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Abstract: Autonomous driving systems tightly rely on the quality of the data from sensors for tasks
such as localization and navigation. In this work, we present an integrity monitoring framework that
can assess the quality of multimodal data from exteroceptive sensors. The proposed multisource
coherence-based integrity assessment framework is capable of handling highway as well as complex
semi-urban and urban scenarios. To achieve such generalization and scalability, we employ a
semantic-grid data representation, which can efficiently represent the surroundings of the vehicle.
The proposed method is used to evaluate the integrity of sources in several scenarios, and the integrity
markers generated are used for identifying and quantifying unreliable data. A particular focus is given
to real-world complex scenarios obtained from publicly available datasets where integrity localization
requirements are of high importance. Those scenarios are examined to evaluate the performance of
the framework and to provide proof-of-concept. We also establish the importance of the proposed
integrity assessment framework in context-based localization applications for autonomous vehicles.
The proposed method applies the integrity assessment concepts in the field of aviation to ground
vehicles and provides the Protection Level markers (Horizontal, Lateral, Longitudinal) for perception
systems used for vehicle localization.

Keywords: multimodal data source; integrity assessment; intelligent vehicles; localization; Protection
Level markers

1. Introduction

The second half of the last decade has seen a significant emergence of commercially available
vehicles with autonomous driving capabilities. We can confidently say that the status of autonomy
in vehicles is well into the realm of Society of Automotive Engineers (SAE) level 2 [1]. While the
researchers and industries are rapidly moving towards SAE level 3 systems that can dramatically
improve driving safety and efficiency, monitoring the integrity of sources and process used in such
systems can often pose challenges [2]. In [3], the classical integrity concepts used in aviation are
transposed to integrity requirements for ground vehicle localization. Using road-safety-related statistics
and geometry of roads and vehicles, [3] derived bounds for localization error in both highway and
urban scenarios. They further distributed the derived total integrity risk to allocate integrity levels to
every subsystem present in autonomous vehicles. In this work, we focus on the integrity assessment
of perception data sources such as vision, LiDAR, map, etc. Most advances in this area explicitly
address the task of integrity monitoring of data sources by introducing redundancy in sensors [4,5],
using sensors with advanced features [2,6], monitoring repetitive journeys [7], or assuming one source
(often high-quality digital maps) as reliable ground truth [8,9]. While adding data redundancy (often
different GPS receivers for map-matching and sensor fusion [5]) can monitor the integrity of processes,
the integrity of data sources has to be largely assumed. Only a small number of works like [10] and [7]
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consider digital maps as a source with probabilities of error. However, to achieve context-aware
autonomous navigation, perception sensors such as camera and LiDAR are used along with digital
maps, GPS, and proprioceptive sensors. In [11], facades of buildings at intersections are detected
using vision and are fused with building footprints extracted from the digital map to provide better
localization. They further extended their work in [12] to achieve localization at intersections using road
structures instead of building facades and map data. A map-matching-based localization involving
lane detection from vision is used in [13] and [14]. Similar strategies are employed combining digital
maps with features detected from LiDAR data such as curb detection [15], intersection structure
detection [16], lane detection [17], etc. However, to the best of our knowledge, integrity monitoring of
data from such spatial perception sensors used in the aforementioned works is largely overlooked.
Considering the multimodality of data provided by this wide variety of sensors, finding a common
framework to evaluate integrity is a challenging yet crucial task. In [18], we made an effort to address
this task using a cross-consistency-based integrity monitoring framework for highway scenarios. In this
paper, we address limitations of [18] and improve the framework to apply it to complex semi-urban
and urban scenarios in a generalized way, thus providing context awareness to a multimodal vehicle
localization system.

2. Problem Statement

Semi-urban and urban environments often contain a multitude of intersections, roundabouts,
road-splits, and merges compared to highway scenarios. As discussed in Section 1, multimodal data
from different sources are used to achieve accurate localization in such scenarios. Developing upon
the framework presented in [18], finding a generalized common model for the representation of data
from all sources is the primary objective of this work. Even though works like [12] and [17] propose
geometrical models for several types of intersections, they are limited to a single perception data source
and digital maps. They also require prior classification of intersections to reliably fit the predefined
models to the data. On the other hand, sensors used in intelligent vehicles have considerably different
behavior and output in such scenarios. Hence, the rest of this section is focused on how data from
different sources are used in complex scenarios. We also examine the possible errors associated
with these use cases and discuss the applicability issues of a simple common geometrical model
(e.g., the polynomial model in [18]) in these situations.

