
sensors

Article

The CMOS Highly Linear Current Amplifier with
Current Controlled Gain for Sensor
Measurement Applications

Roman Prokop 1,* , Roman Sotner 2 and Vilem Kledrowetz 1

1 Department of Microelectronics, Brno University of Technology (BUT), Technicka 3058/10,
61600 Brno, Czech Republic; kledrowetz@vutbr.cz

2 Department of Radio Electronics, Brno University of Technology (BUT), Technicka 3082/12,
61600 Brno, Czech Republic; sotner@feec.vutbr.cz

* Correspondence: prokopr@vutbr.cz; Tel.: +420-541-146-350

Received: 8 July 2020; Accepted: 16 August 2020; Published: 18 August 2020
����������
�������

Abstract: This paper introduces a new current-controlled current-amplifier suitable for precise
measurement applications. This amplifier was developed with strong emphasis on linearity leading
to low total harmonic distortion (THD) of the output signal, and on linearity of the gain control.
The presented circuit is characterized by low input and high output impedances. Current consumption
is significantly smaller than with conventional quadratic current multipliers and is comparable in
order to the maximum processed input current, which is ±200 µA. This circuit is supposed to be used
in many sensor applications, as well as a precise current multiplier for general analog current signal
processing. The presented amplifier (current multiplier) was designed by an uncommon topology
based on linear sub-blocks using MOS transistors working in their linear region. The described
circuit was designed and fabricated in a C035 I3T25 0.35-µm ON Semiconductor process because
of the demand of the intended application for higher supply voltage. Nevertheless, the topology is
suitable also for modern smaller CMOS technologies and lower supply voltages. The performance
of the circuit was verified by laboratory measurement with parameters comparable to the Cadence
simulation results and presented here.

Keywords: current amplifier; current controlled gain; accuracy; linearity; CMOS; electronic control;
sensor signal processing

1. Introduction

The adjustable current amplifiers [1,2] have significant application over many electronic circuits
and systems. Several interesting solutions have been introduced during the last decades as shown
in comparison Table 1. The development of these devices goes in parallel with development of
so-called current conveyors (CC) and their adjustable features [2]. The first attempts were evaluated in
works [3,4] as parts of CCs (partial two-port transfer available by the device). Both cases implement a
ratio of two bias currents for current gain adjustment. This way of adjustment is used very often also in
further solutions. More advanced devices were proposed in [5–20] for example. They offer interesting
features discussed in detail in Table 1 Work [8] presents current amplifier feature allowing gain setting
by ratio of resistors (no electronic adjustment is shown). However, this concept of current gain setting
(unfortunately of the fixed value) is also possible. This can be extended to adjustable control through
the replacement of passive element (appropriate replacement is a digital potentiometer or linear
operational transconductance amplifier). Many concepts intend digital adjustment of the current
gain [5], [14–17] that is useful for direct cooperation with microprocessors. However, continuous
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adjustment of the gain is more beneficial for many applications (smooth tuning of filters or automatic
amplitude stabilization in oscillators [18]).

Table 1 shows that the majority of solutions is based on bipolar junction transistors, exploiting
the benefit of exponential characteristics specially in the accurate current multipliers discussed below.
These bipolar topologies meet well the requirements for the exact functionality, good dynamic range
and speed (commonly in tens of MHz and more), but at the cost of a large area and current
consumption (standardly not mentioned), which is no longer acceptable in the small CMOS
technologies [3,4,7,9–12,16,17]. A large number of previous concepts (CMOS especially) was not
tested experimentally, mostly just simple simulation results are shown (without modeling of real effects
in many cases) [5–8,10,11,13–15,17]. Very high input impedance (DC resistive component) as well as
low output impedance indicate significant drawback of many previous solutions. Special cases are
the solutions presented in [7,15]. However, the adjustability of any parameter, but especially the gain,
can be often welcomed for electronic tuning of applications in many cases [12,13,16,17]. The output
impedance of current output circuits is the most significant issue because of the parasitic behavior
occurring in high-impedance nodes of applications (typically in active filters [9]). We can see that
situation of state-of-the-art is insufficient in many BJT-based cases [9,11,15,17]. The CMOS-based
topologies have significantly better output features, see [21,22]. Work presented by Esparza-Alfaro [21]
demonstrates a concept using two CCs and resistor feedback for current gain setting.

The current-mode multipliers are important for our discussion due to similarity of newly proposed
concept also using principle of two-quadrant multiplier. Comprehensive comparison [28–68] in Table 2
indicates missing details and incomplete topologies for full implementation in current multiplication
or amplification because structures are not designed as fully symmetrical form. They operate with
intentional superposition of DC component or principal topology, not including all important parts,
in order to obtain behavior required in this work. However, many works [31,33,47,60,67,68] use single
or two partial active devices (specified types of current conveyors) in design of current-mode multipliers
and fully symmetrical operation (processing of both signal polarities) is easily possible in this form.
Usage of OTA-based structures seems to be also very interesting in these nonlinear designs [32,39,44].
It offers building blocks for many nonlinear functions [69]. Logarithmic-domain-based structures
are also known in reported concepts [32]. Also, concepts combining conveyors and operational
transconductance amplifiers are known [34,64]. There are many possible design approaches exist.
However, each of them can be used differently for various purposes and requirements on resulting
circuit and application.
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Table 1. Comparison of features of adjustable current amplifiers or active devices including transfer response of adjustable current amplifier reported in recent works.

