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Abstract: This work presented a comparison between two Voltage Controlled Oscillators (VCOs)
designed in 65 nm CMOS technology. The first architecture based on a Ring Oscillator (RO) was
designed using three Current Mode Logic (CML) stages connected in a loop, while the second
one was based on an LC-tank resonator. This analysis aimed to choose a VCO architecture able
to be integrated into a rad-hard Phase Locked Loop. It had to meet the requirements of the
SpaceFibre protocol, which supports frequencies up to 6.25 GHz, for space applications. The full
custom schematic and layout designs are shown, and Single Event Effect simulations results,
performed with a double exponential current pulses generator, are presented in detail for both VCOs.
Although the RO-VCO performances in terms of technology scaling and high-integration density
were attractive, the simulations on the process variations demonstrated its inability to generate the
target frequency in harsh operating conditions. Instead, the LC-VCO highlighted a lower influence
through Process-Voltage-Temperature simulations on the oscillation frequency. Both architectures
were biased with a supply voltage of 1.2 V. The achieved results for the second architecture analyzed
were attractive to address the requirements of the new SpaceFibre aerospace standard.

Keywords: ring oscillator; LC-tank oscillator; SpaceFibre; rad-hard circuits; radiation effects;
high-speed data transfer

1. Introduction

Several thousand launch activities have been performed during the last half-century, and with
the rapid development of technology, satellites are playing an important role in human society.
These systems are widely used for navigation, communication, and earth observation. One of the
first communication experiments with laser was conducted between two Low Earth Orbit (LEO)
satellites and a geostationary satellite ARTEMIS. The experiment was performed with a data rate of up
to 50 Mbps. Then, other experiments followed with an increased data rate to achieve inter-satellite
communication links. Today, current trends in satellites show a rapid increase in data traffic and
digital processing. The throughput of next-generation satellites for digital telecom applications, as well
as scientific missions, surveillance, and remote sensing, will exceed terabits per second of data that
must be processed on board. For instance, the high-resolution cameras and synthetic aperture radars
need high-speed communications between the instruments and the on-board data storage system [1].
The optical technology, thanks to its high bandwidth-length product, the lightweight cabling, and
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electromagnetic hardness, can potentially be the solution for data-rate increment in satellites. In this
direction, the European Space Agency (ESA) has recently released the new SpaceFibre standard for
on-board satellite communication up to 6.25 Gbps [2,3]. The standard describes the very high-speed
serial link and network technology, and it was designed specifically for use on-board spacecraft and
satellites. This protocol provides a coherent quality of service mechanism able to support bandwidth
reserved, scheduled, and priority-based qualities of service. SpaceFibre provides robust, long-distance
communications for launcher applications and supports avionics applications with deterministic
delivery constraints using virtual channels. Communication performances are strongly related to
the ability to synchronize the receiver with the transmitter. This issue is typically fixed with a Clock
Data Recovery (CDR), and the key block used for its synchronization is the Phase Locked Loop (PLL).
The Voltage Controlled Oscillator (VCO) is the core system, inside the PLL, able to generate the required
frequency of 6.25 GHz to be compliant with the SpaceFibre protocol. Although the required Total
Ionizing Dose (TID) level is lower than 1 Mrad for space applications [4], the main problems are due
to Single Event Effects (SEEs) that temporarily disturb the typical operation of the circuit. This work
targets, as implementation technology, a commercial 65 nm CMOS from TSMC (Taiwan Semiconductor
Manufacturing Company). This technology, thanks to its thin gate-oxide thickness, could be considered
radiation hard up to few hundred Mrad TID levels, as proved in [5], and by us in previous designs of
other high-speed circuits in [6–8]. To the best of the authors’ knowledge, in literature and market, there
are not examples of rad-hard VCOs able to work at 6.25 GHz. The paper [9] showed the design of a
PLL in the range from 0.2 GHz to 1.2 GHz, designed in 65 nm STMicroelectronics space technology.
This system was irradiated up to 300 krad TID level, and its behavior was verified with different
protons. In [10], a comparison between Ring Oscillator (RO) and LC-tank VCO for PLL was made
for Large Hadron Collider’s (LHC) applications. Both were designed for a working frequency from
2.2 GHz to 3.2 GHz, and the SEE test performed with heavy-ions showed that the LC-VCO had a larger
cross-section than the RO-VCO. Varactors have been identified as the most sensitive part of LC-tank
architectures, and Triple Modular Redundancy (TMR) technique has been adopted to face SEEs in the
design of the phase frequency divider. The goal of this work was to compare the performances of the
widely used RO and LC controlled oscillators in radiation environments and to contribute with new
approaches for exploiting the characteristics that have made these systems the most implemented.

