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Abstract: Hyperspectral imaging (HSI) in the spectral range of 400-1000 nm was tested to differentiate
three different particle size fractions of milk powder. Partial least squares discriminant analysis
(PLS-DA) was performed to observe the relationship of spectral data and particle size information
for various samples of instant milk powder. The PLS-DA model on full wavelengths successfully
classified the three fractions of milk powder with a coefficient of prediction 0.943. Principal component
analysis (PCA) identified each of the milk powder fractions as separate clusters across the first two
principal components (PC; and PC;) and five characteristic wavelengths were recognised by the
loading plot of the first three principal components. Weighted regression coefficient (WRC) analysis
of the partial least squares model identified 11 important wavelengths. Simplified PLS-DA models
were developed from two sets of reduced wavelengths selected by PCA and WRC and showed better
performance with predictive correlation coefficients (Rp?) of 0.962 and 0.979, respectively, while
PLS-DA with complete spectrum had Ry,? of 0.943. Similarly, classification accuracy of PLS-DA was
improved to 92.2% for WRC based predictive model. Calculation time was also reduced to 2.1 and 2.8
s for PCA and WRC based simplified PLS-DA models in comparison to the complete spectrum model
that was taking 32.2 s on average to predict the classification of milk powder samples. These results
demonstrated that HSI with appropriate data analysis methods could become a potential analyser for
non-invasive testing of milk powder in the future.

Keywords: milk powder; hyperspectral imaging; principal component analysis; weighted regression
coefficients analysis

1. Introduction

Milk powder quality is complex as it is measured in terms of different quality attributes such
as milk powder appearance, taste, aroma, and its dissolution performance in water. These quality
attributes of milk powder depend on various physical (e.g., particle size distribution, bulk density)
and functional properties (e.g., wettability, sinkability, dispersibility, and solubility) of milk powder.
The physical properties determine the storage and transport properties of milk powder, and functional
properties describe how well the milk powder performs when recombined. Mostly, milk powder
quality is measured after the fact and offline using various quality tests which include quality test(s) for
measuring powder bulk density, powder flowability and dispersibility in water, etc. These quality tests
have inherent variability and lack numeric descriptors which makes milk powder quality quantification
challenging. Furthermore, this offline strategy of testing milk powder quality is not helpful to detect
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milk powder quality in real-time which is described as Process Analytical Technology (PAT) by the U.S.
Food and Drug Administration [1]. Consequently, manual offline quality testing of milk powder needs
to be replaced by machine vision for quality testing, which is relatively faster, has less variability, and
has numeric descriptors.

Process analysers such as hyperspectral imaging (HSI) may potentially be used for testing milk
powder quality and replacing existing manual quality tests because HSI is non-invasive, relatively
faster than manual quality tests, and it can test powder quality in terms of quantifiable numeric
descriptors. Hyperspectral imaging is popular because it combines the advantages of conventional
imaging and spectroscopy to achieve the benefits of both techniques. During HSI data acquisition
process, HSI instrument captures two-dimensional spatial (x, y) images at different wavelengths which
is also called the spectral (1) range. As a result, three-dimensional hypercube is obtained. Further
details of HSI image acquisition and hypercube analysis are given by Amigo [2]. It is worth mentioning
that imaging and spectroscopy are acknowledged techniques in the food industry. For example, in the
food industry, imaging is used for visual defect detection [3], and spectroscopy is used for compositional
analysis of food products and the identification of adulterants [4]. Hyperspectral imaging has been
previously used in the food industry and other applications such as remote sensing, airborne surveys,
astronomy, agriculture, biomedical, mineralogy, and pharmaceuticals [5]. In the food industry, HSI has
been used for qualitative assessment of products, for example, monitoring the freshness and quality of
meat [6], identifying the types and varieties of cereals [7], detecting defects in fruits and vegetables [8],
and exploring varieties of cheese and its quality [9].

