and gradually decomposes the N-dimensional equation into the sum
of one-dimensional equations which can be minimized easily [20]. This strategy has already been
implemented to large-scale or non-convex optimization problems [21]. Song dealt with the aperiodic
ISL and WISL Equations through the MM strategy [15,17]. Compared with the aforementioned
CA and CAN, the algorithm using MM strategy reaches a faster convergence speed and lower
computational burden.

In this paper, we intended to apply the MM strategy for the periodic WISL Equation and proposed
a real-time sequence design method. The main contributions and advantages of the paper can be
summarized as: (1) We intended to reach low autocorrelation sidelobes at specific time lags (namely
WISL metric), which is much easier to reach than the ISL metric in the complex underwater environment
we focus on. (2) In this paper, we reduced the calculation amount and improved the real-time capacity
of sequence design methods in periodic WISL case, since the recent methods generating sequences with
the periodic WISL cannot be satisfactory [19]. (3) For the first time, we proved that the periodic WISL
Equation can be tackled through the MM strategy which has been applied in the aperiodic/periodic ISL
and the aperiodic WISL equation as for example in [15–17].

The rest of the paper is organized as follows. In Section 2, we derived a phased-coded sequence
design method based on the MM strategy. Some derivations of our method in periodic WISL case are
different from the aperiodic case [17]. For completeness and clearness, we presented all derivations
of the method in this section. Also, an acceleration scheme was applied in the method in order to
enhance the convergence speed. Simulations are presented in Section 3 to evaluate the convergence
performance of the proposed method. In addition, the matched filter performance of the transmitted
sequence was evaluated since the matched filter is a standard echo processing of active sonars. Finally,
Section 4 proposed the conclusions of this paper.

Notation: In this paper, boldface upper case letters denote matrices, boldface lower case letters
denote column vectors. Notations (·)T, (·)∗, (·)H denote transpose, conjugate, and conjugate transpose.
Re(·) denotes the real part, Tr(·) denotes the trace of the matrix and vec(·) denotes the column-wise
vectorization. ‖·‖2 denotes the Euclidean norm. Diag(x) is a diagonal matrix formed with x as its
principal diagonal. I is the identity matrix.

2. MM Based Phase-Coded Sequence Design Method

Let’s define x = {xn|n = 1, . . .N } as a complex unimodular sequence with length N. It is well
known that the periodic autocorrelation of the sequence can be defined as [13]:

rk =
N∑

n=1

xnx∗
(n−k)modN = r∗

−k, k = 0, . . . , N − 1 (1)
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Here nmodN is the modulo operation which denotes that:

nmodN = n− bn/NcN (2)

where bn/Nc is the largest integer smaller than or equal to n/N. The WISL metric of periodic
autocorrelation can be written as:

WISL =
N−1∑
k=1

ωk|rk|
2 (3)

where ωk, k = 1, . . . , N − 1 represent the weights set of the WISL metric. Then the design method of the
sequence x is considered as the following optimization problem:

minimize
xn

WISL

subject to |xn| = 1, n = 1, . . . , N
(4)

Equation (4) expresses the optimization problem of both the aperiodic [17] and the periodic WISL
metric. To make the WISL metric expressed clearly, the basis matrices in the aperiodic case are defined
as N ×N Toeplitz matrices Uk, k = 0, . . . , N − 1:

Uk =



u0 u1 · · · uk · · · uN−1

u−1 u0 u1
...

... u−1
. . . . . . uk

u−k
. . . u0 u1

...
... u−1

. . . u1

u−(N−1) · · · u−k · · · u−1 u0


(5)

where uk in kth diagonal are 1 and elsewhere are 0 [17].
On the other hand, in periodic case, we define new basis matrices Vk, k = 1, . . . , N − 1 as N ×N

circulant matrices:

Vk =



v0 v1 · · · vk · · · vN−1

v−(N−1) v0 v1
...