This work is an extension of the preliminary work presented by us at the conference [11].
With respect to the conference presentation, this work presented the complete full custom design of
schematic and layout for both the RO and the LC-tank controlled oscillator (respectively reported
in Sections 2 and 3). Moreover, this work in Section 4 provides transient and SEE simulations
results, missing in [11]. Section 5 compares this work vs. The state-of-the-art. Conclusions are drawn
in Section 6.

2. Ring Oscillator Based on a Cascade of Three Current Mode Logic (CML) Buffer

2.1. Ring Oscillator Schematic Design

The RO-VCO presented in this work is composed of a cascade of inverting amplifiers in closed-loop,
as shown in Figure 1. The transconductance gm is the gain of the single amplifier, while R and C are
the equivalent output resistance and the equivalent input capacitance, respectively, of previous and
following stages. According to Figure 1, the open-loop gain of the system composed of N generic
stages is expressed as

H( jω) =

(
−

gmR
1 + jωRC

)N

(1)

For the Barkhausen oscillation criterion [12], the module of the transfer function has to be higher
than one for the start-up condition and then equal to one to sustain the oscillation, while the transfer
function phase has to be an integer multiple of 2π.
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Figure 1. Ring oscillator modalized using inverting stage amplifiers. 
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rings and deep n-well are also used for the design of MOSFETs devices to prevent Single Event Latch-
up (SEL) and to mitigate SEEs [19,20]. The single CML stage, shown in Figure 2, is made by a source 
coupled pair with a resistive load, a simple current mirror, and accumulation-mode MOSFETs 
varactors. Active components M1 and M2 are designed with the minimum channel length allowed 
by technology, and the transistor width is chosen in order to ensure, in the worst case, a gm*R value 
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maximum MOSFET length allowed by the RF-device model to increase the output resistance. A 
current of 4 mA feeds the controlled oscillator, and the post-layout simulated power consumption is 
18 mW. In order to take control of the oscillation frequency, a couple of varactors are added at the 
output of each stage [21,22]. 

Figure 1. Ring oscillator modalized using inverting stage amplifiers.

Applying this criterion at the model in Figure 1, we obtain the oscillation condition in terms of
design parameters, expressed as

gmR ≥
1

cosθ
(2)

where θ is the phase shift introduced by each RC load, which for the Barkhausen oscillation criterion
must be an integer multiple of π/N. In a ring oscillator, the frequency f0 = 1/2NτD, where τD is the
delay of a single stage, and N is the number of stages in the loop. In order to limit power consumption
and to reduce the silicon area to decrease the number of collisions caused by ionizing particles, N = 3
was chosen for the RO-VCO design. Although two stages ring oscillator provides a quadrature clock,
as demonstrated in [13], a three stages oscillator is conventionally used for differential architecture [14].
Moreover, a smaller value of N provides a better phase noise [15] and a higher value of the working
frequency f0. With this choice, in accordance with Equation (2), the following condition is extracted as
the main design guideline

gmR ≥ 2 (3)