The hypercube obtained after data acquisition needs appropriate multivariate data analysis tools
that can relate the hyperspectral data with milk powder quality attributes. Principal component
analysis (PCA), discriminant analysis (DA), and partial least square (PLS) regression are among the
common multivariate data analysis tools reported in the literature which can be used to explore the
relationship of spectral variation with the chemical/physical/functional properties [10,11]. Furthermore,
suitable data pre-processing techniques such as normalisation, de-noising, smoothing, filtering, and/or
taking derivatives of the spectra are required for preparing data sets for subsequent data analysis.

Hyperspectral imaging usually generates large data sets of information. Nevertheless, there
might be redundancy of information in the consecutive bands of HSI data. These highly correlated
wavelengths of similar information could affect the performance of multivariate data analysis [12].
Hyperspectral imaging data analysis can be utilised in real-world applications if vital wavelengths can
be identified. However, one struggles to find standard selection criteria for obtaining the important
wavelengths from the full spectrum. Several key wavelengths are usually recognised through more
than one strategy such as PCA [13], weighted regression coefficient (WRC) analysis [14], successive
projection algorithm (SPA) [15], uninformative variable elimination (UVE) [16], and stepwise regression
coefficient analysis [17]. This reduction in the number of selected wavelengths is called feature selection
in multivariate data analysis. Selected wavelengths are used to propose a reliable multispectral imaging
system that could represent the complete spectrum well. The accuracy and fast acquisition of the results
are important considerations for the development of real-time quality monitoring systems. On this
basis, the selection of reduced wavelengths is essential for reducing the amount of data acquisition and
processing for an HSI application.

In previous studies HSI has been used for detection of adulterants (such as, melamine, urea, etc.)
in milk powders [18-20]. Two important wavelengths 1447 nm and 1466 nm are reported to detect
melamine by spectral analysis. Melamine has low reflectance ability in the region 1450-1550 nm and
band ratio technique was used for the spectral analysis of milk powder and melamine [21]. Milk
powders of varying quality produced at different production locations were discriminated by HSI [22].
However, there is no reported example for identifying vital wavelengths for estimating the milk
powders quality attributes (either physical or functional properties) by HSI.

This paper aims to evaluate the potential of HSI techniques to facilitate the rapid testing of milk
powder. This article has three main specific objectives. The first objective was to develop a partial least
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squares discriminant analysis (PLS-DA) model to differentiate and classify milk powders according to
the varying size range of particles, because the published literature has shown that powder particle
size and particle size distribution are influential to functional performance (rehydration characteristics)
and quality of milk powder [23,24]. The second objective was to identify the important wavelengths
by PCA and WRC methods because data reduction to a manageable size is required for real-world
applications. The last objective was to develop simplified PLS-DA models with a reduced number
of wavelengths to classify the particle size fractions of milk powder which can be implemented for
real-time quality monitoring in the future.

2. Materials and Methods

2.1. Milk Powder Sample Preparation

Ten different batches of commercial grade milk powders of a locally manufactured brand were
purchased from the supermarket. A Retsch AS200 vibratory sieve shaker was used with two sieves of
180 pm and 355 pm aperture to segregate the milk powder into three discrete particle size fractions:
coarse particles fraction (labelled as ‘C’, having particle diameter larger than 355 um), medium particles
fraction (labelled as ‘M’, having particle diameter larger than 180 pm and smaller than 355 pm), and
fine particles fractions (labelled as ‘F’, having particle diameter smaller than 180 pm). Three sets of
each particle size fraction were prepared from a single batch and a total of 30 samples of each particle
fraction were used in further analysis.

A recombined sample of milk powder was prepared with 20% (wt./wt.) fines particle fraction,
60% (wt./wt.) medium particle fraction and 20% (wt./wt.) coarse particle fraction. This recombined
sample was used for visualisation of classification results only.