Traditionally, vision data is used to detect ego lane markings and/or lanes parallel to the ego lane
using a curvature-based model. In urban scenarios, such lane detection models fail due to different
types of lane markings (e.g., stop lines, road separation markings, etc.), orientation (e.g., lane markings
from other road sections in the junctions) and complex curvatures (e.g., splitting and merging lane
markings). Another approach using visual data is to detect the drivable road region in front of vehicle.
But due to the unforeseeable shapes of possible road segment detections, modeling of such output with
a geometrical model is difficult. Intersections with multilane branch roads can have a large common
region at the center, which can limit the observability of other road branches through visual inputs.

It is reasonable to assume that vehicles travel slowly and stop more often in semi-urban and
urban scenarios than highways. GPS receivers are proven to have poor performance in slow-moving
vehicles [19]. Combined with the fact that the presence of buildings and other obstructions can
cause multi-path effects or even outages of signals [2], GPS receivers experience classical localization
problems in urban environments.

With the exception of a few advanced and proprietary Geographic Information Systems
(GISs, e.g., Google maps), publicly available GIS sources lack accurate road properties (lane or road
widths, locations of lane splits and merges at junctions, etc.) and strongly depend on rule-based
rendering to display maps. The discrepancies observed while overlapping the satellite view and
rendered map structures from different GISs as shown in Figure 1 are examples of the limitation of
this approach. GPS tracking of the vehicle is accurate in satellite view of the junction, which includes
a lane change to the leftmost lane of the highway for a left turn and a smooth turn through the left
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side of link road. However, from the rendered road structure view of all the map sources, the track
section corresponding to lane change appears to be wrong as it is outside the boundary of the road
structure. It is also worth noticing that none of the GIS represent roads with their actual width, but with
rule-based dimensions. It is evident from the same width of two highway sections despite different
number of lanes in each of them. Likewise, modeling of junctions is also considerably different in each
map source, particularly between Google Maps and OpenStreetMap. Hence, inclusion of map data in
localization process is suboptimal in urban and semi-urban scenarios and forces us to consider it as a
data source with associated instantaneous integrity rather than ground truth.

Figure 1. Integrity issues in map sources. Top-left: An example of a GPS track (in red) from the KITTI
dataset projected on a satellite map from Google. Top-right: Zoomed aerial view of the track at an
intersection. Middle-left: The intersection in a street map from Google. Middle-right: The intersection
in a street map from OpenStreetMap. Bottom-left: The intersection in a street map from ArcGIS.
Bottom-right: The intersection in a street map from the Federal Agency for Cartography and Geodesy
(BKG) of Germany.

While data from vision, GPS, and maps add complexities and impose limitations, LiDAR, on the
other hand, can provide useful data in urban and semi-urban environments. It can observe the ego
road and other road branches efficiently. By using the reflectivity information available in LiDAR data,
we can detect bright surfaces like lane markings and curbs [15]. Though LiDAR poses challenges in
the detection and modeling of features as in the case of vision, the accurate 3D information available
makes it an important source for representing the structure of a large urban scenario.

The integrity monitoring method in [18] provides a weighting scheme for data sources that
infers the cause of inconsistencies observed in the data-fusion method at a given time. For any data
source combination that can be represented in a common frame and with a common model in that
chosen frame, the cross-consistency analysis proposed in [18] can be applied. However, the discussion
presented in this section shows that developing a common model is difficult when different sensor
modalities and diverse features are introduced to the system in order to accommodate urban scenarios.
To this extent, we could not find any integrity assessment solution in the literature that can handle
more than two perception data sources and a wide variety of scenarios.
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2.1. Contributions

The paper presents the following contributions based on the problem statement outlined above.

1. Defining a common reference frame and formalizing a common model to represent all data sources
in all scenarios.

2. Prototyping an integrity assessment framework using the common model and providing proof
of concept.

3. Analyzing the performance of the proposed framework using publicly available datasets and
comparison with other state-of-the-art integrity monitoring solutions from the literature.