Reference Year of
Publication

Adjustment
(Analog, Dig.,

Res., Feedback)

Bandwidth
[MHz]

Tested Current
Gain Range [–]

Input
Linearity

Range [µA]

The Highest
DC Input

Resistance [Ω]

The Lowest DC
Output

Resistance [MΩ]

Power
Consumption

[mW]

THD
[%] Technology

Fabricated and
Tested

Experimentally

[3] 1988 A 30 0→30 N/A N/A N/A N/A N/A BJT Yes
[4] 1994 A 175 0.1→10 N/A N/A N/A N/A <1.9 BJT Yes
[5] 2002 D <100 0.12→1 N/A N/A N/A N/A N/A CMOS AMI (1.2 µm) No

[6] 2006 A <100 1→3 ±50 46 73 6.6 <2.5 CMOS TSMC
(0.35 µm) No

[7] 2008 A <100 0.5→1 N/A 27000 0.175 N/A N/A BJT No
[8] 2009 A <10 0→20 N/A <50 <31 N/A N/A CMOS (0.35 µm) No
[9] 2010 A <100 0.25→1 ±5000 11 0.055 N/A <0.6 BJT Yes
[10] 2010 A N/A N/A N/A N/A N/A 3.5 N/A BJT No
[11] 2012 A <200 0.1→10 N/A 70 0.014 5.9 N/A BJT No

[12] * 2012 A <100 0.1→8 ±5000 adjust 0.055 N/A <5 BJT Yes

[13] * 2012 A <40 0.5→3.5 ±300 adjust 0.300 N/A N/A BJT + CMOS
(ON 0.5 µm) No

[14] 2013 D <100 0.02→64 N/A N/A N/A 0.5 <0.15 CMOS (0.18 µm) No
[15]* 2013 [17] 2016 D <300 0.8→8 ±300 5 0.1 10 N/A CMOS ON (0.35 µm) Yes

[18]* 2014 A <25 0.36→3.61 ±200 700 0.044 8.5 N/A CMOS TSMC
(0.18 µm) No

[19]* 2017 A <20 0→3.5 ±1000 adjust 0.5 N/A N/A BJT Yes
[20]* 2018 A <70 0→1 ±1400 adjust 0.055 N/A N/A BJT No

[21,22] 2014 R <1 1→16 N/A 50 10 0.28 <1 0.5 µm Yes

[23] 2017 A <68 1→23 N/A 624 0.060 1.73 5.9 CMOS TSMC
(0.18 µm) No

[24] 2019 R <10 2.4→9.4 N/A 105 0.301 0.88 N/A CMOS TSMC
(0.25 µm) No

[25] 2017 A <300 0.1→6.3 ±15 N/A N/A < 3 <1.8 CMOS (0.35 µm) No
[26], 2006 [27] 2015 F <500 N/A ±60 1 N/A N/A N/A CMOS (0.8 µm) No Yes

Prop. 2020 A <0.5 0.00→1.7 ±200 1.4 3.3 3.6 <0.35 CMOS ON (0.35 µm) Yes

*—Prior work of some of the authors.
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Table 2. Comparison of recent current-mode multipliers.

Reference
Year of

Publication

No. of
Quadrants

Approximately
Declared (Shown)
Processed Input

Levels [µA]

Ready for Immediate
Practical Implementation
without Additional Parts

Bandwidth
[MHz]

Maximal
THD [%]

Input
Linearity
Error [%]

The Highest
DC Input

Resistance [Ω]

The Lowest
DC Output
Resistance

[MΩ]

Power
Consumption

[mW]

Technology
(or Model)

Fabricated
and Tested

Experimentally

[28] 2000 4 ±20 No 23 1.5 1.2 7000 N/A 0.93 CMOS 4007 Yes
[29] 1991 4 0–100 Yes N/A N/A N/A N/A N/A N/A SPICE3C1 No

[30] 2009 4 ±10 No 45 1.8 1.2 N/A N/A 0.24 0.35 µm std.
CMOS No

[31] 2009 4 ±200 No 3 N/A N/A N/A N/A N/A
SPICE BJT
2N2222+
+2N2907

No

[32] 2008 4 ±10 No N/A N/A N/A N/A N/A N/A SPICE BJT No
[33] 2008 2/4 ±60 Yes 114 5 N/A N/A N/A 3.8 AD844 + BJT Yes
[34] 2007 4 ±150 Yes 26 5.6 N/A N/A N/A 1.4 BJT AT&T No
[35] 2006 4 ±200 No 154 4 0.8 N/A N/A N/A 0.25 µm CMOS No
[36] 2005 4 ±0.25 No 0.2 0.9 5 N/A N/A 0.006 0.35 µm CMOS Yes
[37] 2004 4 ±60 No 31 4.5 N/A N/A N/A 0.72 0.25 µm CMOS No

[38] 2004 4 ±25 No N/A 0.5 0.4 N/A N/A N/A 2 µm MIETEC
CMOS No

[39] 2003 4 ±1000 Yes 160 0.25 N/A N/A N/A N/A BJT 2N3904
2N3906 No

[40] 2002 4 ±200 No 11 2 N/A 416 N/A N/A 2 µm MOSIS
SCNA No

[41] 2001 4 ±30 No N/A N/A 5 N/A N/A N/A 0.5 µm CMOS Yes
[42] 2001 4 ±50 Yes 33 N/A 0.9 N/A N/A 0.6 0.5 µm CMOS No