2.2. Hyperspectral Imaging Setup

In this study, we employed a Headwall Photonics Hyperspec™ VNIR HSI instrument. This
HSI instrument had a sensor covering VNIR (visible and near-infrared) wavelengths in the range
from 400-1000 nm. The HSI instrument consists of four basic components: a spectrograph, camera
(Schneider-Kreuznach Xenoplan 1.4/23), lamp, and transition stage. The camera captured spatial
images of samples that had pixels, and each pixel represented a spectrum through the images. The lamp
provided a lighting source, and the transition stage provided a moveable platform for placing samples
for the analysis. The HSI equipment was enclosed in a black box while analysing the samples to
minimise the impact of ambient light. Hyperspectral imaging analysis involves various steps involving
data acquisition, image calibration, spectra pre-processing, and data analysis [10]. A flowchart is
presented in Figure 1 that overviews these steps performed in this research.
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Figure 1. Flowchart of the key steps involved in hyperspectral imaging analysis.
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Reflectance calibration was performed on all the images recorded by the hyperspectral equipment.
A white reference image (W) was recorded from a standard Teflon tile provided by the manufacturer
as an accessory with the equipment. A dark image (D) was saved as a response of the camera in the
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absence of light. The corrected image (I) of each sample was obtained from the respective recorded
image (Iszmple) by Equation (1) and saved as a hypercube.

B Isample -D

W-D )

Three hyperspectral images of every sample of milk powder were recorded. Matlab R2018 (The
MathWorks Inc., Natick, MA, USA) with the PLS Toolbox (Eigenvector Research, Inc., Manson, WA,
USA) and the Unscrambler HSI (Camo Analytics AS, Oslo, Norway) were used for processing and
analysis of the hypercube generated by the HSI.

2.3. Data Pre-Processing

A square region of interest (ROI) with the same spatial resolution was manually selected for
all the images. The standard normal variance (SNV) [25] was used for spectral data normalisation
for each image of the milk powder sample. The HSI data was noisy when plotted as a function of
wavelength. The impact of different pre-processing methods on the milk powder spectrum is discussed
in a previous study [26]. Therefore, spectral smoothing was implemented by the Matlab function
smoothn developed by Garcia [27]. This method was preferred for accommodating multi-dimensional
data and providing robust smoothing of spectra generated by HSI. Earlier, Munir Wilson [22] reported
this pre-processing method for HSI data of milk powders of varying quality obtained from different
production locations. Average spectra of three discrete particle size fractions after preprocessing are
presented in Figure 2, and show clear offset.
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Figure 2. Average spectra of three different milk powder size fractions after pre-processing.

2.4. Multivariate Data Analysis

Partial Least Square Discriminant Analysis (PLS-DA)

Partial least square discriminant analysis (PLS-DA) is a supervised classification technique [28].
One group is assigned as variable 0 and a second group is assigned as variable 1. Prediction samples
either belonging to variable/group 0 or 1 are classified as respective groups [29]. However, in this
research there were three different particle size fractions of milk powder to be discriminated. We had
spectra of each HSI image as a predictor matrix X, which was a function of Y, a variable set of assigned
dummy values of 1, 2, 3 which were a respective reference to class C, M, and F. The parsimonious
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number of latent variables (LVs) from PLS analysis was determined by analysing the root mean square
error of cross-validation (RMSECV).

Validation of the model is an important step in any data analysis. It provides the comparison of
output provided by the model to the actual variable measured and has a significant impact on the
reliability of the model. The samples were divided into calibration and prediction sets. Each particle
size fraction had 30 samples prepared from 10 different batches. A total of 21 samples from seven
batches were kept for calibrating the model. Whereas nine samples from three batches were used in the
prediction models. A classification model was developed from the multi-pixel spectra extracted from
each hyperspectral image of the coarse, medium, and fine milk powder samples. However, PLS-DA
classification primarily performs regression between spectra and class membership [30]. Therefore,
the performance of the calibration model was estimated by the correlation coefficient (Rc?) and root
mean square error of calibration (RMSEC). Cross-validation of the calibration model was used for
internal validation of the model by the correlation coefficient of cross-validation (Rev?) and RMSECYV,
respectively. The prediction performance was also measured in terms of correlation coefficient of
prediction (sz) and root mean square error of prediction (RMSEP). For a good performance of the
model correlation coefficients terms were expected to be close to 0.9 while the root mean square error
terms should be close to zero [31]. Residual predictive deviation (RPD) was also calculated for the
model. This is the ratio of the standard deviation of the calibration set to the sum of prediction errors.
It is believed that a good model performance is associated with a high value of RPD. In general a
RPD value greater than three is acceptable [31,32]. Confusion matrices for the prediction of coarse,
medium, and fine particle fractions were also created. These confusion matrices show the true positive
prediction rate for each particle fraction. Accuracy, sensitivity, and specificity of the classification was
also determined from these confusion matrices.