... v−(N−1)
. . . . . . vk

v−(N−k)
. . . v0 v1

...
... v−(N−1)

. . . v1

v−1 · · · v−(N−k) · · · v−(N−1) v0


(6)

where vk in kth diagonal and v−(N−k) in −(N − k)th diagonal are all 1 and elsewhere are 0. To express
Equation (4) as the symmetric form, let V0 be a null matrix and further define V−k = VT

k , k =

1−N, . . . 0 . . . , N − 1. Through the expression of basis matrices Vk, Equation (4) with WISL metric of (3)
can be rewritten as:

minimize
X,x

1
2

N−1∑
k=1−N

ωk
∣∣∣Tr(VkX)

∣∣∣2
subject to X = xxH

|xn| = 1, n = 1, . . . , N

(7)
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where ω−k = ωk,ω0 = 0. Since Tr(VkX) = vec(Vk)vec(X)H, Equation (7) can be expressed as:

minimize
X,x

N−1∑
k=1−N

ωkvec(X)Hvec(Vk)vec(Vk)
Hvec(X) (8)

Let’s define:

R =
N−1∑

k=1−N

ωkvec(Vk)vec(Vk)
H (9)

It is obvious that R is a Hermitian matrix. By the definition of R, Equation (8) can be rewritten as:

minimize
X,x

vec(X)HRvec(X) (10)

In the following parts, Equation (10) will be tackled by using the MM strategy. The key procedures
of the MM strategy include: (1) Majorization: constructing majorization functions u(M) as accurate as
possible by designing an upperbound matrix M of the object matrix R. (2) Minimization: surrogating
the original Equation (10) with the majorization function u(M) and minimizing the surrogate equation.
These two procedures will repeat several times until the closed-form solution can be reached. Before we
use the MM strategy, a useful conclusion [15] should be displayed so that it can be used later.

Lemma 1. R, M1 are both N ×N Hermitian matrices and M1 ≥ R. For each x0 ∈ CN, the majorization
function of xHRx is xHM1x + 2Re

(
xH(R−M1)x0

)
+ xH

0 (M1 −R)x0, which ensures that xHRx ≤ xHMx

+2Re
(
xH(R−M)x0

)
+xH

0 (M−R)x0.

According to Lemma 1, an upperbound matrix M1 which satisfying M1 ≥ R needs to be designed
in order to construct the majorization function. A simple choice is to define M1 = λmax(R)I where
λmax(R) is the maximum eigenvalue of R. The value of λmax(R) is quantitatively expressed as:

λmax(R) = max
k

{
N(ωk +ωN−k)k = 1, . . . , N − 1} (11)

Proof. Owing to the property of circulant matrices, vec(Vk), k = 1, . . . , N − 1 are mutually orthogonal
so that:

vec(Vi)
Hvec

(
V j

)
=

{
1, when i = j
0, when i , j

(12)

Then both sides of Equation (9) are multiplied by vec(Vk):

Rvec(Vk) =
N−1∑

j=1−N
ω jvec

(
V j

)
vec

(
V j

)H
vec(Vk)

= ωkvec(Vk)vec(Vk)
Hvec(Vk)+

ω−(N−k)vec
(
V−(N−k)

)
vec

(
V−(N−k)

)H
vec(Vk)

= N(ωk +ωN−k)vec(Vk)

(13)

where the second equality results from the fact Vk = V−(N−k) and the third equality results from the
fact ω−(N−k) = ωN−k. According to Equation (13), N(ωk +ωN−k) are non-zero eigenvalues of R with
corresponding eigenvectors vec(Vk). Then the maximum eigenvalue of R is given as Equation (11).
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Giving X(p) = x(p)
(
x(p)

)H
of the pth iteration and choosing M1 = λmax(R)I. It is easy to see that

both M1 and R are Hermitian matrices. According to Lemma 1, the majorization function which
surrogates Equation (10) at X(p) can be given as:

u1
(
X, X(p)

)
= λmax(R)vec(X)Hvec(X)

+2Re
(
vec(X)H(R−M1)vec

(
X(p)

))
+vec

(
X(p)

)H
(M1 −R)vec

(
X(p)

) (14)

Considering the fact that vec(X)Hvec(X) =
(
xHx

)2
= N2, the first term of Equation (14) is a

constant and the third term depends on the pth iteration only. Ignoring these immaterial terms,
Equation (10) can be surrogated by u1

(
X, X(p)

)
as:

minimize
X,x

Re
(
vec(X)H(R−M1)vec

(
X(p)

))
(15)

Substituting Equation (9) into Equation (15), the equation becomes:

minimize
X,x

N−1∑
k=1−N

ωkRe
(
Tr(VkX)Tr

(
VkX(p)

)∗)
− λmax(R)Tr

(
X(p)X

)
(16)

Considering Tr
(
VkX(p)

)∗
=

(
r∗k
)(p)