3. Methodology

The framework proposed for the integrity assessment developed in this work is given in Figure 2.
The Detection Block includes sensor-specific routines to detect features that are relevant to different
data fusion algorithms described in Section 2. The Rendering Block uses GPS position to extract
data from surrounding map regions and applies rule-based rendering to reconstruct the geometrical
structure of the area. The obtained information is represented in a common frame using a common
model. In this work, the common reference frame is chosen as the ego frame of the vehicle as the
transformations between ego frame, camera frame, LiDAR frame, and GPS frame can be determined
by calibration procedures [20]. A decision algorithm is used to decide whether the optimization of
localization is required in case of unknown transformations between frames of data and the common
reference frame (in our case, map frame to ego frame). Once the required optimization is achieved,
coherence between data representations is evaluated and integrity is assessed for each source. In this
section, we outline the specific techniques and concepts used in the framework presented in Figure 2.

Figure 2. Framework for integrity assessment of multimodal data sources.

3.1. Detection

The purpose of the Detection Block is to extract the same information (features) from each
data source. From the literature review, we identify three features that are most commonly used
in state-of-the-art localization methods in urban scenarios—lane markings, drivable roads, and the
structure of the surroundings of the vehicle. Here, we limit the surrounding structures to grass
patches/vegetation and curbs and avoid building facades and other objects due to the complexities



Sensors 2020, 20, 4654 5 of 16

of their detection. Indeed, any feature can be used in this process if it is detectable from every data
source considered. The methods used to detect these features from each source are explained here.

3.1.1. Vision

To accommodate varieties of lane markings present in different scenarios, all possible markings
are detected. Images from cameras are transformed to bird’s-eye view (BEV) using camera calibration.
Intensity-based segmentation is used to detect all possible white lane markings. After detection of all
the candidate lane markings, blob analysis is used to reject poor detections [14]. Seed-based wavefront
segmentation is used to detect dark road regions with asphalt and regions with grass patches. For road
segmentation, seeds are selected in front of the vehicle and using propagating waves from these seeds,
connected road regions are segmented. Seeds for grass patch detection are selected by color-based
keypoint detectors. After these detections, every pixel in the BEV can be classified into lane markings,
roads, other surfaces, or unclassified.

3.1.2. LiDAR

A subset of LiDAR data containing points that lie inside a 3D region of interest (ROI) is selected.
Points on the road and on the edges of the road are classified using 3D gradients. The ROI is divided
into smaller patches in the XY plane, and the points belonging to each patch are examined for their
Z values. This helps to differentiate between road segments, curbs, dividers, vegetation, etc. using
the technique presented in [21]. Points with high reflectivity are also selected as they correspond to
the bright surfaces such as lane markings and railings. These are further classified into reliable lane
marking detections by combining their position with road regions. As a result of these detection steps,
every point in the ROI is classified with lane markings, roads, other surfaces, or unclassified.

3.2. Map Handling

OpenStreetMap (OSM) is used in this work as a GIS source. OSM provides nodes corresponding
to ways, grass patches, and railings, etc. However, finding relevant geometrical information in a
vehicle’s surroundings from maps involves two key components: location and orientation of the
vehicle [10]. Using location measurements, all of the relevant map nodes in the ROI are selected
and the map data is transformed into the vehicle’s ego-frame using the orientation of the vehicle.
The location estimate is provided by the GPS sensor, whereas the orientation estimate is given by
the on-board Inertial Measurement Unit (IMU). Once the map nodes are represented in ego frame, a
rule-based rendering algorithm is used to create a geometrical sub-map for the ROI. The number of
lanes, lane width (when available), location of road boundaries, boundaries of curbs, dividers, and
vegetation, etc. are used in the rendering process, producing an enriched geometrical model of the
environment from OSM. In works like [13,14], custom-made high-definition maps (HD maps) that
contain lane marking information and accurate road structure information are used. Even though the
exact location or type of lane markings are unavailable in OSM, assuming continuous lane markings
on the left side of the leftmost lane, right side of the rightmost lane, and dashed lane markings for
the lanes in the middle, approximate lane level information can be produced. In case of missing lane
width information, the standardized road construction guidelines of the country are used to render the
map. However, it is evident that errors in GPS positioning or orientation estimation can greatly affect
the accuracy of map data extraction and cause uncertainties in map rendering [10], especially for the
exact locations of lane markings.