Hyperspectral imaging data has the advantage of producing distribution maps for better
visualization over traditional spectroscopic techniques. Presence of fine particles has a significant
impact on the quality of the milk powder [33]. Therefore, chemical images and a distribution map
were produced by pixel spectra of milk powder sample and the regression coefficient of a model.

2.5. Wavelength Selection

Accuracy and speed are required for HSI application in industrial settings. It would be expedient
to use the big data generated from the HSI directly. However, data analysis based upon the full spectral
range of 400-1000 nm could be affected by the collinearity of the similar spectral information of the
consecutive wavebands. This high dimensionality of the HSI data has its impact on the computation
speed and it could make data processing a time-consuming step. However, the data acquisition and
its processing could be made more efficient and robust if optimum wavelengths that carry valuable
information were identified.

2.5.1. Principal Component Analysis (PCA)

Principal component analysis (PCA) is a well-known technique for dimension reduction in big
data systems. PCA gives an overview of the data set on a new axis called the principal components
(PCs). PCA extracts the systematic variation of data by projecting it into a new space across these
PCs [34]. This technique was applied to the spectral data of the samples of three milk powder fractions
from the seven batches assigned to calibration. It transformed the data in such a way that the projections
of the transformed data (termed as the principal components) exhibit maximal variance among three
fractions of milk powder. This data transformation was represented in the score plots of PCA. Three
PCs were retained that represented the 75% variance of the data.

Principal component analysis is also one of the most extensively used feature selection methods.
A band prioritisation method based on the PCA can be found in published domain of literature [13].
The loading plot represents the influence of wavelengths on the PCs. The influential wavelengths
were extracted from local minima or maxima of the retained PCs. A similar approach was used for
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identifying six key wavelengths for apple bruise detection from HSI [35]. Influential wavelengths by
three PC loadings were recognised to classify plastic and cotton using HSI technology [36].

2.5.2. Weighted Regression Coefficient (WRC) Analysis

This method was based upon the regression coefficient analysis of the wavelengths obtained from
the partial least squares model as shown in Equation (2).

Y = pX’ )

Whereas X was the standardised wavelength matrix obtained by dividing wavelength vectors by
their standard deviation and Y was the predictor matrix. Both X and Y were related by a regression
vector 3. The weighted regression coefficient (WRC) method was performed on the calibration data
set with full cross-validation. The absolute value of {3 indicates the importance of the corresponding
wavelength. Wavelengths with large 3 values (irrespective of the sign) were the most influential [37].
Various studies have reported using WRC for key wavelength selection in different applications of HSL
For example, HSI data of coffee beans was used to determine the caffeine content and 12 important
wavelengths were extracted [38]. Weighted regression analysis was performed to recognise 6, 24, and
15 important wavelengths for colour, pH, and tenderness prediction of beef slices, respectively [39].

3. Results

3.1. Full-Range PLS-DA Model

One thousand spectra were randomly selected from every single hyperspectral image used in the
model. For predicting milk powder particle size classes, the discriminant analysis was performed by
the PLS method using spectra obtained from the three size fractions (coarse (C), medium (M), and fine
(F)). This model was trained (i.e., calibrated) and validated with the milk powder size fractions of
different batches. As mentioned earlier, the samples from seven batches were used for the model
calibration and the samples from the other three batches were used for the model validation. Figure 3
shows that the parsimonious number of latent variables (LV) was three as more than three LV did not
significantly reduce RMSECV.

RMSECV

0 1 L 1 1 1
1 2 3 4 5 6 7 8 9 10
[atent variables

Figure 3. Latent variable selection using the root mean square error of cross-validation.