= r(p)
−k and X(p) =

(
x(p)

)H
x(p), then we rewrite Equation (16) as:

minimize
X,x

Re
(
Tr

N−1∑
k=1−N

ωkr(p)
−k VkX

)
− λmax(R)Tr

(
X(p)X

)
= minimize

x
xH

(
C− λmax(R)x(p)

(
x(p)

)H
)
x

(17)

Here the matrix C has the form as follows:

C =
N−1∑

k=1−N

ωkr(p)
−k Vk =

0∑
k=1−N

ωkr(p)
−k Vk +

N−1∑
k=1

ωkr(p)
−k Vk = C1 + C2 (18)

According to the definition in [22,23], C, C1, and C2 are all circulant matrices.
Through the above MM procedures, we decompose the quartic function of Equation (10) to the

quadratic function of Equation (17). However, the quadratic function cannot get closed-form solution
and needs to be further decomposed. As a result, we intend to use the MM strategy again and construct
another majorization function to decompose the equation. In Lemma 1, both the object matrix and the
surrogate matrix should be Hermitian matrix. To decompose Equation (17), we will introduce another
lemma so that the surrogate function in Lemma 1 is also valid when the object matrix is a circulant
matrix. �

Lemma 2. C is the N ×N circulant matrix, M2 is the N ×N Hermitian matrix, and M2 ≥ C. For each x0,
the majorization function of xHCx is similar with the conclusion in Lemma 1.

With Lemma 2, the key to construct the majorization function of Equation (17) is to design an

upperbound matrix M2 so that M2 ≥ C− λmax(R)x(p)
(
x(p)

)H
. Similar with Equation (11), a simple way

is to choose the upperbound matrix M2 so that it can be expressed as:

M2 = λmax

(
C− λmax(R)x(p)

(
x(p)

)H
)
I (19)
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Since λmax(R)x(p)
(
x(p)

)H
is a constant, we should focus on the eigenvalues of C. A column vector

c = CT(1, :) is defined which is composed of the first row elements of matrix C. Also, the Fourier
transform matrix is defined as:

F =
(

fk, j
)
= exp(−i2πkj/N) 0 ≤ k, j ≤ N − 1 (20)

Then all eigenvalues of C is solved as:

λ(C) = FHc (21)

By Equations (20) and (21), the eigenvalues of C, C1, and C2 can be obtained by inverse Fourier
transforms. Moreover, the circulant matrix ensures the relation between the maximum eigenvalues of
C, C1, and C2 as [24]:

λmax(C) = λmax(C1 + C2) = λmax(C1) + λmax(C2) (22)

Since λmax(R) ≥ 0 in Equation (19), Equation (22) can be expanded as:

λmax

(
C− λmax(R)x(p)

(
x(p)

)H
)
≤ λmax(C) = λmax(C1) + λmax(C2) (23)

Now we define λc = λmax(C1) + λmax(C2) and M2 = λcI which is a Hermitian matrix. Since the

matrix
(
C− λmax(R)x(p)

(
x(p)

)H
)

is also circulant like C, we can now use Lemma 2 and the majorization

function of Equation (17) can be yielded as:

u2
(
x, x(p)

)
= λcxHx + 2Re

(
xH

(
C− λmax(R)x(p)

(
x(p)

)H
−M2

)
x(p)

)
+

(
x(p)

)H
(
M2 −C + λmax(R)x(p)

(
x(p)

)H
)
x(p)

(24)

Since xHx = N, the first term of Equation (24) is a constant and the third term depends on the pth
iteration only. Ignoring these constant terms, the original Equation can be surrogated by u2

(
x, x(p)

)
as:

minimize
x

Re
(
xH

(
C− λmax(R)x(p)

(
x(p)

)H
−M2

)
x(p)

)
(25)

which can be simplified as follows:
minimize

x
‖x− y‖2 (26)

Here:
y = −

(
C− λmax(R)x(p)

(
x(p)

)H
−M2

)
x(p)

= (λmax(R)N + λc)x(p) −Cx(p)
(27)

Equation (26) has a closed-form solution as:

x = e jarg(y) (28)

In order to improve the computation efficiency of MM procedures, we can express the WISL
metric in Equation (3) and y in Equation (27) via the Fourier transform matrix. First of all, the periodic
autocorrelation of a unimodular sequence can be written as follows [25]:[

r(p)0 , r(p)1 , . . . , r(p)N−1

]T
=

1
N

FH
∣∣∣Fx(p)