[43] 1999 2/4 0–200 No 16 0.9 N/A N/A N/A N/A 0.7 µm MIETEC
CMOS No

[44] 2019 4 ±0.02 No 0.16 3 N/A N/A N/A N/A 0.35 µm AMS
CMOS No

[45] 2019 4 ±0.5 No 0.1 N/A N/A N/A N/A 0.018 0.18 µm
standard CMOS No

[46] 2019 4 ±0.2 No 3.5 6 N/A N/A N/A 0.0005 0.065 µm std.
CMOS No

[47] 2018 4 ±100 Yes 31 N/A N/A N/A N/A N/A 0.5 µm CMOS No
[48] 2018 4 ±10 Yes 460 1.2 N/A N/A N/A 0.8 0.18 µm CMOS No
[49] 2017 4 ±20 No 33 2.0 N/A N/A N/A 0.6 0.18 µm CMOS No

[50] 2016 4 ±10 0–200 No 75, 493 N/A N/A N/A N/A 0.15 0.18 + 0.8 µm
CMOS No

[51] 2016 4 ±10 No 493 N/A N/A N/A N/A 0.15 0.18 µm CMOS No

[52] 2016 4 ±20 No 840 6 N/A 7200 N/A 0.09 0.18 µm std.
CMOS No

[53] 2015 4 ±10 No 1320 1.1 1.0 N/A N/A 0.09 0.25 µm CMOS No
[54] 2015 1 0–10 No N/A N/A N/A N/A N/A 0.32 0.18 µm CMOS No

[55] 2015 4 ±10 No N/A N/A N/A N/A N/A N/A 0.35 µm
standard CMOS No
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Table 2. Cont.

Reference
Year of

Publication

No. of
Quadrants

Approximately
Declared (Shown)
Processed Input

Levels [µA]

Ready for Immediate
Practical Implementation
without Additional Parts

Bandwidth
[MHz]

Maximal
THD [%]

Input
Linearity
Error [%]

The Highest
DC Input

Resistance [Ω]

The Lowest
DC Output
Resistance

[MΩ]

Power
Consumption

[mW]

Technology (or
Model)

Fabricated
and Tested

Experimentally

[56] 2015 1 0–100 No N/A N/A 2 N/A N/A N/A 0.35 µm AMS
CMOS

[57] 2014 4 ±8 No 180 1.3 1.5 7600 N/A 0.025 0.18 µm TSMC
CMOS No

[58] 2014 1 0–20 No N/A N/A 0.013 N/A N/A N/A 0.18 µm CMOS No
[59] 2014 1 0–10 No 80 N/A 0.9 N/A N/A 0.075 0.18 µm CMOS No
[60] 2013 4 ±20 No N/A 2.5 3.5 N/A N/A 6.4 0.5 µm CMOS No

[61] 2013 2 ±25 No N/A N/A 0.3 N/A N/A 6.3 0.5 µm MIETEC
CMOS No

[62] 2012 4 unreadable No 31 2.6 N/A N/A N/A 0.21 0.18 µm CMOS No

[63] 2012 4 ±30 No 3 1.1 0.3 N/A N/A 0.0023 0.35 µm TSMC
CMOS No

[64] 2011 4 ±100 Yes N/A 4 N/A N/A N/A N/A BJT AT&T No
[65] 2011 2 ±25 No 3 0.2 N/A N/A N/A 2.0 0.5 µm CMOS Yes
[66] 2010 2 ±8 No 18 N/A N/A N/A N/A 0.13 0.5 µm CMOS Yes
[67] 2010 4 ±200 Yes N/A N/A N/A N/A N/A N/A BJT AT&T No
[68] 2009 4 ±150 Yes 53 4.3 N/A N/A N/A 1.8 BJT AT&T No

Prop 2020 2 ±200 Yes 0.5 0.35 5.4 1.4 3 3.6 ON I3T25/035
CMOS Yes
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Many works from Table 2 suffer from very limited input range of current (below 100 µA),
some solutions operate even in nA range that is really insufficient in many practical cases.
Despite extremely low power consumption, there are issues with noise and bandwidth limitations.
Advantages of the newly proposed solution include quite large input range of linearity ±200 µA
(in comparison with other works in Table 2), very low total harmonic distortion (THD) below 0.25%,
extremely low input resistance (below 2 Ω), very high output resistance (4 MΩ), and beneficial power
consumption. The linearity error is expressed as the ratio error between the maximum and minimum
value of the parameter obtained by derivation of the transfer function in the given linearity range
and was measured below 6% for the presented circuit. There are solutions having even lower power
requirements, unfortunately, there are costs (bandwidth, input range, DC accuracy, etc.) for such
benefit in corresponding works. Unfortunately, many detailed parameters of compared solutions
are unknown.

As the objective of this work, the precise highly linear current amplifier has been requested for
measurement applications handling current signal, conveniently in current sensor processing circuits,
especially for the smart sensor ASIC measurement solution. Currently, the main intended usage of the
circuit is an automatic gain control current amplifier for precise harmonic reference generator used in
Capacitive sensor measurement. The similar solution of the precise sinus reference source like in [70]
is assumed to be used and is just under development. While, the referenced circuit is based on the
digitally generated voltage reference signal with tunable low-pass filter, the new solution uses the
current reference generator, with fixed frequency filter, followed by the current amplifier with gain
controlled by the similar principle as is described in the paper [70]. Due to the demand of the supposed
capacitive measurement method, this amplifier was developed serving the very low THD as the main
parameter because of the assumed derivative signal processing, emphasizing any higher harmonic
components of the reference signal.