3.3. Representation

To be able to deal with the features and geometries of different types and shapes, a 2D feature
grid (FG) is proposed as the model. FG consists of an array of cells where each cell ci represents
a 20×20×100 cm block in the real world. Four feature labels (LBs) are assigned to cells in the FG
according to the type of feature: (1) LBr—road, (2) LBl—lane marking, (3) LBo—other surfaces,
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(4) LBu—unclassified/unidentifiable. The blocks corresponding to each of the cells are examined for
the information they contain. The type of feature with the highest ratio inside a block is used to assign
the respective label to the cell. Each data source produces an FG following this criterion, as shown in
Figure 3.

(a) Left: LiDAR data in ROI. Middle: Detection
of road (red), lane markings (blue), other
surfaces (green), and unclassified points (black).
Right: Feature Grid from LiDAR

(b) From Left, 1—bird’s-eye view (BEV) image.
2—Output of road detection. 3—Output of lane
detection. 4—Feature grid from vision

(c) Left—Rendered OpenStreetMap (OSM) map
from official website. Middle—Available map
data in ROI. Right—Feature Grid from map

Figure 3. Example of modeling data from different sources using feature grid representation: cells with
road labels (red), cells with lane marking labels (blue), cells with other surface labels (green), cells with
unclassified labels (black).

Along with labels, it is important to model the confidence of data provided by each sensor.
The accuracy of LiDAR data decreases as the distance from the sensor to the measurement location
increases [22]. On the other hand, the Inverse Perspective Mapping (IPM) transformation used to create
the bird’s-eye view images from actual images increasingly introduces deformation as the distance
from the camera increases due to camera calibration errors. To account for these facts, a confidence
function is proposed, drawing inspiration from [18] for all relevant FGs. Using the concept of an
Inverse Distance Weighting (IDW) function presented in [23], the weights are computed as

wij = 1–
〈√

(x2
ij + y2

ij + h2
s

〉
min−max

, (1)

where wij is the weight associated with the cell Cij, xij and yij are the distances to the center of Cij from
the sensor position, and hs is the height of the sensor. The min–max normalization operator 〈x̂〉min−max
is defined as

x̂norm =
x̂− x̂min

x̂max − x̂min
.

Hence, the total representation of data from sources will have two components: the labels and
their importance, which is denoted by the weights. Other source-specific weighting functions using
homography of image transformations and LiDAR data acquisition models can also be used for this
purpose. However, data sources like maps use uniform weights for all the cells in their FGs due to the
fact that they are not measured but just extracted.

3.4. Integrity Analysis

The treatment of different sensors as multimodal data sources with a common frame of
representation and the same dimensionality allows us to use the definitions of integrity presented in
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the domain of data sciences. Integrity measures overall accuracy and consistency of data sources [24].
While accuracy is defined as the correctness of validated data, consistency refers to the measure of
coherence between them. Data sources with high consistency can be treated as reliable, and their
integrity can be expressed as a function of coherence with respect to other data sources.

Let S = {s1, s2, s3, · · · , sN} be the set of N sensors and siFG be the feature grid provided by each
sensor. One cell ck with feature label LBx from siFG is defined as consistent if there is at least one
matching cell with LBx in a 3×3 neighborhood around the cell ck in sjFG. By extension, a matching
operation fm between FGs is defined as

fm(siFG, sjFG) = Nsi FG
m /Nsi FG

T , (2)

where Nsi FG
m is the number of matching cells in siFG and Nsi FG

T is the total number of applicable cells
in siFG, i.e., cells with labels except LBu. After computing the matches between all of the possible
combinations, the integrity associated with a source is computed as

Wi =

∑
∀j, i 6=j

fm(siFG, sjFG)

∑
∀i,j i 6=j

fm(siFG, sjFG)
. (3)

3.5. Localization Optimization

The integrity analysis mentioned in Section 3.4 assumes that the localization of a vehicle is
accurately known, i.e., the localization information used in map extraction is reliable. But in real-world
applications, GPS positioning—even from an inertial/dead reckoning coupled GPS receiver—can
have errors due to multipath effects, outages, or drifts. Inherently, error in localization affects the
consistency of map data to the other sources, hence impacting the integrity of the whole system. Hence,
we developed a localization optimization procedure that uses semantic-level information from data
representations of sources. It can efficiently allow integrity assessment and also identify particular
defaults such as map offsets or inconsistent map sections.