∣∣∣2 (29)
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where the Fourier matrix F is defined as Equation (20). Then the WISL metric can be obtained through
Equation (3). Furthermore, the computation of y depends on the matrix C in Equation (18) which can
be expressed as follows [24]:

C =
1
N

FHDiag
(
FHc

)
F (30)

where c is the column vector composed of the first row elements of C.
The MM procedures of the method are presented as Table 1. During the procedures, it may not

be definite to reach the steepest descent in each iteration, which results in a slow convergence speed.
Hence, we modify the gradient direction in each iteration with the so called squared iterative method
(SQUAREM) in order to improve the MM strategy and accelerate the convergence. The SQUAREM
is derived from the Cauchy–Barzilai–Borwein algorithm [26] and originally used to accelerate
the expectation–maximization (EM) algorithm in maximum likelihood estimates [27]. Recently,
the SQUAREM is proved to be applicable for the MM strategy in aperiodic WISL case [17]. Since it is
an ‘off-the-shelf’ acceleration scheme which needs nothing other than the parameter updating rules of
MM procedures [16], we apply this scheme straightforward to accelerate our method. The details of
the scheme can be found in [17]. Finally, the sequence design method based on MM procedures and
the SQUAREM scheme is named as PeWISL method.

Table 1. Majorization–minimization (MM) procedures of the periodic Weighted Integrated Sidelobe
Level (PeWISL) method.

Initials: p = 0, sequence length N, initial x(0), weights {ωk ≥ 0|k = 1, . . . , N − 1 },
λmax(R) = max

k

{
N(ωk +ωN−k)|k = 1, . . . , N − 1

}
Repeat
1: f = Fx(p)

2: r = 1
N FH
|f|2

3: c1 = [r0, r−1, . . . , r1−N ] ◦ [0,ω1, . . . ,ωN−1]
T

c2 = [r0, rN−1, . . . , r1] ◦ [0,ωN−1, . . . ,ω1]
T

4: c = c1 + c2
5: λ(C1) = F∗c1,λ(C2) = F∗c2
6: λc = λmax(C1) + λmax(C2)

7: y =
(
(λmax(R)N + λc) −

1
N FHDiag

(
FHc

)
F
)
x(p)

8: x(p+1)
n = e jarg(yn), n = 1, . . . , N

9: p = p + 1
Until convergence

3. Simulations and Results

The performance of the proposed method is demonstrated via numerical simulations in this
section. We prove the validity of the proposed method and compare its convergence with two relevant
methods, including the PeCA method which also generates sequences with periodic WISL metric [19]
and the method tackling the periodic ISL metric through the similar MM strategy and SQUAREM
acceleration scheme (PeISL) [15]. Moreover, the matched filter performance of the PeWISL sequence is
proposed and compared with the PeCA and the PeISL sequences. All of the simulations are conducted
on a PC with a 3.50 GHz i7–3770K CPU and 4 GB RAM using MATLAB R2017a. The MATLAB code of
PeCA is adopted from the monograph by He [8].
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3.1. Designing Sequence with Low WISL Metric

For comparison, the sequence length and the weights of the WISL metric are in agreement with
the set of the PeCA sequence in [19], which means a unimodular sequence with length N = 512 will be
generated and the weights are set as follows:

ωk =

{
1, k ∈ [1, 0.12N]

0, otherwhise
(31)

The initialization of the simulation is randomly generated and the stop criterion is set to be
WISL ≤ 10−10. Figure 1 shows the autocorrelation level of the PeWISL sequence. It is noticeable that
the autocorrelation levels of weighted lags are lowered to −200 dB, which can be considered as almost
zero. In addition, the correlations of PeWISL within the interested region do not go up when the time
lag increases, which demonstrates that there is no existence of the ‘implicit weighting’ phenomenon in
the PeCA sequence [19].
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Figure 1. The autocorrelation levels of the unimodular sequence generated by the proposed PeWISL
method. The sequence length is N = 512 and the weights are set as Equation (31).