Furthermore, many modern sensor applications use a high-quality ADC for digitization of the
signal where any signal distortion during the analog pre-processing degrades the performance of
the ADC.

Generally, this type of circuit is especially suitable to realize tunable multi-output current-mode
generators as well, where good accuracy and low THD is also requested. Amplitude modulation of
the current signal is another tailor-made application for the presented circuit. However, the designed
amplifier prototype has been optimized for use in precise measurement applications processing high
current signals.

With respect to the intended application requirements an objective of the work was to develop
and design an adjustable accurate current amplifier for current sensor signal processing, and other
precise current measurement application, having fulfilled these features simultaneously:

(a) low total harmonic distortion of the processed current signal as the most considered parameter
(<1%)

(b) wide and linear input range (about ±200 µA)
(c) very low input resistance (<10 Ω)
(d) high output impedance (>1 MΩ)
(e) adjustability of current gain (theoretically 0–2)
(f) high linearity of the gain control for current gain B < 0.8
(g) acceptable power consumption (comparing to the process signal current) below 5 mW

2. Circuit Principle and Design

Considering all requirements, the idea of the classical quadratic current multiplier topology
was rejected mainly because of the high linearity (low THD) demand, simultaneously with wide
input range and lower current consumption. With an experience with design of linear or trans-linear
circuits using modular approach for compiling the convenient blocks we decided to build-up the
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current amplifier from a highly linear transimpedance stage, followed by the tunable transconductance
stage, both exploiting MOS transistors in their linear region. To meet the requirement of low input
impedance a feedback topology based on the differential Miller-OTA amplifier was used. Unfortunately,
this solution reduces the frequency bandwidth of the final circuit, but sufficient for many sensor
measurement applications. A principal topology of the presented circuit is shown in Figure 1.
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Figure 1. A principal topology of the current amplifier with tunable gain.

The operational amplifier structure at the input provides low impedance for input current I(in).
The input current is then copied to the output of the block. In fact, this input block works as a current
conveyor CCII. The conveyed input current is converted to two differential currents in differentiator
and lowered by factor 4 because of lowering current consumption and transistor area. All the procedure
is made by the high accuracy and high output impedance cascoded current mirrors. Differential
currents flow to the fixed impedances created by NMOS transistors. As obvious, playing with Vref

brings the other degree of freedom to set gain. As it can come with degradation of linearity for
unadvised large changes and is not necessary, it stays fixed in the presented design. Voltage signals
at the outputs of the transimpedance stage are then processed by the adjustable gm stage. All parts
have been designed with maximum respect to linearity and accuracy. Although, the transconductance
output stage gives its best THD parameter in the differential connection, therefore the differentiator
and differential transimpedance stage was used.

2.1. Input Stage and Transimpedance Stage in Detail

The target of this block is to provide low impedance current input and then transfer the input current
to defined impedance where it is converted to the voltage driving the following transconductance stage.

The main requirement for the transimpedance stage is to make this conversion as much linear as
possible but conveniently also dual to the transconductance stage in the sense of the total amplifier
gain stabilization with respect to manufacture and temperature corners. Considering utilization
of the NMOS transistor as the active component in the transconductance stage, it has been used
also here. As long as the main components of both stages have the same technology parameters
(mainly KPN = µN . COX) and temperature characteristics, the effect of corners is minimized.

The full principle turns around the generally known equation for MOS transistor working in the
linear region, mentioned in (1),

ID =
KPN.W

L

[
(VGS −VTH).VDS −

VDS
2

2

]
, (1)

from which, by solving the quadratic equation, we obtain,

VDS = (VGS −VTH) −

√(KPNW
L

)2
. (VGS −VTH)

2
− 2 KPNW

L . ID

KPNW
L

. (2)
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Derivation according to ID gives the RDS value of the MOS serving as the resistor,

dVDS
dID

= RDS =
1√(KPNW

L

)2
. (VGS −VTH)

2
− 2 KPNW

L . ID

. (3)

From Equation (3) there it is obvious that the RDS is dependent on the ID. For good linearity it is

necessary to keep 2. KPNW
L . ID much smaller than

[KPNW
L . (VGS −VTH)

]2
. Satisfying that condition

requires high VGS and low ID and brings linear MOS transistor resistance of the “ideal” value:

RDS =
1

KPNW
L . (VGS −VTH)

. (4)

Unfortunately, when reasonably high current is processed by this way then it is very difficult
to keep linearity under 10%. On the other hand, if the differential topology is used at the cell
output, the differential output voltage VPN = VZP − VZN corresponds to the sum of both linear MOS
resistances. However, when ID current increases through one of them, as a result of the input current
change, the second one decreases simultaneously. It suppresses the parasitic non-linear phenomenon
significantly. With respect to the developed presented topology the ID current in (3), flowing through
the linear transistors, is represented by some part of input current added to and/or subtracted from a
pre-biasing current respectively in the individual branches. Considering that the input current IIN is
reduced 4 times (lower consumption as well as the non-linearity effect) the differential transimpedance
exhibits value,

RTI =
1√(

KPNW
L

)2
. (VGS−VTH)2

− 2
KPNW

L . (IBIAS+
IIN

4 )

+ 1√(
KPNW

L

)2
. (VGS−VTH)2

− 2
KPNW

L . (IBIAS−
IIN

4 )

, (5)

with opposite effect of the parasitic part for each linear MOS resistance. The graphic solution of this
effect is presented in Figure 2.