Although CMOS architectures are largely used for their low static-power dissipation and high
integration density, the designed RO-VCO is composed of three CML stages. The current mode
logic architecture, based only on n-MOSFETs and resistors, is more suitable for high-frequency
applications, thanks to their lower voltage swing and lower output impedance than a standard CMOS
approach [16,17]. Moreover, the use of a differential structure allows obtaining higher common-mode
disturb immunity than the use of a single-ended structure, as in classic CMOS circuits [18]. Guard rings
and deep n-well are also used for the design of MOSFETs devices to prevent Single Event Latch-up
(SEL) and to mitigate SEEs [19,20]. The single CML stage, shown in Figure 2, is made by a source
coupled pair with a resistive load, a simple current mirror, and accumulation-mode MOSFETs varactors.
Active components M1 and M2 are designed with the minimum channel length allowed by technology,
and the transistor width is chosen in order to ensure, in the worst case, a gm*R value of 4, which is two
times higher than the critical value expressed in Equation (3). The supply voltage for this technology
is 1.2 V, and the value chosen for resistors shifts the output common-mode voltage level at 0.9 V.
The RO-VCO bias current is controlled by the external generator I0 through the simple current mirror
M3 and M4 with a unity current gain. These MOSFETs are designed with the maximum MOSFET
length allowed by the RF-device model to increase the output resistance. A current of 4 mA feeds the
controlled oscillator, and the post-layout simulated power consumption is 18 mW. In order to take
control of the oscillation frequency, a couple of varactors are added at the output of each stage [21,22].

The frequency tuning is made, thanks to accumulation-mode MOSFETs devices. A single varactor
is designed by 40 fingers divided into 2 groups, and each finger is designed with the minimum finger
length of 200 nm and a finger width of 550 nm. They can assume the value in the range from 69.53 fF
to 34.93 fF, respectively, for the minimum and maximum value of the control voltage in the typical case.
As shown in Figure 3a, the variation of the capacitance value through the corner cases is lower than 5%.
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The oscillation frequency of the RO-VCO based on a CML architecture is closely related to the
value of the gate capacitance [23], and it is expressed by the relation f0 = 1/2πRCT, where R is the
parallel between the pull-up CML resistive load and the output MOSFET resistance, while CT is the
cumulative capacitance due by varactors and the gate capacitance of the following stage.

2.2. Ring Oscillator Layout Design

The complete layout of the RO-VCO designed in 65 nm CMOS bulk-silicon technology is shown
in Figure 4. The simple current mirror, in the bottom side, and the three source-coupled pairs are
designed, adopting the common centroid technique to increase matching. All the gate terminals are
turned in the same way so that the current flows in the same direction, and the space between instances
is the minimum allowed by technology rules. A trade-off between metal width and length is made
to prevent the electro-migration phenomena due to high current density. Moreover, alternate layers
perpendicular to each other are drawn to minimize parasitic capacitances that lead to a frequency
reduction. The total layout area of the proposed RO-VCO is 249 × 86 µm2.
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Virtuoso [24].

3. LC-Tank Oscillator

3.1. LC-Tank Schematic Design

The second architecture designed is based on an LC-tank resonator. This architecture bases its
oscillation frequency on the filtering effect of an LC-tank, leaving for active components only the role
of setting the feedback gain [25] and compensate for the loss of the inductor.

The design guideline to respect Barkhausen oscillation criterion must be

gm > 1/RP (4)

where gm is the value of the transconductance of the n-MOSFETs devices inside the cross-coupled cell,
and RP is the parasitic resistance of the inductor [26]. Figure 5 shows the schematic of the LC-VCO
designed to generate the target 6.25 GHz frequency. A polysilicon resistor is used to shift the output
common-mode level at VDD/2, preventing the damaging or lifetime reduction of the low-voltage
MOSFETs used for the cross-coupled pair.
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of 3.6 µm to guarantee a cell gain of at least 6 dB for start-up condition. The VCO bias current is
controlled by the external current Io through the simple current mirror M3 and M4 with a current gain
of 5, and the power consumption is less than 3 mW. The oscillation frequency of the LC-VCO is set by
f0 = 1/

(
2π

√
L(C + Cvar)

)
[26], where C is the equivalent capacitance due to the cross-coupled cell

and the first stage of the output buffer, and Cvar is the capacitance of the accumulation-mode MOSFETs
varactors connected at the controlled oscillator outputs. The Tuning Range (TR) is made with the
control voltage Vctrl in the range from 0 V to VDD, and varactors assume, respectively, the value in the
range from 629.6 fF to 197.6 fF, as shown in Figure 3b. A single varactor is composed of 120 fingers
divided into 6 groups, and each finger is designed with 300 nm finger length and 1.2 µm finger width.