Figure 2 shows the evolution curves of three relevant methods in one simulation with respect
to iterations and computation times. For comparison, all methods are initialized by the same
randomly-generated sequence with length N = 128. Furthermore, the normalized stopping criterions
are set to 10−10. In Figure 2, it is obviously that the metric values of all three methods converge to 10−10.
Both the WISL metric and the ISL metric can be well satisfied through this stopping criterion. It is
worth noticing that the PeWISL consumes the least iterations which are just 101 to reach the stopping
criterion, followed by the PeCA with iterations more than 102, and the PeISL with iterations more
than 103. This demonstrates the better computation efficiency of the PeWISL. Figure 2b illustrates the
evolution curves of the metric values with respect to computation times. The result also shows that
the PeWISL reaches the fastest consuming time of 0.20 s while the PeCA consumes 2.82 s. On the
contrary, the PeISL method with the same acceleration scheme reaches the largest computation times
of 12.08 s, which shows the difficulty to suppress autocorrelation sidelobes of all the time lags with
the periodic ISL metric. This explains why we focus on the optimization of the periodic WISL metric.
Also, the huge difference between the computation times of the PeWISL and the PeISL testifies the
larger acceleration efficiency of the SQUAREM on the PeWISL. In addition, we notice that there are
some unsmooth distortions in the evolution curves of the PeWISL and the PeISL. The reasons are as
follows: (1) Due to the nature of the MM strategy, the decent gradients of the PeWISL and the PeISL
are nonuniform compared with PeCA based on the cyclic algorithm. (2) Since the PeWISL consumes
only 101 iterations to reduce the metric values by 1010, its sampling points are not enough to fit a
smooth curve.
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Table 2 lists the iterations and computation times of three methods to generate sequences with
three different lengths. All the results in the table are the average values of 100 simulations. The weights
of the PeWISL and the PeCA sequences are set as Equation (31). As the sequence length increases,
the iterations and computation times of methods increase significantly, except for the PeWISL. It can
be seen that the PeWISL consumes the least computation time and the fewest iterations in all three
lengths, even compared with the PeCA satisfying the same periodic WISL metric and the PeISL which
is also based on the SQUAREM acceleration scheme. Combined Table 2 with Figure 2, we can see that
the iteration of PeWISL floats just from 20 to 37 when the length increases from 128 (Figure 2) to 1024.
On the contrary, the PeCA and the PeISL consume more iterations which are nearly proportional to the
length when N ≤ 512. Particularly, the PeISL with N = 1024 consumes iterations and computation
time more than 106. In brief, the relatively stable iteration and less computation time of PeWISL reveal
its higher computational efficiency than other methods.

Table 2. The convergence performance of three methods.

N = 256 N = 512 N = 1024

Iteration Time (s) Iteration Time (s) Iteration Time (s)

PeWISL 33 0.88 31 3.84 37 34.98
PeCA 2611 8.28 4538 45.76 8375 333.66
PeISL 20641 61.54 45821 969.52 ~106 ~106

Iteration: convergence iterations. Time: computation time (in seconds).

3.2. Matched Filter Performance

Recently, most active sonar systems utilize the matched filter to estimate the range and velocity of
targets through the correlation between replicas and echoes. The matched filter provides the highest
signal-noise-ratio in the white noised environment. In addition, it is computationally efficient and
simple because of the FFT operations. In this section, we propose several simulations to evaluate the
matched filter performance of the PeWISL phase-coded sequences, especially the matched filter results
versus ranges. The comparison with the PeCA and the PeISL (PeCAN) sequence is also demonstrated
through simulations.

Simulation 1: The weights of the WISL metric in this simulation are set as [1, 0.1N]. The carrier
frequency is f0 = 500 Hz and the sequence length is fixed to N = 100. The stationary target is
located 1 km away from the receiver. In this simulation, the coding width of the sequence change
by 16Ts, 32Ts, 48Ts, and 64Ts respectively, where Ts = 1/ f0 represents the carrier period. Figure 3a
presents the matched filter results versus ranges with different coding widths. With the increasing
of coding widths mTs (m denotes a positive integer), the total durations of sequences (T = N ×mTs)
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increase from 3.2 s (coding width 16Ts) to 12.8 s (coding width 64Ts). As a result, the length of the
optimized range interval also increases, which means the improvement of the ability to detect weak
targets in a given range interval. Meanwhile, the increasing of the mainlobe width in Figure 3a
means that the range resolution is lowered and results in the difficulty of distinguishing other targets
near the main target. This suggests a trade-off between detecting weak targets and distinguishing
multi-targets. Theoretically, when the weights are set as [1, εN], 0 < ε < 1, the optimized range interval
of a phase-coded sequence with length N, carrier frequency f0 and coding width mTs can be represented
as follows: [