Now there is seen that the non-linearity reduction depends on the ratio of the fixed part of the

equation
[KPNW

L . (VGS −VTH)
]2
− 2. KPNW

L . IBIAS and the input current dependent part 2. KPNW
L . IIN

4 .
The IBIAS current should be designed as small as possible to maximize the fixed part of the
transimpedance. In the presented circuit the IBIAS = 50 µA and then the appropriate currents
through each transistor vary in range (0 ÷ 100) µA.

The final schematic of the presented input transimpedance stage is shown in Figure 3. The low
input IIN impedance is satisfied by operational amplifier consisting of M1–M4, M59 with follower M19,
working in the unity feedback. M9 senses the input current change (as the difference of fixed current
of bias source M60, while M5 makes some small pre-bias due to linearity) and mirrors it by factor
1/4 to current sources M10, M11. While M11 sources the current directly to transimpedance transistor
M64, the second transimpedance transistor M63 is sourced by the complementary current. The output
differential voltage VPN is taken between the terminals ZP and ZN. The realized circuit differs only in
matters of ESD protection.

As the sensed input current has been decreased by factor 4 before it is applied to the transimpedance
transistors M63, M64, because of the linearity demand discussed above, then the same factor must be
included in the full circuit transimpedance gain equation. The differential output voltage of the whole
input transimpedance block is then ideally:

VPN =
1
4

RTI . IIN=̃
1
4

 2√(KPNW
L

)2
. (VGS −VTH)

2
− 2 KPNW

L . IBIAS

.IIN . (6)

The differential transimpedance gain of the realized circuit is calculated as RTIG = 2400 Ω.
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Figure 4a presents the simulated output voltages VZP and VZN together with differential output
voltage VPN as the functions of the input current IIN. Derivations of these voltages according to
input current, representing the transconductance gain of the whole block, are presented in Figure 4b.
The red dashed line represents the transconductance gain of the ZP output branch re-calculated to the
differential transconductance gain. Then, it corresponds to Figure 2, considering the factor 4. Due to
the differential topology the linearity error is decreased from approx. 28% at one transistor to 2.8% in
differential signal.Sensors 2020, 20,  9 of 23 
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2.2. Tunable Transconductance Stage

As the base topology for the transconductance stage the circuit presented and thoroughly discussed
in [71] has been used in its differential connection. This introduced topology was improved, compared to
the original version, in tunability, current output impedance and in linearity of the regulation as well.
All these improvements have led to the circuit introduced in Figure 5.
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Drain to source voltage VDS across these transistors must be kept low to stay in triode operation 
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respectively), which both work in their saturation region and draw a constant current. The feedback 
loop consisting of transistors M53, M52 and M47 (and M49, M48 and M46) keeps the voltage VDS of the 
main M72, M69 transistors constant when an input signal is applied [71]. Despite this topology there 
stays a parasitic effect of the small VDS variation (contemplating the branch of M72 for instance) caused 
by VGS shift of M47 due to the ID modulation. It corresponds to the M47 transconductance and is 
compensated by the feedback loop gain. In case of infinity feedback gain the error is zero. Inspecting 
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where rd is a dynamic impedance of the net of M52 drain and together with transconductance of that 
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The circuit operation consists of a differential connection of two transconducting transistors
M72, M69 working in their linear region. It means, they both work according to the Equation (1)
as well. From that equation can be seen that if VDS is kept constant then the drain current ID is
controlled just by VGS of the transistor with strongly linear dependence, called transconductance gm.
The transconductance is then adjusted by VDS as a parameter.

Drain to source voltage VDS across these transistors must be kept low to stay in triode
operation and is equal to the difference between the overdrive voltages of transistors M53, M52

(and M49, M48 respectively), which both work in their saturation region and draw a constant current.
The feedback loop consisting of transistors M53, M52 and M47 (and M49, M48 and M46) keeps the voltage
VDS of the main M72, M69 transistors constant when an input signal is applied [71]. Despite this topology
there stays a parasitic effect of the small VDS variation (contemplating the branch of M72 for instance)
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caused by VGS shift of M47 due to the ID modulation. It corresponds to the M47 transconductance and
is compensated by the feedback loop gain. In case of infinity feedback gain the error is zero. Inspecting
the real ∆VDS of M72, we get,

∆VDS(M72) =
∆ID(M72)

gm(M47) . AFBloop
=

KPN .W. VDS
L (M72) . ∆VGS(M72)√

2IDKPNW
L (M47) .

√
2IDKPNW

L (M52) . rd

, (7)

where rd is a dynamic impedance of the net of M52 drain and together with transconductance of that
transistor they define the feedback gain. As it should be kept high the lower currents and long channels
of the connected transistors are recommended.

In the presented case of the differential topology usage the equation for transconductance stage
output current is then as follows, assuming VINdiff is the differential input voltage of the stage,

IOUT =
(KPN .W. VDS

L

)
(M72)

. VINdi f f +

[(
KPN .W

L

)2
. VDS .