Figure 6 shows the simulated frequency response of the VCO for the two extreme values of the
control voltage, and a minimum cell gain of about 10 dB for the minimum value of the control voltage,
allowing to achieve a robust start-up condition for the oscillator.
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3.2. LC-Tank Layout Design

The complete layout of the LC-VCO is shown in Figure 7, and it is composed of the simple current
tail mirror, varactors, cross-coupled cell, inductor, and poly-silicon resistance from bottom to the top.

The current mirror is designed as a single strip, and a common centroid technique is adopted for
the cross-coupled cell. Moreover, the minimum space allowed by technology rules is used, helping to
increase matching. About 85% of the total area is occupied by the differential inductor (177 × 198 µm2)
that has a quality factor of 20. It has been chosen with an odd number of turns because the two output
terminals are on the same side of the cell, thus making the routing shorter with MOSFETs devices.
Moreover, the single resistor connected to the center tap helps to reduce the metal connection length
between the inductor and the cross-coupled cell.



Sensors 2020, 20, 4612 7 of 15
Sensors 2020, 20, x FOR PEER REVIEW 7 of 15 

 

 
Figure 7. Full custom layout of the LC-tank VCO designed with Cadence Virtuoso [21]. 

The oscillator is designed to work properly in the temperature range −55 °C, +125 °C with 10% 
variations of current bias and voltage supply. The total layout area of the proposed LC-VCO is 308 × 
198 µm2. 

4. Simulations Results 

4.1. Design Simulations 

The small length size n-MOSFETs allowed to achieve high-frequency performance, but on the 
other hand, this choice increased the deviation of the device parameters from the typical condition. 
Although the frequency tuning was made with the use of accumulation-mode varactors, the 
frequency shift due to the technology simulations was so high that it could not be compensated using 
the control voltage. Figure 8 shows a post-layout simulation of the free-running oscillation frequency 
of the RO-VCO for the only three corners process. The frequency values were plotted versus an 
increasing value of the control voltage from the minimum to the maximum values. The oscillation 
frequency in the slow-slow corner case did not reach the 6.25 GHz frequency value required by the 
SpaceFibre standard, even using the maximum value of the control voltage. In the fast-fast corner 
case, the frequency was higher than the targeted frequency, even with the minimum value of the 
control voltage. Although the RO-VCO resulted as strongly dependent on the device parameters, in 
space applications, the best components should be selected. 

Although n-MOSFETs devices in the cross-coupled cell were designed with the minimum 
MOSFET length, the frequency shift in the LC-VCO, due to the technology simulations, could be 
recovered with the use of varactors and the control voltage. This can be seen by the curves in Figure 
9, showing LC-tank VCO post-layout simulation of the free running-frequency versus control voltage 
in fast-fast (red line), typical (green line), and slow-slow (blue line) technology corner cases. 

Figure 7. Full custom layout of the LC-tank VCO designed with Cadence Virtuoso [21].

The oscillator is designed to work properly in the temperature range −55 ◦C, +125 ◦C with
10% variations of current bias and voltage supply. The total layout area of the proposed LC-VCO is
308 × 198 µm2.

4. Simulations Results

4.1. Design Simulations

The small length size n-MOSFETs allowed to achieve high-frequency performance, but on the
other hand, this choice increased the deviation of the device parameters from the typical condition.
Although the frequency tuning was made with the use of accumulation-mode varactors, the frequency
shift due to the technology simulations was so high that it could not be compensated using the control
voltage. Figure 8 shows a post-layout simulation of the free-running oscillation frequency of the
RO-VCO for the only three corners process. The frequency values were plotted versus an increasing
value of the control voltage from the minimum to the maximum values. The oscillation frequency in the
slow-slow corner case did not reach the 6.25 GHz frequency value required by the SpaceFibre standard,
even using the maximum value of the control voltage. In the fast-fast corner case, the frequency was
higher than the targeted frequency, even with the minimum value of the control voltage. Although
the RO-VCO resulted as strongly dependent on the device parameters, in space applications, the best
components should be selected.