Rt −
εmNTs

2
c, Rt +

εmNTs

2
c
]

(32)

where Rt is the distance between the target and the receiver, c denotes the underwater sound velocity.
Figure 3b shows the length of the optimized range interval when coding width is 32Ts. It is clearly that
the optimized range interval is [0.52, 1.48] km, which is corresponding with the quantitative expression
of range interval (32).
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Simulation 2: The carrier frequency is f0 = 500 Hz and the sequence duration is fixed to 12.8 s.
The weights are the same as simulation 1. The stationary target is located 3.5 km away from the receiver.
In this simulation, the sequence length change by N = 100, 200, 400, and 800, respectively. Figure 4
shows the matched filter results versus ranges with different sequence lengths. In Figure 4a, it can
be seen that the optimized range interval remains unaltered since the total duration is unchanged.
Figure 4b shows that the width of mainlobe decreases as length N increases, which results in the
enhanced range resolution. Figure 4c shows the details of sidelobes in the range intervals [1.5, 3.5] km.
As length N increases, the average sidelobe levels in the unoptimized range intervals get lowered.

In the practical application of matched filters, the optimized range interval of PeWISL is expected
to contain the probable target location so that the precise target location can be extracted. In particular,
if the interval of the probable target location is [l1, l2] via the prior information, we define Rt =

l1+l2
2 as the

‘standard position’. Then the interval [l1, l2] can be rewritten as
[
Rt −

l2−l1
2 , Rt +

l2−l1
2

]
. The optimized

range interval should contain the probable target location which means the following inequality could
be satisfied:

l2 − l1
2
≤
εmNTs

2
c (33)

Then ε in [1, εN] should set as:
l2 − l1
mcNTs

≤ ε < 1 (34)
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By this way, the weights of the PeWISL [1, εN] can set in real time according to the priori
information. Then the optimized range interval is guaranteed to contain the target and the PeWISL
transmitted sequence can get the target range precisely.Sensors 2020, 20, x 12 of 15 

 

 
(a) 

  
(b) (c) 

Figure 4. (a) The matched filter results versus ranges for the PeWISL sequences with sequence length 
100, 200, 400, and 800, respectively; (b) the details of mainlobes with different sequence lengths; and 
(c) the details of sidelobes in the range interval [ ]1.5,3.5  km. 

In the practical application of matched filters, the optimized range interval of PeWISL is 
expected to contain the probable target location so that the precise target location can be extracted. In 
particular, if the interval of the probable target location is [ ]1 2,l l via the prior information, we define 

1 2=
2t

l lR +   as the ‘standard position’. Then the interval [ ]1 2,l l can be rewritten as 

2 1 2 1,
2 2t t

l l l lR R− − − +  
 . The optimized range interval should contain the probable target location 

which means the following inequality could be satisfied: 

2 1

2 2
smNTl l cε− ≤  (33) 

Then ε in [ ]1, Nε should set as: 

2 1 1
s

l l
mcNT

ε− ≤ <  (34) 

By this way, the weights of the PeWISL [ ]1, Nε can set in real time according to the priori 
information. Then the optimized range interval is guaranteed to contain the target and the PeWISL 
transmitted sequence can get the target range precisely. 

Simulation 3: In this simulation, we compare the matched filter performances of the PeWISL 
sequence with other two phased-coded sequences, the PeCA sequence and the PeISL (PeCAN) 
sequence. Since the PeISL and the PeCAN sequences both focus on the periodic ISL metric and reach 
the similar optimization performance [14,17], we consider them as one representation in this paper. 
All sequences have a carrier frequency 0 500Hzf = , a sequence length of 100N = , a sequence 

Figure 4. (a) The matched filter results versus ranges for the PeWISL sequences with sequence length
100, 200, 400, and 800, respectively; (b) the details of mainlobes with different sequence lengths;
and (c) the details of sidelobes in the range interval [1.5, 3.5] km.