VINdi f f
2

2]
(M72)

gm(M47) . AFBloop
+

[(
KPN .W

L

)2
. VDS

2 .
VINdi f f

2

]
(M72)

gm(M47) . AFBloop
(8)
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Linearity error
with AFBloop = gm(M52). rd (and complementary about M49 in the opposite branch too) as the gain of
the closed feedback loop that regulates voltage across the main linear transistors as it is set by difference
of the M53 and M52 drain-to-source voltages. The respective rd is dynamic impedance of the nets where
drains of M52 (M49) are connected to and can be calculated as the parallel connection of all impedances
connected to that net. For the discussed case it can be expressed as the appropriate MOS transistors

output impedance combination like rd(M52) = rDS(M52) . rDS(M17) . rDS(M29)
rDS(M17) . rDS(M29)+rDS(M52) . rDS(M29)+rDS(M52) . rDS(M17) .

The deliberation of the Equation (8) gives us the recommendations for design to minimize the
linearity error. For the best linearity result we need to keep VGS of the M72, M69 high and their VDS

sufficiently low to keep these transistors in true linear region. Simultaneously the high gm of M47,
M46 is convenient as well as the feedback gain AFBloop.

In [71], just modifying the current through M52 (M49) causes the VDS of M72, (M69) change
and in this manner it allows to tune transconductance parameter gm of the circuit. Unfortunately,
the higher tunability needs a high range of the control current within which tuning nonlinearity comes.
The presented improved transconductance circuit changes both appropriate currents differentially,
through current sources consisting of M73, M74, M30, M29 (and M67, M68, M23, M24 in the opposite branch)
which increase/decrease the current in both transistors, setting the ∆VDS across the main linear MOS.
It brings high gm tuning range as well as linearity of the control with lower control current ICTRL

amplitude. Another improvement was done in the output stage to increase current output impedance
by cascoded mirror as well as input level-shifter adapting circuit to the more convenient input range
and setting the higher quiescent VGS of the M72, M69 to ensure the linear region.

3. Results

The introduced amplifier has been designed and thereafter fabricated by the Europractice project
in ON Semiconductor I3T25 process suitable for the intended application. Features of this circuit were
verified by experimental measurements and compared with the design simulations. The obtained
parameters, and simulation to measurement comparison, are given in this chapter.

3.1. DC Transfer Characteristics

As the basic test of functionality, input range and systematic input offset, the input to output transfer
function characteristic together with the input current asymmetry graph can be used conveniently.
Figure 6 shows the input and output currents simulated together in one graph for amplifier gain set to
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1 and systematic input offset for typical process. There is the limitation of the input current at ±200 µA,
due to the differentiator topology, clearly seen. For another process corner the value can be slightly
different. The systematic current input asymmetry, when IIN = 0, is typically 5.4 nA.
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Figure 6. Simulated DC transfer response; (a) Input and output currents for amplifier gain B = 1;
(b) Current input offset on input current dependence.

The same response simulated while the gain control current ICTRL is stepped from 0 to 20 µA with
step 2 µA, presented in Figure 7a, gives a hint by curves slope that the control of the gain is highly
linear up to ICTRL = 12 µA which represents a gain close to 1. Corner analysis across the process and
temperature range of (−20 ÷ +80)◦C, when current gain is typically set to B = 1, is shown in Figure 7b.
The tolerable gain dispersion in range ± 15% is achieved by using the same device type (NMOS) for
transimpedance and conductance operation simultaneously.
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respect to the input signal linearity if the gain is constant across the input current range and defines 
the linear input range. From the comparison there is seen that the investigated real device has a 
slightly smaller gain and input current range against the simulation, but both parameters are in the 
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The comparison of the simulated and measured results offers Figure 8. The graph on the left
compares DC transfer results of the real tested device with the theoretical characteristics. The right-side
graph introduces the gain value at different input currents. This provides information with respect to
the input signal linearity if the gain is constant across the input current range and defines the linear
input range. From the comparison there is seen that the investigated real device has a slightly smaller
gain and input current range against the simulation, but both parameters are in the scope of corners
and presumably correspond to the smaller internal bias current.
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Figure 8. Measured DC transfer response (a) Comparison of the simulated (red) and measured (black)
curves; (b) Measured gain across the input current range.

The graph of the gain control by ICTRL is displayed in Figure 9 where both simulated as well as
measured curves are given. Let us notice the excellent linearity up to ICTRL = 10 µA and good linearity
to ICTRL = 12.5 µA.

Sensors 2020, 20,  13 of 23 

 

Figure 8. Measured DC transfer response (a) Comparison of the simulated (red) and measured (black) 
curves; (b) Measured gain across the input current range. 

The graph of the gain control by ICTRL is displayed in Figure 9 where both simulated as well as 
measured curves are given. Let us notice the excellent linearity up to ICTRL = 10 µA and good linearity 
to ICTRL = 12.5 µA. 

 

 

(a) (b) 

Figure 9. Gain control characteristics (a) Typical Cadence simulation of the gain controlled by current 
ICTRL; (b) Simulation and measurement comparison. 

3.2. Input Signal Linearity and THD 

Linearity of the current transfer was the most important parameter considered during design of 
the amplifier and many other properties, namely frequency bandwidth, were sacrificed to that. The 
simulated input and output current sinus signal transient as well as the DFT analysis can be seen in 
Figure 10 for the case of input signal amplitude IIN = ± 200 µA and current gain B = 1. As the result 
the total harmonic distortion THD = 0.227% was calculated by this simulation. Linearity of the signal 
transfer taken from the simulated DC transfer characteristics for IIN = ± 200 µA (corresponding to 
Figure 6) and ICTRL from 10 µA to 20 µA was evaluated in the range of (1.17 ÷ 1.8)%. (As an informative 
result it can be mentioned that the Cadence simulation values of the transconductor stage itself, as the 
main tunable part, show the THDgm = approx. 16 m% for the small input signal [mV] and THDgm = 
approx. 0.25% for large input signals). 