In this work, a particle filter [25] is developed for map-matching to improve localization. The block
diagram for the localization optimization in the ego frame of the vehicle with decision criteria is given
in Algorithm 1. In the first step, new position and orientation measurements from GPS and IMU are
compared with the current best localization estimate. If the new measurements (xm : [xm, ym, θm]) are
not within the non-holonomic constraints of the current state (Xstate : [xstate, ystate, θstate]) of the vehicle,
they are detected as an outlier [26]. Conversely, consistent position and orientation measurements
are used to render a map from the database and the coherence between FGs of the map and other
sources is computed. If sufficient coherence is observed (greater matching than the empirically-derived
threshold for fm(siFG, sjFG) considering different sensors and scenarios), localization optimization is
not performed and the data representations from each source are used for integrity assessment. In case
of poor coherence between the combinations, a sequential localization optimization using particle
filters is performed. The transformation function t on map FG (MFG) used to maximize the coherence
between sources is defined as

t(MFG, x, y, θ) = R(θ) ∗ siFG + T(x, y), (4)

where R(θ) is the 2D rotation matrix constructed using θ and T is the 2D translation vector constructed
using x and y translations.

In the sequential localization optimization, coherence between the map (MFG) and each of the
other sources (siFG) is maximized in ego frame along the y direction (lateral) at first by iteratively
distributing particles around the best match localizations. The lateral offset estimation y∗ and the final
distribution of particles from this step is used for initializing the second particle filter, which maximizes
the match along the x (longitudinal) and θ (heading) dimensions. The resulting optimized localization
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(x∗, y∗, θ∗)si FG for each siFG is checked for consistency by thresholding the distance between them.
If they are not consistent, the coherence between all siFG is computed. An issue with the map structure
is identified if the coherence between other sources (other siFG combinations, e.g., LiDAR–vision)
is good but ] the localization optimization of these sources cannot produce consistent localizations
(within 2σ uncertainty bounds). If the localization estimations for each sensor combination are
consistent, the estimation that gives the best coherence is chosen and integrity assessment is carried
out. This estimation is also used to update the current localization estimation for the next time step.

Algorithm 1 Algorithm for localization optimization
Inputs: Localization: Xstate, GPS+IMU localization measurement: xm, FG of LiDAR: L, FG of Vision:
C, FG of Map: M, Minimum coherence limit: limit
if Xstate and xm are consistent then

if fm(L, M) > limit and fm(C, M) > limit then
Output: Integrity markers
Update Xstate

else
Compute:
y∗L = arg max

y
( fm(L, t(M, 0, y, 0)))

y∗C = arg max
y

( fm(C, t(M, 0, y, 0)))
(x∗L, θ∗L) = arg max

x,θ
( fm(L, t(M, x, y∗L, θ)))

(x∗C, θ∗C) = arg max
x,θ

(
fm(C, t(M, x, y∗C, θ))

)
if (x, y, θ)∗L and (x, y, θ)∗C are consistent then

Output Integrity values
Update Xstate

else
if fm(L, C) > limit then

Output: Integrity markers
else

Output: Error in map
end if

end if
end if

else
Output: Error in GPS

end if

4. Experiments and Discussions

Experiments are conducted with scenarios available in the KITTI benchmark suite [27] to establish
proof of concept. Real-Time Kinematic (RTK) GPS fixes in these datasets are added with noise
generated using the GPS-noise simulation model proposed by [28] to simulate poor GPS localization
fixes. Outliers that are higher than the 2σ variance of the GPS-noise simulation model are used to
replace RTK GPS fixes at random sections of the trajectory. Finally, 5% of the RTK GPS fixes are
randomly removed from the trajectory to emulate GPS outages as they may occur in generic GPS
receivers. Since different data sources have different spatial ranges, a 3D region of interest (ROI) in
the vehicle’s ego frame is established. its limits in XY plane are chosen as 25 m in front of the vehicle
(positive X axis), 15 meters behind (negative X axis), and 15 m at each side (Y axis). Since vision cannot
provide data in the back of the vehicle as well as to the front bumper of the vehicle, the ROI of vision is
limited from 3.5 m to 25 m along the positive X axis.