Spectral pre-treatments are usually applied prior to developing the PLS-DA model. Pre-treatments
including differentiation, and smoothing were tested before the data analysis, and smoothing showed
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improvements compared to taking derivatives of the spectra. Therefore, smoothing was applied to
all spectra of milk powder samples before the PLS-DA model. An equal number of pixel spectra
were selected from the hyperspectral images of the coarse, medium, and fine milk powder samples.
Each point on the Figure 4 represents a single spectrum. These spectra and their corresponding class
‘dummy’ variable 1, 2, or 3 (represents C, M, or F, respectively) were involved to build the calibration
and prediction model. Spectra whose predicted ‘dummy’ variable was within the range of 0.5-1.5
was classified as coarse particle fraction ‘C’. Similarly, the spectrum of predicted variables of 1.5-2.5,
and 2.5-3.5 were classified as medium particle fraction ‘M’ and fine particle fraction ‘F’, respectively.
A standard deviation of 0.015, in the form of a Gaussian distributed noise source, was added to the
abscissa to show the spread of the data. It was observed that the PLS-DA model can successfully predict
the milk powder particle size fractions using the spectral data, as the correlation coefficient values
for the calibration and prediction of the PLS model were >0.94 (as shown in Figure 4). Classification
accuracy, sensitivity, and specificity for selected spectrum from samples of individual particle size
fractions have been presented in discussion section. However, it is worth mentioning that all the
27 samples of the validation set of discrete particle size fractions were correctly classified to their
respective class C, M, or E.

Ri =0.975 Rﬁ =0.943
2 I R ] st k|
S ) b=
M g M '
ot 1 =
(el C > C )

C M F C M F

Actual particle size fraction ~ Actual particle size fraction

Figure 4. Prediction of milk powder samples into coarse, medium, and fine fractions.
3.2. Selection of Wavelengths

3.2.1. Reduced Number of Wavelengths Based upon Principal Component Analysis (PCA)

After pre-processing by spectral smoothing and noise reduction, PCA was performed on the
spectra of three size fractions of milk powder, and hence a large amount of spectral information of
each pixel was represented by three PCs.

The score and loading plots of the PCA are presented in Figure 5. Different colours were used to
represent pixel spectra of the different particle size fractions of milk powder. An ellipse was drawn
across each cluster to present the 95% probability of occurrence of the sample within the confined area.
The score plots show the three PCs (PCy, PCy, and PC3) that comprised approximately 75% variance of
all the spectral data of the three milk powder fractions. Almost 73% variance was associated with PCy
and PC;. The score plots differentiated the three milk powder fractions clearly across PC; and PC,.
The spectral information of various pixels of samples was presented as one single point on the PCA
score plot.
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Figure 5. Principal component analysis of coarse, medium, and fine fraction of milk powder samples.
(a) score plots; (b) loading plots.

The loading plot in a PCA shows the explanatory strength of the PCs towards the original data
set’s wavelength variable. The wavelengths having high loading values (regardless of sign) are
good candidates to be effective wavelengths [40]. The loading plot also indicated that PC; was most
influenced by wavelengths in the 400-550 nm and 850-1000 nm regions, while PC, was also affected by
the 400-550 nm wavelengths. The third principal component PC3 seemed least related across the whole
wavelength range. With three PCs, at least three original wavelengths were needed for re-modelling
the data. Therefore, loading vectors of the three PC’s plotted over the complete spectral range and it
was observed that at least five local minima and maxima on PC; and PC, could be obtained, as shown
in Figure 5 Wavebands of these minima and maxima were important to the clustering analysis in
PCA [41]. Therefore, centred wavelengths within these minima and maxima regions from the loading
curve were chosen. According to the loadings of PC; to PCj (Figure 5), two wavelengths of 460 and
485 nm were selected mutually from PC; and PC,, and a further three wavelengths of 730, 895 and
990 nm were selected from PCy, respectively. A model developed with these five wavelengths was
named as PCA-PLS-DA.