Although n-MOSFETs devices in the cross-coupled cell were designed with the minimum MOSFET
length, the frequency shift in the LC-VCO, due to the technology simulations, could be recovered with
the use of varactors and the control voltage. This can be seen by the curves in Figure 9, showing LC-tank
VCO post-layout simulation of the free running-frequency versus control voltage in fast-fast (red line),
typical (green line), and slow-slow (blue line) technology corner cases.
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In addition to technology simulations, thus increasing the simulation realism, PVT (Process-Voltage-
Temperature) simulations were performed by also changing temperature and supply voltage for
both architectures. The SpaceFibre standard required the system to properly work under harsh
conditions. In Table 1, the process and fabrication results are listed, respectively, in the third and
fourth columns. The frequency variations were calculated as a variation from the nominal condition
for temperature, supply voltage, and polarization current in each technology corner. The variations
were obtained for temperature variations in the range −55 ◦C, 125 ◦C, and for ±10% supply voltage
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and polarization current deviations. Fabrication results were expressed as the frequency standard
deviation σ, and data were obtained from the Monte Carlo simulations. Monte Carlo simulations were
performed with 200 simulations in the nominal condition for each corner case considering process and
mismatch variations.

Table 1. Frequency variations and standard frequency deviation, respectively, for PVT (Process-Voltage-
Temperature) and Monte Carlo simulations.

Oscillator Technology Corners Frequency Variations Standard Deviation σ (Hz)

RO

slow-slow 31.46% 0.63

typical 28.34% 0.89

fast-fast 15.72% 3.34

LC

slow-slow 9.01% 99.69

typical 9.07% 578.5

fast-fast 7.04% 132.2

Figure 10 shows the simulated phase noise of the two architectures with the harmonic balance
simulation in post-layout. Both VCOs were simulated at the same frequency, and the LC-VCO exhibited
a better phase noise of about 30 dB than the other architecture (at 1 MHz offset, in Figure 9, there was a
phase noise of −110 dBc/Hz for the LC-VCO vs. The −82 dBc/Hz for the RO-VCO). Device noise was
considered in every simulation for both oscillator architecture and for all simulations performed in
this work.
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The integrated RMS jitter was calculated from Figure 10 in the bandwidth from 100 kHz to 10 MHz.
The RMS jitter obtained was 9.51 ps and 0.44 ps for RO-VCO and LC-VCO, respectively. Moreover,
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the RO was more sensitive to temperature variations than the LC-VCO. The time-domain VCO stability
was made with the use of the Allan variance [27,28], or two-sample variance, defined as

σ2
x(τ) =

1
2

E
[
(x2 − x1)

2
]

(5)

Figure 11 shows the Allan deviation, or σ-τ plot, calculated as the square root of Equation (5) when
the VCO was in the steady-state oscillation. In particular, Figure 11a,b show the comparison between
the Allan deviation in frequency and in amplitude, respectively, for both architectures. LC-VCO
exhibited lower variations in frequency and amplitude than the RO-VCO.
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4.2. Single Event Effect Simulations

The model used for SEE simulations and widely accepted by the scientific community [29–31]
is shown in Equation (6), where tinj is the injection instant, ta is the collection time constant of the
junction, tb is the ion track establishment time constant, and Q is the critical charge.

ISET =
Q

ta− tb

[
e−(

t−tinj
ta )
− e−(

t−tinj
tb )

]
(6)

SEEs were modeled as double exponential current pulses at sensitivity nodes, and two different
sets of values, with a Linear Energy Transfer (LET) of 5 and 60 MeV×cm2/mg, were used [32]. The two
sets of values were expressed for different time constants versus critical charge Q and LET. The strike
of an ionizing particle could be modeled by inserting a current pulse on each P-N junction, with the
direction of the injected current depending on the device type [33], as shown in Figure 12. Moreover,
the effects generated by the injected currents were strongly sensitive to the circuit conditions, requiring
the analysis of the system in different states.