Even though the vision data used in this work does not cover the back view of the vehicle,
the other two major sources—LiDAR and map—can provide information in the back of vehicle,
hence justifying the choice of the limit in negative X axis.
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The discussion on the results has three parts. Firstly, comparing the performance of the proposed
method to the method in [18]. This includes a comparison of integrity markers in the datasets presented
in [18] and showcasing the improvements provided by the new method in handling fault and feasibility
predictors (FPs) produced by the previous method. FPs are the markers generated when the fitting of
the common model to the data sources is not possible or feasible. These markers suggest the limitations
of the method in [18], which mainly arise when the method is applied on non-highway scenarios.
The set of five FP markers defined is

• FPm: Not enough nodes in the map for model fitting;
• FPv: Not enough lane markings for model fitting;
• FPg: GPS measurement is not available or an outlier;
• FPs: Vehicle not moving or moving very slowly;
• FPt: Vehicle performing a hard turn.

The second part of this discussion considers more datasets in semi-urban and urban scenarios
to evaluate the integrity estimation of sources in complex situations such as junctions, road splits,
and merges, etc. In the final part, we compute classical integrity markers from our framework and
compare them with values presented in [3].

4.1. Integrity Marker Comparison

In this section, we compare the results presented in [18] with the results obtained from the new
method. The key difference between these two methods is the parameter they use for the integrity
computation. The former uses the error observed in model fitting to evaluate integrity, whereas the
latter uses coherence between data representations to achieve the same. Hence, the contribution of
error by each sensor and the contribution of coherence by each sensor are used for this analysis of the
results of these methods, respectively. The same errors are introduced in the GPS for each algorithm,
and the results obtained from the dataset 2011_09_26_drive_0029 are shown in Figure 4.

The primary advantage of the proposed method is the ability to evaluate the integrity in conditions
where FPs are produced due to the limitations of the model-based integrity analysis employed in [18].
The stopping of the vehicle between frame numbers 187 and 265 and a hard left turn at the junction
from 265 to 330 cause poor model extraction using the previous method, resulting in an unusable
integrity evaluation. Consistent coherence is observed during the same scenario as shown in Figure 4b
using the new method, providing meaningful integrity estimation. Figure 5a shows an example frame
(207) in this section, where polynomial model estimation fails to represent data from sources. On the
other hand, the FGs are able to represent the scenario well. After frame 330, the vehicle enters a curved
link road with challenging light conditions such as shadows and oversaturated road sections, as shown
in Figure 5b, causing large model-fitting errors in vision, shown in Figure 4a. Though a decrease in the
coherence is observed, the addition of LiDAR and introduction of new features helps the new method
provide more consistent integrity markers.
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stop turn poor vision

(a) Error from each sensor used in dataset
2011_09_26_drive_0029 using the previous
method. Red: GPS error; Green: Map error;
Blue: Vision error; Green dotted lines: FPm;
Blue dotted lines: FPv; Light brown: FPs;
Light blue: FPt

stop turn poor vision

(b) Coherence observed for each sensor used
in dataset 2011_09_26_drive_0029 using new
method. Red: LiDAR; Green: Map; Blue:
Vision
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(c) Integrity Markers for dataset 2011_09_26_drive_0029
using the new method. Red: LiDAR; Green: Map; Blue:
Vision

Figure 4. Comparison results of dataset 2011_09_26_drive _0029.

(a) Scenario at frame no. 207 (b) Scenario at frame no. 375

Figure 5. Specific scenarios from dataset 2011_09_26_drive_ 0029. Top left: view of the scenario; bottom
left: model fitting; left inset: lane-marking detections; top-right: feature grid (FG) of LiDAR; middle
right: FG of vision; bottom right: FG of map.

In Figure 6, the results of integrity assessment in a highway scenario are presented, where the
old method reliably performed. The FPm instances observed in this dataset are due to the lack of map
nodes to reliably fit the polynomial model in straight line road sections. In the new method, the model
fitting is replaced with FG data representation, which eliminates such errors in modeling.
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(a) Error from each sensor used in dataset
2011_09_26_drive_0028 using the previous method.
Red: GPS error; Green: Map error; Blue: Vision
error; Green dotted lines: FPm; Blue dotted lines:
FPv; Light brown: FPs; Light blue: FPt
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(b) Coherence observed for each sensor used
in dataset 2011_09_26_drive_0028 using the
new method. Red: LiDAR; Green: Map; Blue:
Vision
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(c) Integrity Markers for dataset 2011_09_26 drive_0028
using the new method. Red: LiDAR; Green: Map; Blue:
Vision

Figure 6. Comparison results of dataset 2011_09_26_drive _0028.