3.2.2. Reduced Number of Wavelengths Based upon Weighted Regression Coefficient (WRC)

This technique reduced the number of wavelengths by selecting only those wavelengths that
highly contribute toward the regression coefficient 3. For this purpose, the spectral data was adjusted
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to the same scale. Afterwards, weighted regression coefficient 3 was plotted for entire spectral range,
as shown in Figure 6. Higher values of 3 reflected the significance of the wavelengths. However,
no particular threshold value was selected. Peak values of the regression coefficient 3 plot could
be chosen [42].A set of 11 wavelengths was identified. These wavelengths were used to replace the
full spectrum to build a simplified PLS-DA model. This model was named as WRC-PLS-DA. These
wavelengths were 413, 425, 440, 458, 493, 515, 578, 596, 624, 669, and 922 nm. It is interesting that 10
out of 11 wavelengths belong to the visible region of the spectrum. This confirms the importance of the
visible region in the multivariate data analysis of the milk powder samples with varying size particles.

0.25

02 458 iy
0.15 2;‘13 v Y 515 669 |

0.1

0.05

3 coefficient
()

025 | | | | |
400 500 600 700 800 900 1000

Wavelength (nm)

Figure 6. Selection of eleven wavelengths from the weighted regression coefficient method.

4. Discussion

Notwithstanding the encouraging results found using the full wavelengths model, it is beneficial
to use only a few variables for accurate, simplified, and robust classifications from hyperspectral
data [43]. In Section 3.2., five wavelengths were selected by PCA loading analysis and 11 wavelengths
were identified by the weighted regression coefficient technique. Simplified PLS-DA models with a
reduced number of wavelengths were developed. Table 1 shows a comparison of models in terms of
calibration performance (i.e., R2, RMSEC, Rey2, and RMSECV), prediction performance (i.e., sz and
RMSEP), residual predictive deviation (RPD), and computation time. Computation time was recorded
as execution time for model to produce a results data set by an Intel Core i7 CPU with the dual-processor
running at 2.60 GHz and 2.10 GHz with a memory capacity of 16 GB. Models were run 20 times and
execution time was recorded. The average execution time is presented in Table 1 Fast computation
was observed for the reduced wavelength models as it took 2.13 s on average for the model using
five wavelengths identified by PCA loadings, while 2.82 s was the average execution time with 11
wavelengths of WRC-PLS-DA model for the classification of three individual fractions of milk powder.
However, a model built with full spectral information of milk powder fractions was taking more than
30 s on average to produce results.

The regression coefficient Rp? was slightly improved from 0.943 of PLS-DA model to 0.962
for PCA-PLS-DA. The best regression coefficient R,> was for the WRC-PLS-DA model with 0.979.
However, significant differences were observed when PLS-DA models were evaluated by RMSEP and
computational time. Root mean square error was reduced from 0.142 for a complete spectrum model to
0.066 for the model that was based upon reduced wavelength derived from PCA and 0.013 for model
built with wavelengths selected by PCA. In terms of R,> and RMSEP, WRC-PLS-DA resulted in better
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performance. The prediction performance of WRC-PLS-DA was better than the other models in terms
of Rp? and RMSEP. Residual predictive deviation for all models was greater than five which indicates
satisfactory performance of all models.

Table 1. Regression performance of models for prediction of particle size fraction of milk powder.

Calibration Prediction Cross-Validation
Model Wavelengths LVs RPD Computation Time (s)
R RMSEC RP2 RMSEP  R? RMSECV
PLS-DA 933 3 0.975 0.128 0.943 0.147 0.954 0.129 5.835 322+15
WRC-PLS-DA 11 3 0.982 0.016 0.979 0.013 0.979 0.015 5.942 28+0.3
PCA-PLS-DA 5 3 0.971 0.062 0.962 0.066 0.964 0.648 5.716 21+02