Both VCOs based their frequency tuning on accumulation-mode MOSFETs varactors, and the
output nodes resulted as the most sensitive nodes in the whole architectures. Indeed, the strike of
an ionizing particle generated a voltage variation in the node that was then translated in a frequency
deviation by varactors. In this subsection, SEE simulations results are discussed, respectively, for RO
and LC controlled oscillators.
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Figures 13 and 14 show the effects generated by a particle strike for the two values of LET provided
for the model in Equation (5). Particles with 5 and 60 MeV×cm2/mg are representant in the following
figures with the label hit1 and hit2, respectively. The two exponential current generators excited
sensitive nodes of RO-VCO at 25 ns and 30 ns, and the LC-VCO ones at 10 ns and 15 ns.
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Figure 13. Two sets of values with a Linear Energy Transfer (LET) of 5 and 60 MeV×cm2/mg were used
for Single Event Effect (SEE) simulations, and the free-running frequency was plotted for the control
voltage value equal to 0 V (red line) and VDD (blue line). (a) shows the free-running frequency in the
RO-VCO, while (b) shows the free-running frequency in the LC-VCO.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 15 

 

deviation by varactors. In this subsection, SEE simulations results are discussed, respectively, for RO 
and LC controlled oscillators. 

Figures 13 and 14 show the effects generated by a particle strike for the two values of LET 
provided for the model in Equation (5). Particles with 5 and 60 MeV×cm2/mg are representant in the 
following figures with the label hit1 and hit2, respectively. The two exponential current generators 
excited sensitive nodes of RO-VCO at 25 ns and 30 ns, and the LC-VCO ones at 10 ns and 15 ns. 

  
(a) (b) 

Figure 13. Two sets of values with a Linear Energy Transfer (LET) of 5 and 60 MeV×cm2/mg were 
used for Single Event Effect (SEE) simulations, and the free-running frequency was plotted for the 
control voltage value equal to 0 V (red line) and VDD (blue line). (a) shows the free-running frequency 
in the RO-VCO, while (b) shows the free-running frequency in the LC-VCO. 

  

(a) (b) 

Figure 14. Differential amplitude variations due to the hit of the two LET values provided for the 
model. (a) shows the differential amplitude in the RO-VCO, while (b) shows the differential 
amplitude in the LC-VCO. 

In Figure 13, the free-running frequency versus time is plotted for minimum (red line) and 
maximum (blue line) values of control voltage, and in Figure 14, the differential output amplitudes 
for the maximum value of the control voltage, respectively, for RO-VCO and LC-VCO are shown. 

In Table 2, the data extracted from Figures 13 and 14 are listed, where the column called clock 
cycles shows the number of clock cycles in which the frequency assumes different values respect to 
the nominal due to the strike of the particle. In the last two columns, the maximum variations for 
frequency and amplitude are reported. 
  

Figure 14. Differential amplitude variations due to the hit of the two LET values provided for the
model. (a) shows the differential amplitude in the RO-VCO, while (b) shows the differential amplitude
in the LC-VCO.



Sensors 2020, 20, 4612 12 of 15

In Figure 13, the free-running frequency versus time is plotted for minimum (red line) and
maximum (blue line) values of control voltage, and in Figure 14, the differential output amplitudes for
the maximum value of the control voltage, respectively, for RO-VCO and LC-VCO are shown.

In Table 2, the data extracted from Figures 13 and 14 are listed, where the column called clock
cycles shows the number of clock cycles in which the frequency assumes different values respect to
the nominal due to the strike of the particle. In the last two columns, the maximum variations for
frequency and amplitude are reported.

Table 2. Variations due to a SEE for RO-VCO and LC-VCO.

Oscillator Hit Control Voltage Clock Cycles Frequency
Variations

Amplitude
Variations

RO
hit1

0 6 0.61% −1.65%
VDD 3 0.27% −2.93%

hit2
0 9 1.53% −15.38%

VDD 9 3.12% −16.27%

LC
hit1

0 6 0.11% 1.55%
VDD 13 0.46% 3.17%

hit2
0 15 1.24% 43.80%

VDD 24 2.45% 57.49%

As it is shown in the last two columns of Table 2, when the VCOs were hit by the ionizing particle
with a LET of 5 MeV×cm2/mg (called hit1 in Table 2), both architectures showed nearly the same
amplitude and frequency variations. Instead, when a particle with higher LET (called hit2 in Table 2)
did hit the two VCOs, the amplitude variations of the LC-tank were greater than that of the RO,
while the frequency variations were lower in the LC-tank-based architecture. This was despite that
the LC architecture used one order greater varactor capacitances than RO one. This greater frequency
deviation in RO-VCO was due to the frequency relationship with capacitance, which was 1/C for the
RO-VCO and 1/