The comparison of integrity markers in specific cases presented in [18] with the integrity markers
provided by the new method is given in Table 1. A general tendency of improved integrity values is
observed across all datasets and scenarios. For example, in the second row of Table 1, the integrity
weight of vision computed using the old method was lower due to the improper detection of curved
lane markings as straight lane markings. This resulted in an inconsistent polynomial model compared
to the other two data sources, causing a low integrity weight of 0.175. But using the new method,
drivable road detection along with surrounding structure detection improved the consistency of vision
data with other sources, resulting in a higher integrity value of 0.612. The proposed method is proven
to be able to handle every situation where FP was provided by the old method. In the first row of
Table 1, the lack of sufficient map nodes on a straight road segment made model-based integrity
estimation impossible, as confirmed by the FPm flag. The new approach enables integrity estimation
and provides an integrity weight of 0.422. It is worth noting that a high integrity value is not observed
because of poor map rendering due to lack of correct lane width information from the map. Incorrect
road segment selection from the map does not affect the new method as it uses all of the neighborhood
roads in integrity estimation.

Table 1. Results obtained using the proposed method and the method presented in [18].

Dataset–Frames Integrity [18] Integrity (Ours) Situation

Dataset 1–150 FPm map-0.422 not enough nodes from the map
Dataset 1–21 vision-0.175 vision-0.612 no good quality lane markings

Dataset 2–390 map-0.087 map-0.374 road with multiple curvatures
Dataset 3–562 FPv vision-0.573 partial occulusion in vision due to vehicles

Dataset 3–1117 map-0.006 map-0.381 wrong map extraction
Dataset 4-22 vision-0.214 vision-0.681 road with multiple curvatures
Dataset 4-260 vision-0.651 vision-0.629 highway road with single curvature



Sensors 2020, 20, 4654 12 of 16

4.2. Complex Situations

This section is dedicated to analyzing the behavior of the integrity assessment system in some of
the selected complex scenarios present in the KITTI dataset. In Figure 7a, an example of a semi-urban
road junction is shown. Due to the lack of information from the map, the rendering process failed
to reconstruct the continuity of lanes at the intersections. On the other hand, vision and LiDAR data
detected all of the branch roads at the junction and managed to perceive the width of each of these
road sections accurately. This results in a lower integrity value for the map at this junction (Frame
numbers: 310–320) compared to other sources, as shown in Figure 4c.

One of the main reasons behind the proposed data representation is the fact that it is an
improvement over other existing geometrical models for intersections, which fail to accommodate
partially correct data. Figure 7b shows a partial road detection from LiDAR due to the difference in
elevation of one of the road branches in the scenario. Even though data available from LiDAR is not
complete, the part that is detected is coherent with both vision and map. In fact, LiDAR has more
integrity than vision in the comparison, not only because of its coherence in road detections, but also,
the available grass-patch detection compensates the partial road detection. The integrity values in this
scenario (Frame numbers: 120–200, dataset 2011_09_26_drive_0011) are computed around 0.456, 0.349,
and 0.165 for LiDAR, vision, and map, respectively.

(a) Multilane junction from dataset
2011_09_26_ drive_0029.

(b) Partially consistent data from a junction
from dataset 2011_09_26_drive _0011.

Figure 7. Examples of complex scenarios—cells with road labels(red), lane marking labels (blue), other
surface labels (green), unclassified labels(black).

4.3. Performance of Integrity Monitoring

To evaluate and compare the proposed integrity framework to the integrity concepts transposed
from civil aviation concepts, the Horizontal Protection Level (HPL) is computed. According to [29],
the HPL is the radius of a circle in the horizontal plane that describes the region assured to contain
the indicated horizontal position. It is the statistical bound for horizontal position error with a
confidence level derived from the integrity risk requirement of an application. We also compute
the Lateral Protection Level (LatPL) and Longitudinal Protection Level (LonPL), as proposed in [3].
The illustration given in Figure 8 shows the geometrical interpretations of these protection levels
with respect to the ego frame of the vehicle and feature grids. Extending these concepts, we use
the final distribution of the particles from the localization optimization particle filter described in
Section 3.5 to compute LatPL, LonPL, and HPL. The lateral and longitudinal positions of all the
particles that belong to the 95th percentile of the coherence matching scores are modeled using
a Gaussian distribution. LatPL, LonPL, and HPL are then computed using the average standard
deviation of particle distributions from each sensor combination used to optimize localization as