Figure 9. Gain control characteristics (a) Typical Cadence simulation of the gain controlled by current
ICTRL; (b) Simulation and measurement comparison.



Sensors 2020, 20, 4653 14 of 23

3.2. Input Signal Linearity and THD

Linearity of the current transfer was the most important parameter considered during design
of the amplifier and many other properties, namely frequency bandwidth, were sacrificed to that.
The simulated input and output current sinus signal transient as well as the DFT analysis can be seen
in Figure 10 for the case of input signal amplitude IIN = ± 200 µA and current gain B = 1. As the
result the total harmonic distortion THD = 0.227% was calculated by this simulation. Linearity
of the signal transfer taken from the simulated DC transfer characteristics for IIN = ± 200 µA
(corresponding to Figure 6) and ICTRL from 10 µA to 20 µA was evaluated in the range of (1.17 ÷ 1.8)%.
(As an informative result it can be mentioned that the Cadence simulation values of the transconductor
stage itself, as the main tunable part, show the THDgm = approx. 16 m% for the small input signal
[mV] and THDgm = approx. 0.25% for large input signals).Sensors 2020, 20,  14 of 23 
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In addition to the simulation, DFT measurement was made to express the parameter in relation
to the input signal amplitude for two ICTRL currents (see Figure 11). Let us note that the maximum
designed and relevant peak-to-peak input range is IINmax[PK-PK] = 400 µA.
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3.3. Linearity of the Control and Control Input THD

Although, strict linearity is often not necessary for the controlled amplifiers, especially in the
case of automatic feedback regulation, in some sensor applications it can be beneficial, for example in
amplitude modulation processing or the current multipliers. Exploiting the results from Figure 9 we
could define the gain control linearity up to 10% for ICTRLmax = 12.5 µA (B = 1), as the maximum ICTRL

value considered during design.
The experimental use of the control current input as the signal input was simulated and obtained

results are presented in Figure 12. In this test the main input current was set to constant IIN = 100 µA
and control current ICTRL was driven by the harmonic signal from 0 to 12.5 µA (with the DC pre-bias of
6.25 µA). From the transient output response, the DC shift of the output signal can be seen, as well as
from the DFT results. Cadence evaluated value of THD = 3%.Sensors 2020, 20,  15 of 23 
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3.4. Frequency Response and Bandwidth

As was already mentioned earlier, the frequency bandwidth was sacrificed to other parameters of
the amplifier and the high bandwidth is often not the main request of sensor applications. Despite that,
the frequency response of the gain is presented (see Figure 13) comparing simulated and measured
results. The values of the frequency bandwidth for different gain will be given in the results overview
Table 3.
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Table 3. Amplifier properties summary.

Parameter Simulated (Nominal) Measured (Selected Prototype)

small-signal gain and AC transfer bandwidth (−3 dB)

B(i) for ICTRL = 1 µA 0.076 [–], −22.3 dB (0.69 MHz) 0.067 [–], −23.4 dB (0.46 MHz)
B(i) for ICTRL = 2.5 µA 0.189 [–], −14.5 dB (0.95 MHz) 0.169 [–], −15.5 dB (0.64 MHz)
B(i) for ICTRL = 7.5 µA 0.566 [–], −4.9 dB (1.24 MHz) 0.519 [–], −5.7 dB (0.83 MHz)
B(i) for ICTRL = 12.5 µA 0.994 [–], −0.05 dB (1.51 MHz) 0.912 [–], −0.8 dB (0.90 MHz)
B(i) for ICTRL = 17.5 µA 1.632 [–], 4.3 dB (2.89 MHz) 1.122 [–], 1.0 dB (0.94 MHz)
B(i) for ICTRL = 20.0 µA 2.405 [–], 7.6 dB (3.00 MHz) 1.73 [–], 4.76 dB (1.00 MHz)

BW for ICTRL = 1→20 µA 0.69→3.00 MHz 0.46→1.0 MHz

input DC dynamic range

for ICTRL= 1→20 µA −200→200 µA −190→180 µA

input signal distortion (full input signal range)

Linearity (ICTRL = 1→20 µA) 1.8% 6%
THD (ICTRL = 1→20 µA) 0.227% 0.35%

gain control input linearity (IIN = 100 µA)

Linearity (ICTRL = 1→12.5
µA) 10% N/A

THD (ICTRL = 1→12.5 µA) 3% N/A

input DC offset (IIN→0 A)

systematic (ICTRL = 1→20 µA) 5.4 nA→60 nA N/A
MC matching offset σ = 5.9 µA N/A

measured N/A 4→−7 µA

input/output impedances

Ri, (Li) 0.91 Ω (31 µH) 1.4 Ω (42 µH)
Ro, (Co) 8.8 MΩ (3.9 pF) 4 MΩ (14.1 pF]

consumption

IVDD (IOUT = −200, 0, +200
µA) 1.35 mA, 1.1 mA, 0.87 mA N/A *

Pd (for VDD = 3.3 V) 4.45 mW, 3.63 mW, 2.88 mW N/A *

* Could not be measured as the amplifier is a part of the prototype chip with common supply.