Simulation 3: In this simulation, we compare the matched filter performances of the PeWISL
sequence with other two phased-coded sequences, the PeCA sequence and the PeISL (PeCAN) sequence.
Since the PeISL and the PeCAN sequences both focus on the periodic ISL metric and reach the similar
optimization performance [14,17], we consider them as one representation in this paper. All sequences
have a carrier frequency f0 = 500 Hz, a sequence length of N = 100, a sequence duration T = 6.4 s
and a coding width 64Ts. The set of weights for the PeWISL and PeCA are [1, 0.075 N]. The simulated
target was 2 km away from the receiver with a radial velocity of 9 km/h. According to the result of
range interval (32), the optimized range interval is [1.28, 2.72] km. In order to satisfy the periodic
condition, both sequences are transmitted continuously and periodically with three duty cycles.

Figure 5 shows the matched filter performance of three sequences. Figure 5a,c,e are the
range-Doppler imaging results. All three sequences reach the high resolution in range and Doppler.
For the PeISL (PeCAN) of Figure 5a, there are two low sidelobe intervals across the true target position.
By contrast, the PeCA in Figure 5c and the PeWISL in Figure 5e show the short interval of low sidelobes
and the same sharpness of the target ‘lightspot’. Since the PeCA and the PeWISL only focus on the
reduction of sidelobes in time domain, it is reasonable that there is no difference between the match
filter results versus Doppler of three methods. For simplicity, we only present the match filter results
versus range in Figure 5b,d,f. In Figure 5f, the average sidelobe level of PeWISL in the whole range
interval is −130.09 dB which is between −143.47 dB of PeISL (PeCAN) in Figure 5b and −118.26 dB of
PeCA in Figure 5d. On the contrary, the average sidelobe level of the PeWISL in the optimized range
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interval is suppressed to −318.01 dB (the solid red line in Figure 5f), which is the lowest compared
with the PeISL (PeCAN) (−132.90 dB) and the PeCA (−304.77 dB). The results indicate that the PeWISL
sequence sacrifices the average ISL in the whole range interval for the lowest sidelobe levels in the
optimized interval. This also demonstrates that among the methods optimizing the periodic WISL
metric, the PeWISL reaches the better matched filter performance than the PeCA.
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4. Conclusions 

In this paper, a phase-coded sequence design method namely PeWISL is presented which is 
based on the MM strategy. For the first time, we affirm that the MM strategy can be applied to the 
sequence design method of periodic WISL metric. Through simulations, the validity of the method is 
proved and the convergence properties are compared with two relevant methods. The comparison 
results reveal that the PeWISL method promotes the convergence efficiency and decreases the 
computation time and iterations greatly. In addition, the matched filter performances of the 
generated sequences are also evaluated. In the practical matched filter processing, the PeWISL 
method can suppress sidelobe levels of the specific range interval to considerably low, which is the 
sacrifice of sidelobe levels in uninterested range intervals. Overall, the proposed method improves 
the efficiency and the real-time capacity of the phased-coded sequence design, which makes the 
PeWISL sequence an applicable periodic transmitted sequence for active sonars. 

We identify three potential avenues for future works. The first is to conduct the quantitative 
analyses on convergence of the methods and explore factors which are highly correlated with the 
convergence performance. For example, the distance between upperbound matrices and the objective 
matrix. The second is to expand the application scope of the method into the sequence design of 
MIMO sonar systems. The third is to verify the performance of the PeWISL sequence through sea-
trial experiments. 
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[1.28, 2.72] km.

4. Conclusions

In this paper, a phase-coded sequence design method namely PeWISL is presented which is based
on the MM strategy. For the first time, we affirm that the MM strategy can be applied to the sequence
design method of periodic WISL metric. Through simulations, the validity of the method is proved and
the convergence properties are compared with two relevant methods. The comparison results reveal
that the PeWISL method promotes the convergence efficiency and decreases the computation time and
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iterations greatly. In addition, the matched filter performances of the generated sequences are also
evaluated. In the practical matched filter processing, the PeWISL method can suppress sidelobe levels
of the specific range interval to considerably low, which is the sacrifice of sidelobe levels in uninterested
range intervals. Overall, the proposed method improves the efficiency and the real-time capacity of the
phased-coded sequence design, which makes the PeWISL sequence an applicable periodic transmitted
sequence for active sonars.

We identify three potential avenues for future works. The first is to conduct the quantitative
analyses on convergence of the methods and explore factors which are highly correlated with the
convergence performance. For example, the distance between upperbound matrices and the objective
matrix. The second is to expand the application scope of the method into the sequence design
of MIMO sonar systems. The third is to verify the performance of the PeWISL sequence through
sea-trial experiments.
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