LatPL = 2
√(

σ2
CY + σ2

LY
)

/2, (5)
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LonPL = 2
√(

σ2
CX + σ2

LX
)

/2, (6)

HPL = 2
√(

σ2
CX + σ2

CY + σ2
LX + σ2

LY
)

/4, (7)

where σ2
CX and σ2

CY are the lateral and longitudinal variances of particles from the vision-map
optimization result and σ2

LX and σ2
LY are the lateral and longitudinal variances of particles from

the LiDAR-map optimization result.

Lateral
Protection Level 

Horizontal 
Protection Level 

Longitudinal 
Protection Level 

x

y

Feature Grid 

Figure 8. Illustration of protection levels for the localization of ground vehicles.

The results obtained from the HPL evaluation of two of the datasets presented in Section 4.1 are
shown in Figure 9. Using historical HPL data available from hte European Global Navigation Satellite
System Agency [30], the average value of the HPL over the last 5 years (from 01-2015 to 07-2020) for the
nearest zone (Zurich) to the dataset location (Karslruhe) is calculated as 8.1 m. According to the total
integrity levels and allocation of integrity risks derived in [3], [LatPL, LonPL] of the perception block
is computed as [2.85 m, 7 m] for highway scenarios and [1.45 m, 1.45 m] for non-highway scenarios.
The results of this comparison are shown in Figure 9. In highway scenarios, the LatPL computed
using our method is completely within the LatPL limit derived by [3], whereas in urban scenarios,
91% of the time, LatPL from our method is under the limit. On the other hand, the HPL computed
using our method shows good coherence with the historical HPL calculated using [30]. However, the
LonPL computations are, most of the time and in both scenarios, outside the limit of LonPL derived
by [3]. This is due to the fact that the sensors considered in this work are better at providing lateral
information ([3]) than longitudinal information. This is evident from the highway scenario in Figure 9a,
where the road is straight without any other significant information to bound the sensor data in the
longitudinal direction. In Figure 9b, sections where the LonPL computed from our method is closer to
the LonPL limit of 1.45 m contain curved road sections or other distinguishable surfaces, which helps
to reduce LonPL considerably. Hence, the results presented in this section demonstrate the capability
of the proposed method to assess the integrity of perception sensors in localizing vehicles with the
accuracy required for urban and highway navigation.
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(a) Horizontal Protection Level (HPL) evaluation result of dataset 2011_09_26_drive_0028
(highway scenario)

(b) HPL evaluation result of dataset 2011_09_26_drive_0029 (urban scenario)

Figure 9. Horizontal Protection Level (HPL) comparison.

5. Conclusions

This work presents a framework for integrity monitoring of sources used in the localization of
autonomous vehicles. The limitations of common geometrical models in representing multimodal data
sources are identified in this work. To overcome these issues, a semantic feature grid model is proposed
that can geometrically represent different features using labels. A function for coherence evaluation
between feature grids is formalized to iteratively optimize the localization as well as to assess the
integrity of data sources. The framework is tested using different scenarios from datasets, and the
results show the versatility of the proposed model, which is able to provide reliable and consistent
integrity estimation in highway as well as semi-urban and urban environments. This method is proven
robust against inconsistencies in feature detections such as partial detections, occlusions, and poor
map rendering. The method presented claims scalability since it can be implemented with any number
of sensors and digital map sources. The only requirement for the applicability of this framework is the
ability to detect common features from all of the data sources and represent them geometrically in the
proposed feature grid representations. This work also illustrates how classical integrity markers like
protection levels can be transposed for perception data sources used in autonomous vehicles.

6. Future Works

The rule-based map rendering technique used in this method is observed to be contributing several
inconsistencies, which makes it difficult to isolate map rendering errors from GPS positioning errors.
We propose the use of high-definition maps, which are enriched with globally localized lane-level
information, to address this issue. Accurate maps will improve the coherence estimation between
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features detected from other data sources such as stop lines, pedestrian crossings, lane merging
information, road structure information, etc. It will also be important to study map-rendering
techniques that improve integrity multi-source perception analysis by including precise building
footprints, road width information, lane markings, and traffic sign localization.
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