3.5. Input Current Offset

Due to the input offset is one of the important aspects for the circuits used in the measurement
applications, dealing with this item must be part of the analysis.
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Inspecting the results presented in Figure 6, there can be found out that systematic quiescent
input offset (for IIN = 0 A and B = 1) is equal to 5.4 nA, depending on the input signal amplitude it
goes typically up to +0.8 µA at the edge of the input current operating range. As usual, even more
important error is caused by the random offset, represented by the Monte Carlo matching analysis
shown in Figure 14. In the histogram graph there the standard deviation 1σ = 5.9 µA is seen.
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Figure 14. Monte Carlo input offset matching simulation.

Another type of the offset analysis was executed at the level of simulation and measurement too.
While input current is kept IIN = 0 A, the ICTRL was stepped in range (1 ÷ 20 µA) and the input current
asymmetry observed. Whereas optimistic “systematic” offset simulation gives the offset from 5.4 nA to
60 nA (matching effect should be added), the measured offset acquired by the test is in range (4 ÷ 7) µA.

3.6. Input and Output Impedance

Thanks to the used input stage topology the low input impedance represents an important
advantage of this cell. It significantly helps to build current mode application circuits without additional
errors or signal distortions. The compared simulation and measurement frequency responses of the
input impedance are provided in Figure 15. The input impedance is very low (~1 Ω) at low frequencies.
It started to increase above 10 kHz with still nice 18 Ω at 100 kHz. The also mentioned value of the serial
inductance Li (the model of the input impedance includes the resistive and inductive parts in series
with parallel connection of the input capacitance) gives us the information about the complex frequency
response of the input impedance. The cut-off frequency f0 = Ri

2πLi
defines the frequency where the

input impedance starts to increase significantly with inductive character. For the referred values of the
Ri, Li it can be calculated about 5 kHz as it is proved in Figure 15. The parallel capacitance causes the
input impedance decrease at high frequencies but above the bandwidth of the presented circuit.
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Also, the output impedance was determined with acceptable simulation to measurement difference.
The simulated ROUT = 8.8 MΩ for IOUT = 0 A (4 MΩ in measurement) with 3dB decline at about 5 kHz.
The DC output impedance is ROUT = 7.5 MΩ when 100 µA is sourced/sinked from the output.

3.7. Result Overview

The number of simulated and measured results confirms functionality of the designed circuit with
assumed parameters. The tolerable differences between simulation and measurement are in the scope
of the factory corner, given possibly by the uncertainty of the MOS transistor KP transconductance
parameter or, due to the nature of deviation, probably by the lower internal bias currents. Summary
of the experimented circuit properties are published in Table 3. The illustrative Cadence layout is
presented in Figure 16.
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4. Discussion

The careful circuit analysis confirms that the newly developed modular topology of the designed
tunable amplifier, working internally on the not very common fully linear principle, can be used with
very interesting results. The good accordance between simulation results and measurement speaks
about robustness of the introduced topology and of the whole design, as well. Acceptable deviations
of measurements from simulations (decreasing gain and input range slightly but always in technology
defined corners) are most likely caused by smaller internal bias against the ideal one. Moreover,
the experimental measurement is influenced by increasing terminal and nodal parasitic capacities of
ESD structures and PCB (approximately 10 pF), especially concerning the frequency response.

By observing the comparison Table 1, we can state that the presented circuit is almost the best
one between the referred adjustable amplifiers in the maximum THD parameter. Only [14] reports
lower harmonic distortion together with low power consumption, but with the digitally controlled
topology, undefined input current range and even with purely theoretical results. Although the THD
parameter is usually not the most important one for the amplifiers, it is reported only in limited number
of publications. It can be seen that the discussed circuit is very good in the input/output impedance
values and is at least well-comparable with other CMOS amplifiers regarding the input current range.
In contrast, the BJT solutions are invincible in the input range and frequency bandwidth. However,
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their input/output impedances make them often unusable in the current mode signal processing chain
for the precise measurement and their power consumption is not specified in the referred papers.

As could be expected in Table 2 comparing the current multipliers, much more references
can be found stating the value of harmonic distortion. From this group only two circuits report
slightly lower THD parameter than the presented one. The CMOS circuit from [65] also boasts the
slightly better bandwidth and power consumption but its input current range is significantly lower.
Furthermore, the terminal impedances are not reported. As the second one, the bipolar solution
from [39] simultaneously shows significantly higher input range and bandwidth. This bipolar circuit
was not realized and its impedances are not reported in the paper.

Even though the analyzed input offset is not really stunning, the presented circuit could be one of
the better ones between current mode circuits with respect to precision. Unfortunately, there is no
relevant comparison because most publications do not address this parameter. Furthermore, using an
ADC in the modern sensor applications allows to easily subtract the DC offset from the signal. In that
case the precise linearity is probably the most important parameter.

Despite the fact that this presented prototype was optimized especially for good linearity and
accuracy properties, with the modified design it can be conveniently used in a wide range of applications
from filters, precise generators to any signal processing where the signal multiplication is demanded.
Specially in comparison with usual quadratic or exponential multiplier topologies it is able to report
very good ratio of linear input range and power consumption.

The authors expect that the presented circuit is going to be beneficial in the field of sensor
measurement and it could bring a little bit different approach to design of the precise adjustable circuits.
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