Performance of these models were evaluated for their respective classification accuracy as well (as
presented in Table 2). Classification performance indicators such as sensitivity, specificity and overall
accuracy of the model were calculated [44]. Prediction of class from a thousand spectra taken from
single samples of milk powder of three classes—coarse, medium, or fine—were analysed. There were a
total 21 samples in duplicate (i.e., 2 X 21 x 1000 spectra of each particle size fraction). Green cells in the
Table 2 show the number of true positives (TP) of each particle size class e.g., a spectrum extracted from
a coarse particle fraction of milk powder samples was predicted to be class ‘C’. False negative (FN)
prediction was also estimated for the three particle size classes. A false negative number is the number
of spectra that were assigned to an incorrect class and showed as red cells in Table 2. Furthermore,
sensitivity and specificity of each class were also calculated. Sensitivity determined the ratio of the true
positive prediction number to total number of spectra in a respective particle size class. It is noteworthy
that the WRC-PLS-DA model showed the highest sensitivities of 0.964, 0.877 and 0.924 for coarse,
medium, and fine particle size classes, respectively. Similarly, specificity referred to the actual negative
prediction number ratioed to the total number of spectra that were not part of a respective class. It was
observed that the coarse particle fraction had a greater than 96% probability for not being misclassified.
A lower specificity may show a higher chance of predicting a false positive for the medium and fine
particle spectra in these classification models. The highest overall accuracy in these three models was
observed for WRC-PLS-DA i.e., 92.2%. Notwithstanding the similar predictive performance of these
models, their classification performance indicators were distinctive.

Table 2. Classification performance of models for prediction of particle size fraction of milk powder.

PLS-DA Predicted Class EN Sensitivity
C M F
C 37,651 3964 385 4349 0.897
Actual class M 1236 31,295 9469 10,705 0.745
F 1061 5067 35,872 6128 0.854
P 2297 9031 9854 Overall 0832
Specificity 0.967 0.890 0.875 accuracy
WRC-PLS-DA Predicted class EN Sensitivity
C M F
C 40,511 1086 403 1489 0.964
Actual class M 1909 36,854 3237 5146 0.877
F 63 3112 38,825 3175 0.924
FP 1972 4198 3640 Overall 0922
Specificity 0.975 0.949 0.955 accuracy
PCA-PLS-DA Predicted class EN Sensitivity
C M F
C 38,456 2946 598 3544 0.916
Actual class M 1380 35,591 5029 6409 0.847
F 345 3047 38,608 3392 0.919
FP 1725 5993 5627 Overall 0.894
Specificity 0.977 0.928 0.929 accuracy

Whereas, C, M, and F respective class of coarse, medium, and fine particle fraction, FN false negative, FP false
positive, Green cells TP true positive, and red cells false negative.
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The prediction maps of three discrete particle size samples and one recombined milk powder
sample are shown in Figure 7. These maps present the classification of spatial pixels of a milk powder
sample to their predicted particle size class. These maps show a clear visual discrimination between
the coarse, medium, and fine particle size fractions. A reference scale is also presented here to refer to
the range of predicted ‘dummy’ variable and its respective class of PLS-DA model. The result from the
recombined milk powder sample suggests the feasibility of using hyperspectral imaging to visualise
milk powder samples having varied particle size fractions. However, an even more comprehensive
study with a large set of milk powder samples with varying particle sizes could be helpful for industrial
applications where milk powder particle size affects the physical and functional properties of the
final product.
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Figure 7. Example of prediction map of discrete particle fractions of milk powder (a) fine particle
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fraction sample; (b) medium particle fraction sample; (c) coarse particle fraction sample; and (d)
recombined fractions sample.

5. Conclusions

This research was conducted to explore the potential suitability of visible and near-infrared
(400-1000 nm) HSI for classifying three discrete particle size fractions of milk powder. Based on
full spectral wavelengths, the PLS-DA model with Rp? of 0.943 was able to classify coarse, medium,
and fine fractions of milk powder in 32 s on average. Important wavelengths identified by the
PCA were five and by weighted regression coefficient were 11. Simplified PLS-DA models based
upon these reduced numbers of wavelengths improved the prediction performance of the models.
The WRC-PLS-DA model yielded better predictability with Rp? 0.98, RMSEP 0.013, RPD 5.94, and 92.2%
classification accuracy. However, the fastest average computation time was recorded as 2.13 s for the
PCA-PLS-DA model. Results of this preliminary study suggest that this method could be feasible to
further investigate for rapid and non-invasive measurements of milk powder particle size for future
at-line/on-line applications. It could also contribute to the design of future sensors by an initial choice
of decisive wavelengths, allowing maximum discrimination between different particle size particles.
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