√
C for the LC-VCO. This attested that a small capacitance variation generated a huge

frequency variation in the RO-VCO, as highlighted in Table 2.
n-MOSFETs devices in both architectures were designed with the minimum channel length

targeting high-frequency applications, but a maximum number of fingers and an oversized MOSFET
width were used to increase the parasitic capacitance of devices. Although this SEE mitigation technique
increased the silicon area and reduced the tuning range, it increased the SEE tolerant property of
both VCOs. Indeed, following the simple rule V = Q/C, if the capacitance value was increased for
a fixed value of charge, then a lower variation of the voltage occurred. Moreover, guard rings and
deep n-wells were adopted to isolate the devices by the charge generated in the substrate during a
particle strike. Indeed, if an ionizing particle passed through the device, electron-hole pairs could
be generated, which, thank to guard rings and deep n-wells, were rapidly collected, avoiding the
activation of parasitic latch-up.

5. Comparison vs. The State-of-the-Art

A state-of-the-art comparison of voltage controlled oscillator designed in 65 nm technology is
made in Table 3. In works [9,10], the PLLs were based on a RO and LC-VCO. They were irradiated up to
300 krad TID level compliant with SpaceFibre protocol and tested with different protons. Their working
frequency did not meet that required by the SpaceFibre standard, and the aim of this work was
to investigate the behavior of these two well-known architectures at a higher frequency. In [34],
a VCO based on LC tank was optimized against SEEs, and in [35], a three stages ring oscillator was
designed targeting Bluetooth front-end applications, but no process simulations were performed.
Another solution presented in [36] was based on a Colpitts architecture for mm-wave applications.
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Table 3. State-of-the-art comparison.

Ref. Frequency
(GHz)

Power
Consumption (mW) SEE Tolerant Architecture Area (mm2)

[9] 0.2–1.2 n.a. tested Ring n.a.

[10] 2.2–3.2 6 tested Ring and LC n.a.

[34] 2.25–2.88 1.8 tested LC tank n.a.

[35] 3.7–6.5 2 no Ring 0.011

[36] 23.8–29.1 2.3 no Colpitts 0.221

This work 6.20–6.75 18 simulated Ring 0.021

This work 5.35–6.55 <3 simulated LC tank 0.061

6. Conclusions

In this work, the comparison between two VCO architectures designed in a commercial 65 nm
technology was made. Targeting high-frequency space applications, as the SpaceFibre protocol, a CML
approach was adopted for the design of the RO-VCO. CML architecture was preferred, targeting
high frequency, thanks to its lower voltage swing than a CMOS. The RO-VCO was an appetible VCO
configuration in terms of technology scaling, high-integration density, and area occupancy, which was
about 35% of the total silicon area required for the LC-VCO. Although the RO-VCO resulted as strongly
dependent on the device parameters, in space applications, the best components should be selected.
To overcome the effects of the device parameters deviation on the oscillation frequency, an LC-tank
VCO architecture was designed. This architecture, despite its large area, mainly occupied by the
inductor, presented promising performances in terms of the frequency range, covering the 5.35 GHz
to 6.55 GHz range, in the typical case, with a control voltage swing of VDD. SEE simulation results
highlighted the output nodes as the most sensitive nodes for both VCOs, for the effects due to the
varactors. Although the LC-tank VCO used one order greater varactor values than RO, and the ionizing
particle hits generated higher amplitude variation on its output signals, the frequency variations of
this VCO were lower than that showed by the RO architecture, thanks to the different relationship
between frequency and capacitance. In the literature, VCOs based on Colpitts architecture for space
applications are not available because of their large silicon area. The LC system, whose layout is shown
in Figure 7, would be integrated into a 1 mm2 chip containing a SERDES (Serializer-Deserializer) to test
system-level performance. The whole chip would be electrically tested in standard condition, then it
would be exposed to X-rays to achieve the 300 krad TID and to heavy ions for SEE characterization.
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